Numerical Analysis Math-685/OR682

Homework 2 Deadline: Oct 23, 2017

1. (10 points) The speed of wave propogation of a surface wave in a fluid flowing in a channel is given by,

$$v = \sqrt{\frac{g\lambda}{2\pi}} \tanh\left(\frac{2\pi y}{\lambda}\right)$$

where v is the speed of the wave, λ is the length of the wave, y is the depth of the fluid and g is the acceleration due to gravity. Use the bisection method to find the value of $\frac{\lambda}{y}$ to within 10^{-4} for which

$$\frac{v}{\sqrt{gy}} = 0.99.$$

2. (10 points) Consider the sequence $\{x_k\}_{k=0}^{\infty}$ defined by

$$x_{k+1} = g(x_k) = \gamma f(x_k) + h(x_k)$$

for k = 0, 1, 2, ... where $\gamma > 0$, x_0 is a real number, f, h are real valued functions, and $|h'(x)| \leq \frac{3}{4}$. Find a condition on γ that will guarantee convergence of the sequence $\{x_k\}_{k=0}^{\infty}$ to the unique real number z such that z = g(z).

- 3. (15 points) Consider the function $g(x) = e^{-x}$ on the interval $G = [\ln 1.1, \ln 3]$
 - (a) Show that g(x) has an unique fixed point that is real number.
 - (b) Prove that g(x) is a contraction on G.
 - (c) Prove that g(x) maps the interval G to itself.
- 4. (15 points) Consider the iteration function g(x) of the form g(x) = x f(x)f'(x), where f(r) = 0 and $f'(r) \neq 0$. Find the precise conditions on the function f so that the iterations $x_{n+1} = g(x_n)$ converge to the fixed-point r at least cubically if started near r.
- 5. (15 points) Consider the Newton-Raphson iterative method.
 - (a) Establish the iterative sheme, $x_{n+1} = \frac{1}{3} \left(2x_n + \frac{N}{x_n^2} \right)$, to calculate the cube root of a number N.
 - (b) Use the relationship in part (a) to perform two iterations of the Newton-Raphson scheme to obtain an approximation to $\sqrt[3]{12}$.
- 6. (15 points) Consider solving the system of nonlinear equations:

$$xy = z^{2} + 1$$

$$xyz + y^{2} = x^{2} + 2$$

$$e^{x} + z = e^{y} + 3$$

Starting with $(1, 1, 1)^T$, perform three iterations of the Newton-Raphson method to determine the approximate roots of the system of equations.

- 7. (15 points) A can in the shape of a right circular cylinder is to be constructed to contain $1000 \ cm^3$. The circular top and bottom of the can must have a radius of 0.25 cm more than the radius of the can so that the excess can be used to form a seal with the side. The sheet of material being formed into the side of the can must also be 0.25 cm longer than the circumference of the can so that a seal can be formed. Find, to within 10^{-4} , the minimal amount of material needed to construct the can.
- 8. (25 points) Consider the following method for evaluating the smallest root of an equation f(x) = 0 where $f(x) = 1 (a_1x + a_2x^2 + a_3x^3 + a_4x^4 + ...)$. For smaller values of x we can write (using binomial theorem):

$$\left[1 - \left(a_1x + a_2x^2 + a_3x^3 + a_4x^4 + \dots\right)\right]^{-1} = b_1 + b_2x + b_3x^2 + \dots$$

where we have:

$$b_{1} = 1$$

$$b_{2} = a_{1}$$

$$b_{3} = a_{1}^{2} + a_{2} = a_{1}b_{2} + a_{2}b_{1}$$

...

$$b_{n} = a_{1}b_{n-1} + a_{2}b_{n-2} + \dots + a_{n-1}b_{1}.$$

Then $\lim_{n \to \infty} \frac{b_n}{b_{n+1}}$ converges to a root of the equation f(x) = 0.

- (a) Write a MATLAB program to implement the method outlined above.
- (b) Use the program in part (a) to find the smallest root of the equations within a tolerance of 10^{-4} .

i. $x^3 - 5x^2 + 12x - 8 = 0$. ii. $x + \sin x - 1 = 0$