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MATH 251 Summer 2003 - Final Exam

1. (15 points)

(a) Give an example of a first order autonomous differential equation that has ex-
actly 3 equilibrium solutions.

(b) Find a second order linear equation whose general solution is
y(t) = C1e

−2t + C2te
−2t + cos t.

(c) Find an exact equation whose general solution is x2y + xey = C. Verify the
exactness of your answer.

2. (18 points) Consider the initial value problem

y′ + y = tet, y(0) = 1.

(a) Solve it using the method of integrating factor.

(b) Solve it using the Laplace transform.

3. (15 points) The velocity of a boat moving in a lake satisfies the equation

v′ = 900− 4v2.

(a) Find and classify the equilibrium solutions. Justify your answer.

(b) Solve this equation. You may leave you answer in implicit form.

4. (18 points) A mass of 1 kg stretches a spring 1m. The system has damping 7 N ·s
m

. At
t = 0, the mass moves away from its equilibrium position with initial velocity 2 m

s
.

In addition, at t = 0 an external force F (t) = cos t is applied to the mass, but it is
discontinued at t = 3π. Assume gravity g = 10 m

s2
.

(a) Write an initial value problem that models this system.

(b) Solve the initial value problem.

(c) What is the position of the mass at t = π? At t = 4π?

(d) In the absence of damping (letting γ = 0) what would the system’s natural fre-
quency ω0 be?

5. (15 points)

(a) Solve the initial value problem:

X ′ =

[
2 5
−3 −6

]
X, X(0) =

[
−4
2

]
.

(b) Classify the type and stability of the critical point at (0, 0).
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6. (15 points) Consider the system

x′ = (x+ y)(x− y),

y′ = (x− 2)(y + 1).

(a) Find all critical points of the system (there are 4).

(b) Find the linearized matrix of the system.

(c) Linearize the system about any 2 of the 4 critical points, and determine the type
and stability of each.

7. (12 points)

(a) For what positive values of λ does the boundary value problem

x′′ + λx = 0, x′(0) = 0, x(π) = 0

have a nontrivial solution?

(b) What are the corresponding eigenfunctions?

8. (15 points) Let

f(x) =

{
1− x, 0 < x < 2

−1, 2 ≤ x < 3

(a) Sketch the even, period 6 extension of f(x) on the interval [−9, 9].

(b) Sketch the odd, period 6 extension of f(x) on the interval [−9, 9].

(c) Set up, but do not evaluate, the integral(s) that will give the Fourier sine coeffi-
cients of the odd extension.

(d) To what value does the sine series above converge to at x = −3, x = 0, and x = 2?

9. (12 points) Consider the boundary value problem

t2utt = xuxt

u(0, t) = u(1, t) = 0

(a) By setting u(x, t) = X(x)T (t), separate the equation into 2 ordinary differential
equations.

(b) What new boundary condition must the equation of X(x) satisfy?

10. (15 points) Solve the nonhomogeneous heat equation

10uxx = ut, 0 < x < 6, t > 0

u(0, t) = 20, u(6, t) = 80, t > 0

u(x, 0) = 20 + 10x+ 5 sin πx− 10 sin
3πx
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