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Examples of PDEs

• Heat Equation
• Wave Equation
• Laplace Equation
• Advection Equation
• Convection-Diffusion-Reaction Equation
• Maxwells equation
• Schrödinger equation 
• Black–Scholes equation
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Mathematical Formulation

• Consider the two-point BVP

• Define:
– Finite Energy

– Scalar Product
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Deriving the “weak” variational form

• Let v(x) be any (sufficiently regular) function 
such that v(0) = 0.

• Multiplying the BVP by the test function v(x) 
and integrating by parts yields,

where,
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• Define the space:

• Our “weak” problem

– Find            such that:                                for all    
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Weak Form          Strong Form
• Strong Form: 

– Suppose                         then find  

• Weak Form: 

– Find           such that:                             for all   

• Theorem: Suppose                   and                   satisfies 
the weak form, then u solves the strong form.
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Boundary Conditions

• DIRICHLET
– Essential Boundary Condition
– Appears explicitly

• NEUMANN
– Natural Boundary Condition
– Incorporate implicitly
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Ritz-Galerkin Approximation

• Let              be any finite dimensional subspace.

• Weak form on finite dimensional space:

– Find             such that:                             for all

• Theorem: Given              then the above weak 
form on the finite dimensional subspace S has a 
unique solution.
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Matrix Formulation

• Let                                        and 

• Choosing              for any i=1..n the weak form 
- Find           such that:                       for all 
becomes: 
- Find             that satisfies the matrix system:

where,
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Properties of Stiffness Matrix

• K is symmetric

• K is positive definite
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Weak Form             Minimization Problem

• Define the linear functional

• Minimization Problem: Find          such that:

• Recall the Weak formulation: 
– Find           such that:                         for all

• Theorem: The minimization problem and weak 
formulation have the same solution.
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Strong        Weak      Minimization
• Strong Form: Let                   . Find  

• Weak Form: Find          such that:                       for all        
where,

• Minimization Problem:  Find          such that:
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