Math 678. Homework 5 Solutions.
#1

Consider a subsolution of the heat equation vy — Av < 0 in Ur.
(a) The proof follows the argument given in Theorem 3, p.53-54, with the ex-
ception being that ¢'(r) > 0, from where it follows that
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for all heat balls F(z,t;r) C Ur.

(b) As in Theorem 4, it follows that maxy, v = maxy, v. Indeed, suppose
there is a point (_xo, to) in Ur where the function value is maximized on the entire
closed domain Ur. Then there is a sufﬁciently small heat ball around it where
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from the above we will have M = v(zg, to) < — // v(y, s y)| dyds <
E(x,t;r

M. Equality is only possible when v = M in the heat ball. Then we can cover

the domain with such balls as in the proof of Theorem 4 and conclusion follows.

(c) Let v = ¢(u) with ¢ being convex and u a solution to the heat equation.
Notice that

Uy = (b/(u)ut’
Av = ¢"(u) Y7L, uz, + ¢ (w)Au = ¢ (u) Y, g,

Since ¢”(u) > 0, we observe that Av > vy, so v is a subsolution.

(d) You can verify this directly, which is a tedious but straightforward cal-
culation. Alternatively, you may notice that both | - [2and(-)? are smooth and
convex, with Du and wu being solutions to the heat equation, and apply the
result of (c).

#2
Consider U Uz, o, + 2Ug, Ugy Uz, oy + U, Uzyz, = 0 and separate the variables
using u(z,y) = v(z1) + w(zz2). Plug this into the equation to get

(V)" = —(w')?w” = const = A
This gives a system of ODEs:

(W2 =\ - (v")3/3 = Xz + Cy v = (3\x; 4+ C1)/3
—(w")?w' =\ (w')3/3 = —Azo + Co w = (=3\zy + Co)'/3

which after integration yields particular solutions of the form: v(z;) = xéll/ 3

ngg/ ?, where we made the easiest choice of the constants of integration. So a

,’LU(JCQ) =



particular nontrivial solution of the original equation can be written for instance
as u(xy,xa) = x‘f/?’ - mg/?’.

#3
Plug in v(x—ot) into the equation to get —ov'(zx—ot)—v"(z—0ot) = f(v(z—ot)).
which is equivalent to v"v" + o(v')? + f(v)v’ = 0. After integration we get (for
fv) = =203 + 302 —v):
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Consider the limit when s — oo, then by employing the boundary conditions
we get o [*°_(v)? = C and then similarly for s — —00, 0 =0 [~ 7 (v/)? = C.
Hence o [%_(v')? = 0, which implies o = 0.

Hence we have to solve the following equation in v:

(0)2)2 —v*/2 4+ 03 —0v?/2=0

Here is how:
(v")2/2 = v*/2 —v® 4 0?/2 = v? (v — 1)2/2
/

v =xv(v—1)
1 1
( — f)dv =ds
v—1 1,7
|| = s+ C
. . c 1
The only solution that satisfies the boundary conditions is v = T—Co Note
— e S

that v — 1,5 — oo and v — 0, s — —oo for any choice of C. This solution can
be verified to satisfy —vss = f(v) and is a degenerate case of a traveling wave.

#4
By Duhamel’s Principle, the solution of the nonhomogeneous problem is ob-
tained as

u(z,t) = /tu(x,t; s)ds

0

where u(z, t; s) is the solution to the homogeneous BIVP problem on the interval
[0, 1]:

This problem can be solved by separation of variables: u(z,t) = v(t)w(zx), which
gives



With the boundary data given, the solution exists when A = —72(k+1/2)2, w =
cos(mx /2 + wkx). The solution is then represented as a series

u(z, t; s) Z [Af cos(mt/2 4+ wkt) cos(ma /2 + wka) + By sin(wt/2 + wkt) cos(wx /2 + k)]
k=1

Plugging in the initial conditions, we get

Ag = {lk cos(ms/2 4+ wks) — E:?k sin(ws/2 + wks)/(7/2 + 7k)
By, = By sin(ms/2 + wks) + By cos(ws/2 + wks) /(7 /2 + 7k)

where Ak, Bk are the Fourier coefficients for even extensions of the initial con-
ditions:

Ay = fo (1 —x)cos(mx/2 + wkz)dx

B, = fo x cos(mx /2 + wkx)dx

so finally we get

u(z,t) / Z [Aj, cos(mt/2 + mkt) cos(mx /2 + mwka) + By sin(wt/2 + wkt) cos(mx /2 + wkx)]ds
0 k=1



