Numerical Analysis (Due: November 13, 2017) Math 685/OR 682 SOLUTION TO NONLINEAR EQUATIONS

Computer Project

Instructions: This project is worth 15 % of your total grade in the class. Your final program and related outputs must be handed in on time to receive full credit.

- 1. (75 Points) Write an MATLAB program that combines the Newtons, Horners and Mullers algorithms to obtain **all** the roots of the following polynomials.
 - (I) $P(x) = x^4 1$
 - (II) $P(x) = x^5 5x^4 8x^3 + 40x^2 9x + 45$
 - (III) $P(x) = 1.1x^5 5x^4 8x^3 + 40x^2 9x + 45$

Use the following steps in your implementation.

- (A) Do the following until all the approximate roots of P(x) are determined
 - (a) Employ the Mullers algorithm to determine a root z of P(x)
 - (b) Deflate P(x) = (x z)Q(x) using the Horners algorithm
 - (c) Set P(x) = Q(x).
 - (d) Go to Step (a).
- (B) Use **each** approximate root obtained as an initial guess and apply the Newtons algorithm to obtain better approximation for the roots of the original polynomial.
- (C) Explain your observation for the answers obtained for (II) and (III).

2. (75 points) Consider the fixed-point method to solve for the positive real root of the polynomial $20x^3 + x^2 - 36 = 0$ using the iteration function

$$g(x) = \sqrt{\frac{36}{20x+1}}$$

that satisfies x = g(x).

- (A) Find the positive real root of $20x^3 + x^2 36 = 0$. Show your work.
- (B) Evaluate the approximate root by using the fixed-point method (contraction) algorithm with an initial guess $x_0 = 1$ that is accurate upto 10^{-6} . Using the first 10 iterations of the approximate solution x_1, x_2, \ldots, x_{10} , study the convergence of the method employed.
- (C) Define the $\nabla x_i = x_{i+1} x_i$ for $i \ge 0$ and $\Delta x_i = x_{i+2} 2x_{i+1} + x_i$ for $i \ge 0$. Write a MATLAB program to implement the following steps:
 - (a) Using the fixed-point algorithm with $x_0 = 1$, determine $x_1 = g(x_0)$ and $x_2 = g(x_1)$. Use the three values x_0, x_1, x_2 to find \hat{x} as follows:

$$\hat{x} = x_0 - \frac{(\nabla x_0)^2}{\Delta x_0}$$

Call $S_1 = \hat{x}$ for this first approximation.

(b) Using the fixed-point algorithm with $x_0 = \hat{x}$, and repeat the previous step. That is, determine $x_1 = g(x_0)$ and $x_2 = g(x_1)$. Use the three values x_0, x_1, x_2 to find \hat{x} as follows:

$$\hat{x} = x_0 - \frac{(\nabla x_0)^2}{\Delta x_0}$$

Call $S_2 = \hat{x}$ for this second approximation.

- (c) Perform 10 iterations of this process to obtain S_1, S_2, \ldots, S_{10} and use this sequence to study the convergence of method employed here.
- (D) Compare the convergence in steps (B) and (C).