
Math 678. Homework 5 Solutions.

#1

Consider a subsolution of the heat equation vt −∆v ≤ 0 in UT .
(a) The proof follows the argument given in Theorem 3, p.53-54, with the ex-
ception being that φ′(r) ≥ 0, from where it follows that

v(x, t) ≤ 1
4rn

∫∫
E(x,t;r

v(y, s)
|x− y|2

(t− s)2
dyds

for all heat balls E(x, t; r) ⊂ UT .

(b) As in Theorem 4, it follows that maxŪT
v = maxUT

v. Indeed, suppose
there is a point (x0, t0) in UT where the function value is maximized on the entire
closed domain ŪT . Then there is a sufficiently small heat ball around it where

from the above we will haveM = v(x0, t0) ≤ 1
4rn

∫∫
E(x,t;r

v(y, s)
|x− y|2

(t− s)2
dyds ≤

M . Equality is only possible when u ≡M in the heat ball. Then we can cover
the domain with such balls as in the proof of Theorem 4 and conclusion follows.

(c) Let v = φ(u) with φ being convex and u a solution to the heat equation.
Notice that

vt = φ′(u)ut,
∆v = φ′′(u)

∑n
i=1 u

2
xi

+ φ′(u)∆u = φ′′(u)
∑n

i=1 u
2
xi

Since φ′′(u) ≥ 0, we observe that ∆v ≥ vt, so v is a subsolution.

(d) You can verify this directly, which is a tedious but straightforward cal-
culation. Alternatively, you may notice that both | · |2and(·)2 are smooth and
convex, with Du and u being solutions to the heat equation, and apply the
result of (c).

#2
Consider u2

x1
ux1x1 + 2ux1ux2ux1x2 + u2

x2
ux2x2 = 0 and separate the variables

using u(x, y) = v(x1) + w(x2). Plug this into the equation to get

(v′)2v′′ = −(w′)2w′′ = const = λ

This gives a system of ODEs:{
(v′)2v′′ = λ
−(w′)2w′ = λ

⇔
{

(v′)3/3 = λx1 + C1

(w′)3/3 = −λx2 + C2
⇔
{
v′ = (3λx1 + C1)1/3

w′ = (−3λx2 + C2)1/3

which after integration yields particular solutions of the form: v(x1) = x
4/3
1 , w(x2) =

C2x
4/3
2 , where we made the easiest choice of the constants of integration. So a
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particular nontrivial solution of the original equation can be written for instance
as u(x1, x2) = x

4/3
1 − x4/3

2 .

#3
Plug in v(x−σt) into the equation to get −σv′(x−σt)−v′′(x−σt) = f(v(x−σt)).
which is equivalent to v′′v′ + σ(v′)2 + f(v)v′ = 0. After integration we get (for
f(v) = −2v3 + 3v2 − v):

(v′)2/2 + σ

∫ s

−∞
(v′)2 − v4/2 + v3 − v2/2 = C

Consider the limit when s → ∞, then by employing the boundary conditions
we get σ

∫∞
−∞(v′)2 = C and then similarly for s → −∞, 0 = σ

∫ −∞
−∞ (v′)2 = C.

Hence σ
∫∞
−∞(v′)2 = 0, which implies σ = 0.

Hence we have to solve the following equation in v:

(v′)2/2− v4/2 + v3 − v2/2 = 0

Here is how:
(v′)2/2 = v4/2− v3 + v2/2 = v2(v − 1)2/2
v′ = ±v(v − 1)( 1
v − 1

− 1
v

)
dv = ds

ln
∣∣∣v − 1

v

∣∣∣ = ±s+ C

The only solution that satisfies the boundary conditions is v =
1

1− Ce−s
. Note

that v → 1, s→∞ and v → 0, s→ −∞ for any choice of C. This solution can
be verified to satisfy −vss = f(v) and is a degenerate case of a traveling wave.

#4
By Duhamel’s Principle, the solution of the nonhomogeneous problem is ob-
tained as

u(x, t) =
∫ t

0

u(x, t; s)ds

where u(x, t; s) is the solution to the homogeneous BIVP problem on the interval
[0, 1]: 

utt − uxx = 0
u(·, s) = x2(1− x)
ut(·, s) = x
ux(0, ·) = 0
u(1, ·) = 0

This problem can be solved by separation of variables: u(x, t) = v(t)w(x), which
gives

v′′

v
=
w′′

w
= −λ
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With the boundary data given, the solution exists when λ = −π2(k+1/2)2, w =
cos(πx/2 + πkx). The solution is then represented as a series

u(x, t; s) =
∞∑

k=1

[Ak cos(πt/2 + πkt) cos(πx/2 + πkx) +Bk sin(πt/2 + πkt) cos(πx/2 + πkx)]

Plugging in the initial conditions, we get

Ak = Ãk cos(πs/2 + πks)− B̃k sin(πs/2 + πks)/(π/2 + πk)
Bk = B̃k sin(πs/2 + πks) + B̃k cos(πs/2 + πks)/(π/2 + πk)

where Ãk, B̃k are the Fourier coefficients for even extensions of the initial con-
ditions:

Ãk =
∫ 1

0
x2(1− x) cos(πx/2 + πkx)dx

B̃k =
∫ 1

0
x cos(πx/2 + πkx)dx

so finally we get

u(x, t) =
∫ t

0

∞∑
k=1

[Ak cos(πt/2 + πkt) cos(πx/2 + πkx) +Bk sin(πt/2 + πkt) cos(πx/2 + πkx)]ds
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