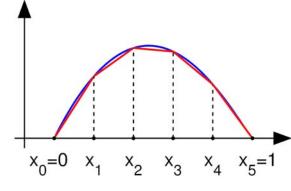
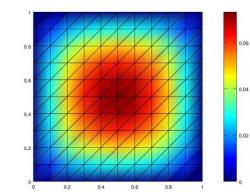


Analysis of the Finite Element Method Math679/002, Fall 2012

Padmanabhan Seshaiyer Mathematical Sciences George Mason University Email: <u>pseshaiy@gmu.edu</u> Sept 13, 2012





$$A = \begin{pmatrix} a_{11} & 0 & 0 & \dots & 0 \\ a_{21} & a_{22} & 0 & \dots & 0 \\ a_{31}^* & a_{32} & a_{33} & \dots & 0 \\ \dots & \dots & \dots & \dots & \dots \\ a_{n1} & a_{n2} & a_{n3} & \dots & a_{nn} \end{pmatrix}$$

Examples of PDEs

- Heat Equation
- Wave Equation
- Laplace Equation
- Advection Equation
- Convection-Diffusion-Reaction Equation
- Maxwells equation
- Schrödinger equation
- Black–Scholes equation

Mathematical Formulation

• Consider the two-point BVP

$$-u''(x) = f(x)$$
 in (0,1)
 $u(0) = 0$
 $u'(1) = 0$

• Define:

- Finite Energy
$$\int_0^1 (f(x))^2 dx < \infty$$

- Scalar Product
$$(v, w) = \int_0^1 v(x) w(x) dx$$

Deriving the "weak" variational form

- Let v(x) be any (sufficiently regular) function such that v(0) = 0.
- Multiplying the BVP by the test function *v*(*x*) and integrating by parts yields,

$$a(u,v) = (f,v)$$

where,

$$a(u, v) = \int_0^1 u'(x) v'(x) dx$$
$$(f, v) = \int_0^1 f(x) v(x) dx$$

Strong Form ----> Weak Form

• Define the space:

$$V = \left\{ v \in L^2(0,1) : a(v,v) < \infty \text{ and } v(0) = 0 \right\}$$

• Our "weak" problem

- Find $u \in V$ such that: a(u, v) = (f, v) for all $v \in V$

Weak Form Strong Form

- Strong Form:
 - Suppose $f \in C^0([0,1])$ then find $u \in C^2([0,1])$

$$-u''(x) = f(x)$$
 in (0,1)
 $u(0) = 0$
 $u'(1) = 0$

• Weak Form:

- Find $u \in V$ such that: a(u, v) = (f, v) for all $v \in V$

• **Theorem**: Suppose $f \in C^0([0,1])$ and $u \in C^2([0,1])$ satisfies the weak form, then *u* solves the strong form.

Boundary Conditions

- DIRICHLET
 - Essential Boundary Condition
 - Appears explicitly

u(0) = 0

- NEUMANN
 - Natural Boundary Condition
 - Incorporate implicitly

u'(1) = 0

Ritz-Galerkin Approximation

- Let $S \subset V$ be any finite dimensional subspace.
- Weak form on finite dimensional space:

- Find $u_s \in S$ such that: $a(u_s, v) = (f, v)$ for all $v \in V$

Theorem: Given *f* ∈ *L*²(0,1) then the above weak form on the finite dimensional subspace *S* has a unique solution.

Matrix Formulation

• Let
$$S = \operatorname{span}\{\phi_1(x), \phi_2(x), \dots, \phi_N(x)\}$$
 and $u_S(x) = \sum_{j=1}^N c_j \phi_j(x)$

- Choosing v = φ_i(x) for any i=1..n the weak form
 Find u_s ∈ S such that: a(u_s,v) = (f,v) for all v ∈ V becomes:
 - Find $\vec{c} = \{c_j\}$ that satisfies the matrix system:

$$K\,\vec{c}=\vec{f}$$

where,

$$K_{ij} = a(\phi_j, \phi_i) \qquad i, j = 1..n$$

$$f_i = (f, \phi_i) \qquad i = 1..n$$

Properties of Stiffness Matrix

• K is symmetric

$$a(\phi_i,\phi_j) = a(\phi_j,\phi_i)$$

• K is positive definite

$$\vec{v}^T K \vec{v} > 0$$
 for $\vec{v} \neq 0$

• Define the linear functional $M: V \to \Re$

$$M(v) := \frac{1}{2}(v', v') - (f, v)$$

- Minimization Problem: Find $u \in V$ such that: $M(u) \leq M(v)$ for all $v \in V$
- Recall the **Weak** formulation: - Find $u \in V$ such that: a(u,v) = (f,v) for all $v \in V$
- **Theorem**: The minimization problem and weak formulation have the **same** solution.

Strong > Weak > Minimization

• **Strong** Form: Let $f \in C^0([0,1])$. Find $u \in C^2([0,1])$

$$-u''(x) = f(x)$$
 in (0,1)
 $u(0) = 0$
 $u'(1) = 0$

• <u>Weak Form</u>: Find $u \in V$ such that: a(u, v) = (f, v) for all $v \in V$ where,

$$a(u,v) = \int_0^1 u'(x) v'(x) dx$$
 and $(f,v) = \int_0^1 f(x) v(x) dx$

• **<u>Minimization Problem</u>**: Find $u \in V$ such that:

 $M(u) \le M(v)$ for all $v \in V$