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Rational Functions as Sums
of Reciprocals of Polynomials

Neil Epstein

Abstract. An algorithm is given to express a proper rational function (i.e., the degree of the
denominator exceeds that of the numerator) over any field as an alternating sum of reciprocals
of polynomials of increasing degree. This is analogous to existing algorithms for representing
proper rational numbers.

1. INTRODUCTION. Since ancient Egyptian times, people have explored ways to
represent a proper fraction as a sum of reciprocals of distinct integers (also known as
unit fractions). For instance,

7

15
=

1

3
+

1

8
+

1

120
.

The right hand side of the above equation can be written in Hieroglyphics as follows:

r|||
r|||||||| r322

See [11] for an entertaining and informative introduction to ancient Egyptian mathe-
matics. Even though this idea has been around for at least 3800 years, there are still
open problems. Indeed, the Erdős-Straus conjecture (first posed in [6]), which is still
open at time of writing, asks the question of whether every number of the form 4/n,
with n an integer ≥ 5, can be represented as a sum of 3 or fewer distinct unit fractions.

The breakdown given above for 7/15 is due to an algorithm by none other than
Fibonacci (translated in [3]; the algorithm is what Fibonacci calls the “seventh cate-
gory”) and independently by James Joseph Sylvester [12]. One can explain it in ancient
Egyptian terms in the following way. Say you have 7 loaves of bread that you need to
distribute among 15 workers. (Payment in portions of bread loaves is a common trope
in primary sources we have access to, such as the Rhind Mathematical Papyrus in the
British Museum.) Breaking them in half only gives you 14 pieces, which isn’t enough.
Instead, break the first five loaves into 3 pieces each, making 15 loaves of size 1/3.
Distribute these to your workers, and break up the remaining two loaves into 8 pieces
each (since breaking them in 7ths would make 14 slices, which again isn’t enough).
Distribute 15 of the 16 pieces of size 1/8 to your workers. The remaining 1/8 slice you
can break up into 15 pieces (of size 1

120
each). Each worker gets 1

3
loaf, then 1

8
loaf,

and finally 1
120

loaf, verifying the equation above.
One might ask whether a proper fraction may always be broken down into distinct

unit fractions. Fibonacci provided an algorithm for doing so, hence the answer is “yes.”
Another alternate solution, and one that would not have appeared in ancient papyri

as it involves subtraction, is as follows. Break each of your 7 loaves in half, and dis-
tribute to 14 of your 15 workers. Each of the 14 workers slices off 1

15
of their half loaf

(i.e., 1
30

of the original loaf size) to give to the remaining worker, thus sharing the total
payment equally. Then everyone has 7

15
= 1

2
− 1

30
loaf. Hence, we have an alternating

sum of distinct reciprocals.
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A parallel problem is to do a similar thing for rational functions. That is, given
a fraction of the form f(x)/g(x), and assuming it is proper (i.e., the degree of the
numerator is less than the degree of the denominator), can one represent it as a sum (or
alternating sum) of reciprocals of distinct polynomials? For some pairs of polynomials,
e.g., if f(x) divides g(x), this is easy. For instance, x+3

x2+4x+3
= x+3

(x+3)(x+1)
= 1

x+1
, as

in high school Algebra II. What if f(x) does not divide g(x)? For example, can one
break up x2−x+1

x3+2
this way? By cleverly using the facts that x3 + 2 = (x3 + 1) + 1

and x3 + 1 = (x+ 1)(x2 − x+ 1), one can proceed as follows:

x2 − x+ 1

x3 + 2
=

(x+ 1)(x2 − x+ 1)

(x+ 1)(x3 + 2)
=

x3 + 1

(x+ 1)(x3 + 2)
=

(x3 + 2)− 1

(x+ 1)(x3 + 2)

=
x3 + 2

(x+ 1)(x3 + 2)
− 1

(x+ 1)(x3 + 2)

=
1

x+ 1
− 1

x4 + x3 + 2x+ 2
.

There is a somewhat general way to do so in the form of the partial fractions that
come up in integral calculus. For instance, one has

x2

(x+ 1)2(x− 4)
=

9

25(x+ 1)
− 1

5(x+ 1)2
+

16

25(x− 4)

=
1

25
9
(x+ 1)

− 1

5(x+ 1)2
+

1
25
16
(x− 4)

.

However, if the denominator is complicated, the method of partial fractions relies on
factoring polynomials and intricate linear algebra. Moreover, if the denominator has
irreducible quadratic factors, then unless one expands to the field of complex numbers,
this method fails to supply a sum of reciprocals of polynomials. For instance, partial
fractions over R does nothing with the rational function 2x+1

x2+4
.

In this article, I show that it is always possible to represent a proper rational function
as an alternating sum of reciprocals of distinct polynomials, without expanding the
base field. Moreover, if one puts further restrictions on the successive denominators
of the sum, one can get uniqueness, as shown in the main theorem of this article. In
fact, the proof amounts to an algorithm for obtaining the successive polynomials in the
denominator, so that no algebraic cleverness is required. This theorem is an analogue
of the Pierce expansion of any real number in the interval (0, 1), a series that is finite
precisely when the number is rational. Let me present the following theorem from
almost a hundred years ago.1

Theorem 1 (Pierce [10]). Let a, b be integers with 0 < a ≤ b, such that a does not
divide b. Then there is a uniquely determined finite sequence c0, . . . , cn of positive
integers such that n ≥ 1, c0 < c1 < · · · < cn−1 < cn − 1, and

a

b
=

1

c0
− 1

c0c1
+ · · ·+ (−1)n

c0c1 · · · cn
=

n∑
j=0

(−1)j∏j
i=0 ci

. (1)

Moreover, cn ≤ b.
1. . . or maybe more? See [1, Section 3] for the problem of correct attribution of this theorem.
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You can read [1] for a delightful exploration of this way to represent rational num-
bers in the unit interval, including connections with the Monty Hall game show prob-
lem and Cantor sets. For a modern proof of the theorem, see [9, Theorem 2.1 and
Proposition 2.2]. A key ingredient is the successive transformation of improper frac-
tions into quotients and remainders. The Pierce representation of 7/15 is 1

2
− 1

2·15 =
1
2
− 1

30
. The proof of the theorem below on rational functions is similar. However,

the division algorithm used here is the polynomial algorithm one learns in secondary
school algebra, rather than the integer division algorithm learned in primary school.

2. THE MAIN THEOREM. In the following, F is any field, and F [x] is the ring of
polynomials in one variable x over F . In thinking through how it all works, one can
think of F as Q (or R), and then F [x] is the set of all polynomials in the variable x
with coefficients in Q (respectively, R).

Main Theorem. Let F be a field and f, g nonzero polynomials in F [x]. Assume that
deg(f) < deg(g). Then there is a uniquely determined list of nonzero polynomials
h0, h1, . . . , hn, such that n ≤ deg(f), 0 < deg(hi) < deg(hi+1) whenever 0 ≤ i <
n, and

f

g
=

1

h0

− 1

h0h1

+ · · ·+ (−1)n

h0h1 · · ·hn

=
n∑

j=0

(−1)j∏j
i=0 hi

. (2)

In proving the theorem, I will assume the reader knows how degrees of polynomi-
als behave under addition, subtraction and multiplication. We also need the following
well-known result:

Lemma 2 (Polynomial division and remainder). Let f, g be nonzero polynomials
in F [x] with deg(f) ≤ deg(g). Then there is a unique pair of polynomials q, r with
g = qf + r, such that q ̸= 0 and either r = 0 or deg(r) < deg(f). The polynomials
q, r are called the “quotient” and “remainder” of dividing g by f . Write (q, r) =
QR(g, f)

Proof of Main Theorem. Existence: If g is a polynomial multiple of f , say g = hf ,
then f

g
= 1

h
. Otherwise, Lemma 2 provides polynomials h0 and r0 with

g = fh0 + r0 and deg(r0) < deg(f). (3)

Hence, the leading term of fh0 + r0 appears in the product fh0, so we have deg(f) +
deg(h0) = deg(fh0) = deg(g). Moreover, dividing Equation (3) through by gh0, we
have

1

h0

=
f

g
+

r0
gh0

, i.e.
f

g
=

1

h0

− 1

h0

(
r0
g

)
. (4)

Note also that deg h0 > 0, since otherwise we would have deg(g) = deg(f), contrary
to assumption.

Now act similarly with the rational function r0/g. If g is a multiple of r0, say
g = r0h1, then r0/g = 1/h1, and so f

g
= 1

h0
− 1

h0h1
. Otherwise, apply Lemma 2 to

get

g = r0h1 + r1 and deg(r1) < deg(r0). (5)
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In either case, we have deg(g) = deg(r0h1) = deg(r0) + deg(h1). Hence, deg(h1) =
deg(g) − deg(r0) > deg(g) − deg(f) = deg(h0). And in the latter case, dividing
Equation (5) by gh1 and subtracting, we have

1

h1

=
r0
g

+
r1
gh1

, i.e.
r0
g

=
1

h1

− 1

h1

(
r1
g

)
. (6)

Then combining Equations (4) and (6), we obtain

f

g
=

1

h0

− 1

h0

(
1

h1

− 1

h1

(
r1
g

))
=

1

h0

− 1

h0h1

+
1

h0h1

(
r1
g

)
.

Continuing inductively, at the kth step when k ≥ 2, we have by then constructed
r0, . . . , rk−1 and h0, . . . , hk−1 so that for each 0 < i ≤ k − 1 we have g = ri−1hi +
ri, deg ri < deg(ri−1), deg hi > deg hi−1, and

f

g
=

1

h0

− 1

h0h1

+ · · ·+ (−1)k−1

h0 · · ·hk−1

+
(−1)k

h0 · · ·hk−1

(
rk−1

g

)
. (7)

Considering the fraction rk−1/g, we find either that g is a multiple of rk−1 (so that
g = rk−1hk) or we use Lemma 2 to find polynomials hk and rk with g = rk−1hk +
rk and deg(rk) < deg(rk−1). In either case, we have deg(g) = deg(rk−1hk) =
deg(rk−1) + deg(hk), so that deg(hk) = deg(g)− deg(rk−1) > deg(g)− deg(rk−2) =
deg(hk−1). In the first case, we have rk−1

g
= 1

hk
, so that combining with Equation (7),

we get

f

g
=

1

h0

− 1

h0h1

+ · · ·+ (−1)k−1

h0 · · ·hk−1

+
(−1)k

h0 · · ·hk

.

In the second case, we divide the equation g = rk−1hk + rk through by ghk so that
rk−1

g
= 1

hk
− 1

hk

(
rk
g

)
. Plugging this into Equation (7), we obtain

f

g
=

1

h0

− 1

h0h1

+ · · ·+ (−1)k−1

h0 · · ·hk−1

+
(−1)k

h0 · · ·hk

+
(−1)k+1

h0 · · ·hk

(
rk
g

)
.

Why does this process terminate? Since all degrees are nonnegative integers and

deg(f) > deg(r0) > deg(r1) > · · · ,

we have deg(r0) ≤ deg(f)− 1, and similarly deg(r1) ≤ deg(r0)− 1 ≤ (deg(f)−
1)− 1 = deg(f)− 2, and so forth. Proceeding inductively, we have for each ri that
deg(ri) ≤ deg(f) − (i + 1). But also deg ri ≥ 0. Combining the two inequalities,
it follows that deg(f)− (i+ 1) ≥ 0, so that i+ 1 ≤ deg(f). That is, there is no ri
where i ≥ deg(f). Hence, at some step before or at k = deg(f), the division of g by
rk−1 has no remainder. That is, n ≤ deg(f) in (2).
Uniqueness: Suppose h0, . . . , hn are polynomials such that 0 < deg h0 < deg h1 <
· · · < deg hn and Equation (2) holds. We inductively define polynomials r0, . . . , rn−1

via r0 := g − h0f and for 1 ≤ i ≤ n set ri := g − hiri−1.
First, note that by the equations defining the ri, combined with Equation (2), it

follows that rn = 0, so that g = hnrn−1. See Proposition 3 below. In particular,
deg g = deg(hn) + deg rn−1.

4 © THE MATHEMATICAL ASSOCIATION OF AMERICA [Monthly 121



Mathematical Assoc. of America American Mathematical Monthly 121:1 December 19, 2023 12:15 a.m. output.tex page 5

Second, I claim that for all 0 ≤ i < n, we have deg(ri) < deg g. Let us use de-
scending induction starting with i = n− 1. When i = n− 1 we have g = hnrn−1 so
that deg g = deg hn + deg rn−1 > deg rn−1. So suppose i ≥ 1 and deg g > deg ri.
Then since g = hiri−1 + ri, it follows that deg g = deg(hiri−1) = deg(hi) +
deg(ri−1) > deg ri−1. Thus it also follows that for each 0 ≤ i < n − 1, we have
deg(g) = deg(hi+1ri) (since g = hi+1ri + ri+1 and deg g > deg ri+1), and also
deg g = deg(h0f) (since g = h0f + r0 and deg g > deg r0).

Third, we show that for each 0 < i < n, we have deg(ri) < deg ri−1, and
also deg r0 < deg f . To see this, note that for each 0 < i < n we have deg g =
deg hi+1 + deg ri = deg hi + deg ri−1, so that since deg hi < deg hi+1 we have
0 < deg hi+1 − deg hi = deg ri−1 − deg ri, whence deg ri < deg ri−1. Similiarly,
deg g = deg h1 + deg r0 = deg h0 + deg f , so that since deg h0 < deg h1 we have
0 < deg h1 − deg h0 = deg f − deg r0, whence deg r0 < deg f .

It follows then that (h0, r0) = QR(g, f), and for each 0 < i < n we have
(hi, ri) = QR(g, ri−1), and hn = g/rn−1. Hence by Lemma 2, the list h0, . . . , hn is
uniquely determined from the quotient-remainder algorithm, iteratively applied.

The bit of algebra that remains is below.

Proposition 3. Let F be a field. Let f, g, h0, . . . , hn be nonzero elements of F [x]
that satisfy Equation (2). Set r0 := g − h0f , and for 1 ≤ i ≤ n, inductively set ri :=
g − hiri−1. Then rn = 0.

Proof. Multiplying Equation 2 by gh0 · · ·hn, we have

h0h1 · · ·hnf = g ·
(

n∑
i=0

(−1)i
n∏

j=i+1

hj

)
. (8)

Let us first show by induction that for 0 ≤ t ≤ n − 1, we have rn = g · (1 +∑t−1
j=0(−1)j+1

∏j
k=0 hn−k) + (−1)t+1rn−t−1

∏t
k=0 hn−k. When t = 0, this is true

because rn = g − rn−1hn. So suppose it is true for some t with 0 ≤ t < n − 1.
Then rn = g · (1 +

∑t−1
j=0(−1)j+1

∏j
k=0 hn−k) + (−1)t+1rn−t−1

∏t
k=0 hn−k =

g · (1 +
∑t−1

j=0(−1)j+1
∏j

k=0 hn−k) + (−1)t+1(g − rn−t−2hn−t−1)
∏t

k=0 hn−k =

g · (1 +
∑t

j=0(−1)j+1
∏j

k=0 hn−k) + (−1)t+2rn−t

∏t+1
k=0 hn−k, completing the in-

ductive step.
In particular, setting t = n− 1, we have

rn = g ·
(
1 +

n−2∑
j=0

(−1)j+1

j∏
k=0

hn−k

)
+ (−1)nr0

n−1∏
k=0

hn−k

= g ·
(
1 +

n−2∑
j=0

(−1)j+1

j∏
k=0

hn−k

)
+ (−1)n(g − h0f)

n−1∏
k=0

hn−k

= g ·
(
1 +

n−1∑
j=0

(−1)j+1

j∏
k=0

hn−k

)
+ (−1)n+1f

n∏
k=0

hn−k

= (−1)n · (g
(

n∑
i=0

(−1)i
n∏

j=i+1

hj

)
− h0h1 · · ·hnf),

which equals zero because of Equation (8).
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Example 4. To see how the above algorithm works, let us consider the problem of
representing the fraction x2+5x+1

x4+116x+25
as such an alternating sum. That is, f = x2 +

5x+ 1 and g = x4 + 116x+ 25. Using polynomial division and remainder, one finds
that x4 + 116x+ 25 = (x2 − 5x+ 24)(x2 + 5x+ 1) + (x+ 1). That is h0 = x2 −
5x+ 24 and r0 = x+ 1. Now divide g = x4 + 116x+ 25 by r0 = x+ 1 to get x4 +
116x+ 25 = (x+ 1)(x3 − x2 + x+ 115)− 90. That is, h1 = x3 − x2 + x+ 115
and r1 = −90. Finally, the polynomial division algorithm of g = x4 + 116x+ 25 by
r1 = −90 just divides each of the coefficients by −90 and leaves no remainder. That
is, h2 = (−1/90)x4 − (116/90)x− 5/18, and there is no r2. Thus, we have

x2 + 5x+ 1

x4 + 116x+ 25
=

1

x2 − 5x+ 24
− 1

(x2 − 5x+ 24)(x3 − x2 + x+ 115)

+
1

(x2 − 5x+ 24)(x3 − x2 + x+ 115)
(−1

90
x4 − 116

90
x− 5

18

) .
I posit that it would be hard to come up with such a breakdown without an algorithm
such as the one given here.

3. A NON-ALTERNATING VARIANT. A natural question is: can one replace the
alternating sum in the Main Theorem with an ordinary (i.e. without powers of negative
1) sum? The answer is yes. Simply set p0 = h0 and pi := −hi for 1 ≤ i ≤ n. Then
we have h0h1 · · ·hi = p0(−p1) · · · (−pi) = (−1)ip0p1 · · · pi, and then Equation (2)
becomes

f

g
=

1

p0
+

1

p0p1
+ · · ·+ 1

p0p1 · · · pn
. (9)

In this representation, all the conditions on degrees are the same as in the Main Theo-
rem, and we get uniqueness for the same reason as well. That is, we have the following
result:

Theorem 5. Let F be a field and f, g nonzero polynomials in F [x] such that
deg(f) < deg(g). Then there is a uniquely determined list of nonzero polyno-
mials p0, p1, . . . , pn such that n ≤ deg(f), 0 < deg(pi) < deg(pi+1) whenever
0 ≤ i < n, and Equation (9) holds.

This then is a polynomial version of the Engel expansion of a rational number in
the unit interval:

Theorem 6 (Engel [4]; Cohen [2]). Let a, b be integers with 0 < a < b. Then there is
a uniquely determined finite sequence d0, . . . , dn of positive integers, such that n ≥ 0,
2 ≤ d0 ≤ d1 ≤ · · · ≤ dn and

a

b
=

1

d0
+

1

d0d1
+ · · ·+ 1

d0d1 · · · dn
.

Moreover, dn ≤ b.

For a modern proof of the above theorem, see [8]. Note the differences in the as-
sumptions on the sequences of the integers di in this theorem from the integers ci
in Theorem 1. Note also that the representation given in the Introduction of 7/15 as
1
3
+ 1

8
+ 1

120
does not satisfy the Engel-Cohen theorem, as 8 is not a multiple of 3.
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In fact the (Engel-)Cohen representation of 7
15

is 1
3
+ 1

3·3 +
1

3·3·5 = 1
3
+ 1

9
+ 1

45
. The

denominators here are quite different also from the Pierce representation 1
2
− 1

30
. This

is typical, in that the Cohen, Fibonacci, and Pierce representations of a proper fraction
involve really different denominators in general. By contrast, the representations of
rational functions in the theorems given here vary only in signs.

4. CONSTRUCTING REAL NUMBERS AND INVERSE POWER SERIES.
Pierce’s theorem and Engel’s theorem are usually seen not as ways to represent ratio-
nal numbers, but as special cases of ways to represent real numbers. Indeed, Pierce
and Engel showed that sequences of the types given in the theorems above, if extended
to infinity, can be used as unique representations of all real numbers in the (open) unit
interval.

Similarly, the Main Theorem can be seen as a special case of a way to represent
inverse power series, which in turn are a generalization of rational functions, in the
same sort of way that real numbers are a generalization of rational numbers. Such
a viewpoint is exploited in [7], and the perspective in that article might also yield a
proof of the main theorem here. But the proof given in this article is more elementary,
as unlike the authors in [7], I have not resorted to valuation theory.

5. EUCLIDEAN DOMAINS. In [5], a different approach is taken. As one learns in a
graduate (or advanced undergraduate) algebra course, the rings Z and F [x] are special
cases of Euclidean domains, in the sense that there is a function φ : D → N (where
D is the Euclidean domain), called a Euclidean function, such that some analogue
of Lemma 2 holds. When D = F [x], φ = degree, whereas when D = Z, φ = the
absolute value function. It is shown in [5] that when D is a Euclidean domain with Eu-
clidean function φ, if f, g ∈ D are nonzero with φ(f) ≤ φ(g), then f

g
can be written

as a sum of distinct unit fractions, with denominators from D. This is in some sense
a generalization of the Main Theorem above, as well as the original Egyptian fraction
theorem proved by Fibonacci, except that in the main theorem of [5], there is much
less control over the denominators in question than one sees here in the polynomial
case.
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6. Erdős, P. (1950). On a Diophantine equation, Mat. Lapok. 1: 192–210. (Hungarian. Russian and English

summaries)
7. Knopfmacher, A., Knopfmacher, J. (1988). Inverse polynomial expansions of Laurent series. Constr.

Approx. 4: 379–389. doi.org/10.1007/BF02075468

January 2014] SUMS OF POLYNOMIAL RECIPROCALS 7



Mathematical Assoc. of America American Mathematical Monthly 121:1 December 19, 2023 12:15 a.m. output.tex page 8

8. Knopfmacher, A., Knopfmacher, J. (1988). Two concrete new constructions of the real numbers. Rocky
Mountain J. Math. 18(4): 813–824. doi.org/10.1216/RMJ-1988-18-4-813

9. Knopfmacher, A., Knopfmacher, J. (1989). Two constructions of the real numbers via alternating series.
Internat. J. Math. Math. Sci. 12(3): 603–613. doi.org/10.1155/S0161171289000736

10. Pierce, T.A. (1929). On an algorithm and its use in approximating roots of algebraic equations. Amer.
Math. Monthly. 36(10): 523–525. doi.org/10.1080/00029890.1929.11987017

11. Reimer, D. (2014). Count Like an Egyptian. Princeton, NJ: Princeton University Press.
12. Sylvester, J.J. (1880). On a point in the theory of vulgar fractions. Amer. J. Math. 3(4): 332–335.

doi.org/10.2307/2369261

NEIL EPSTEIN has worked at George Mason University since 2012, where he is an Associate Professor.
He holds degrees in mathematics from Swarthmore College, the University of Chicago, and the University of
Kansas. His usual comfort zone involves ideals, modules, and algebras over commutative rings, so this article
represents something of a departure. Other interests include folk dance and playing music on piano, accordion,
and bowed psaltery.
Department of Mathematical Sciences, George Mason University, Fairfax, VA 22030
nepstei2@gmu.edu

MSC: Primary 12e05, Secondary 11d68

8 © THE MATHEMATICAL ASSOCIATION OF AMERICA [Monthly 121


