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Differences in Transcriptional 
Dynamics Between T-cells and 
Macrophages as Determined by a 
Three-State Mathematical Model
Catherine DeMarino1, Maria Cowen1, Michelle L. Pleet1, Daniel O. Pinto1, Pooja Khatkar1, 
James erickson1, Steffen S. Docken2, Nicholas Russell  3, Blake Reichmuth  4, Tin phan5, 
Yang Kuang5, Daniel M. Anderson4*, Maria Emelianenko4* & Fatah Kashanchi1*

HIV-1 viral transcription persists in patients despite antiretroviral treatment, potentially due to 
intermittent HIV-1 LTR activation. While several mathematical models have been explored in the 
context of LTR-protein interactions, in this work for the first time HIV-1 LTR model featuring repressed, 
intermediate, and activated LTR states is integrated with generation of long (env) and short (TAR) RNAs 
and proteins (Tat, Pr55, and p24) in T-cells and macrophages using both cell lines and infected primary 
cells. This type of extended modeling framework allows us to compare and contrast behavior of these 
two cell types. We demonstrate that they exhibit unique LTR dynamics, which ultimately results in 
differences in the magnitude of viral products generated. One of the distinctive features of this work 
is that it relies on experimental data in reaction rate computations. Two RNA transcription rates from 
the activated promoter states are fit by comparison of experimental data to model predictions. Fitting 
to the data also provides estimates for the degradation/exit rates for long and short viral RNA. Our 
experimentally generated data is in reasonable agreement for the T-cell as well macrophage population 
and gives strong evidence in support of using the proposed integrated modeling paradigm. Sensitivity 
analysis performed using Latin hypercube sampling method confirms robustness of the model with 
respect to small parameter perturbations. Finally, incorporation of a transcription inhibitor (F07#13) 
into the governing equations demonstrates how the model can be used to assess drug efficacy. 
Collectively, our model indicates transcriptional differences between latently HIV-1 infected T-cells 
and macrophages and provides a novel platform to study various transcriptional dynamics leading to 
latency or activation in numerous cell types and physiological conditions.

Since 1996, the rise of combination antiretroviral therapy (cART) has increased the survival of HIV-1 infected 
patients and has drastically slowed the transmission of the virus from person to person1. The lifelong treatment 
effectively lowers viral titers to undetectable levels in infected individuals; however, this treatment regimen has 
several limitations, including the need for strict adherence to prevent a viral rebound, the inability to prevent drug 
resistance, and low penetration to viral reservoirs in the central nervous system (CNS)2–4. More recently, these 
viral reservoirs have been shown to be transcriptionally active as evident from a number of reports including one 
study of 190 patients under cART, where low levels of HIV-1 RNA (<50 copies/mL) were found in the blood, 
however, cell-associated RNA copies were still present at approximately 103 copies/106 CD4+ T-cells5. These find-
ings were further replicated in cells of the CNS origin where around 103 copies of HIV-1 RNA have been found 
post-mortem in several regions of the brain from HIV-1 infected individuals under long term cART6.

HIV-1 can establish infection by integration of the provirus into the genome of long-lived reservoirs such as 
memory CD4+ T-cells. After integration, which typically takes place within an actively transcribed region of the 
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genome, several HIV-1 proteins are produced at a low rate including the Trans-Activator of Transcription (Tat) 
protein, which is produced from a doubly spliced transcript. Tat then associates with positive transcriptional 
elongation factor b (p-TEFb), composed of CDK9 and Cyclin T1, in the cytoplasm7. This complex can enter 
the nucleus and activate transcription of the HIV-1 genome by two mechanisms: phosphorylation of Negative 
Elongation Factor (NELF), and phosphorylation of the CTD of RNA polymerase II (RNAPII). Unphosphorylated 
NELF binds to the trans-activating response region (TAR), a short stem and loop structure of RNA which is 
located at the 5′ long terminal repeat (LTR) of the viral genome downstream of the transcription initiation 
site. Phosphorylation of NELF thereby releases the protein from TAR, alleviating its inhibition of the paused 
RNAPII8–11. Subsequent phosphorylation of the RNAPII CTD leads to activated transcription of the HIV-1 
genome, approximately 50–100 fold above basal transcription levels12–14.

In the absence of Tat, the LTR of the HIV-1 provirus is primarily inactive, however, it can intermittently 
transition to an active state, resulting in elongation of HIV-1 transcripts and leading to high stochastic varia-
bility in HIV-1 gene expression, termed transcriptional noise15–27. Modeling of HIV-1 transcription in T-cells 
has shown that gene expression occurs by randomly timed bursts of transcriptional activity from the 5′ LTR. 
Furthermore, each burst of transcriptional activity results in 2–10 mRNA transcripts from the activated promoter 
before returning to inactive state, causing a reduction in Tat protein levels and resulting in reduced Tat-mediated 
positive feedback13,28. The gene expression noise that arises as a result of HIV-1 Tat gene expression fluctuations 
promotes HIV-1 viral latency28,29. Overall, the variation in Tat expression results in the production of both short 
(TAR; non-coding) and long RNA (env; full length genomic) in different proportions in the presence and absence 
of Tat30. The implications of high proportions of short, non-coding TAR RNA has previously been studied in 
recipient cells, and results suggest there is activation of the innate immune response through cytokine induction 
and an increase in viral susceptibility in recipient cells31–35.

We have long been interested in defining the biochemical pathways that allow for HIV-1 LTR basal and acti-
vated transcription between cell types. In this manuscript, we attempted to detect any alterations in the various 
LTR states using a combination of in vitro biochemical assays and mathematical modeling. Our rationale for 
performing these experiments was that most published literature on HIV-1 transcription modeling utilizes data 
from several publications which come from numerous sources and use various different cell types to score for 
basal and activated transcription. Furthermore, these models have not compared potential differences due to cell 
type when it comes to T-cells vs. myeloid transcription, nor have they looked at multiple RNA transcripts27–29. To 
address this, we have analyzed transcription and subsequent production of viral components in HIV-1 infected 
myeloid and T-cells using biochemical assays to construct parameter values for a novel mathematical model. 
Furthermore, we have incorporated the use of a transcription inhibitor into our model to analyze cell-specific 
responses to treatment in terms of LTR activation and the associated RNA and protein production. Here, we pres-
ent a mathematical model which can be used to analyze changes in transcriptional activation. Our results show a 
dynamic change of various LTR states that varies between cell types, specifically in terms of activation timing and 
magnitude of viral component production. Furthermore, our data suggests there may be distinct differences in 
viral latency amongst cell types which could have broad implications in the treatment of HIV-1 infected patients.

Results
Dynamics of LTR activation in T-cells. We have attempted to mimic three states of the HIV-1 LTR, 
including a repressed state designated as LTRR (repressed), a basal transcription state as LTRI (intermediate), 
and an activated transcriptional state termed LTRA (activated) in our mathematical model (Fig. 1; see Materials 
and Methods section for additional details regarding mathematical model). To resemble LTRR in T-cells, infected 
cells were cultured in low serum media (0.1% FBS) for 36 h, and then placed in 20% FBS media and treated 
with an inducer (PMA/PHA or IR) to yield a fully activated state (LTRA). The transcription of cellular and viral 
genes is initiated by RNAPII, however, shortly after transcription initiation, a regulatory mechanism known 
as promoter proximal pausing causes RNAPII to stop. Tat, the HIV-1-encoded transcriptional regulator binds 
the TAR stem loop of the nascent RNA and recruits the p-TEFb complex. The pausing is then alleviated by 
the assembly of the Tat-TAR-p-TEFb complex on the HIV-1 promoter which allows for synthesis of full-length 
HIV-1 RNA via CDK9-mediated hyperphosphorylation of RNAPII’s CTD. In addition to this phosphorylation 
event, p-TEFb’s CDK9 has also been found to phosphorylate Histone H1, an abundant linker histone involved in 
nucleosome-DNA binding and the maintenance of compact chromatin. Several studies have confirmed the link 
between Histone H1 phosphorylation and transcriptional activation and suggest that phosphorylation of this pro-
tein weakens the binding affinity of Histone H1 to chromatin allowing for it to be removed from transcriptionally 
active regions36–39. Therefore, to measure overall activity and transcription of the cell, an in vitro kinase assay was 
performed using J1.1 whole cell extract using [γ-32P]-ATP with Histone H1 as a substrate. J1.1 cells are HIV-1 
LAI infected Jurkat E6 cells and produce wild-type virus40. Results in Fig. 2a show that overall levels of kinase 
activity in HIV-1 infected T-cells were low at 0 h (Fig. 2a, Lane 1), which was expected due to the presence of low 
serum media. When T-cells were placed in a 20% FBS media T-cell transcription was activated and active kinase 
levels increased (6 h, Lane 2). Interestingly, the overall activation nearly returned to basal levels after 24 h (Lane 3). 
However, when T-cells were activated with an inducer (PMA/PHA or IR), the levels of activation were sustained 
up to 24 h (Lane 6). Therefore, we reasoned that the transient increase in phosphorylation of Histone H1 observed 
in the presence of 20% FBS media and the absence of an inducer (lanes 1–2) is representative of the occasional 
transcriptional activation of the HIV-1 LTR to an intermediate state and return to basal transcription (LTRR; lanes 
2–3). Conversely, the more sustained phosphorylation of Histone H1 observed in the presence of 20% FBS media 
and an inducer (lanes 4–5) is representative of the transition from an intermediate state LTR to a fully activated 
state of the LTR and more rapid return to the intermediate state (LTRI; lanes 5–6).

We next focused on the forward transitions from LTRR to LTRI (kON) and LTRI to LTRA (kA(Tat)) using a 
more specific approach to target HIV-1 transcription activation mediated, in part, by CDK9 phosphorylation 
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of Histone H141–43. Here, we immunoprecipitated CDK9/Cyclin T1 complexes from infected T-cell whole cell 
extracts and used samples from 0 and 6 hrs (+/− inducer) to better represent the transitions of the HIV-1 LTR 
with the absence of an inducer representing the transition to an intermediate state (LTRR to LTRI) and the pres-
ence of an inducer representing the transition to an activated state (LTRI to LTRA). We used Histone H1 as a 
substrate as it has previously been shown to serve as a substrate for the p-TEFb complex36,37. Results in Fig. 2b 
show a background level of CDK9 kinase activity at 0 h (lane 1), which may indicate presence of short abortive 
transcripts, followed by a 34.7% increase at 6 h (lane 2). Similar results were obtained when using a whole cell 
extract from induced HIV-1 infected cells (20.5%; lane 3). Collectively, these data indicate that the transient 
transcriptional activation in HIV-1 infected T-cells that produces short HIV-1 RNA transcripts and occasional 
genomic readthroughs may potentially be a more rapid event allowing the LTR to return to a more quiescent state 
quickly as compared to the sustained Tat-activated transcription that results in production of infectious virus.

To construct parameter values for the mathematical model (Fig. 1), densitometry counts of the kinase assay 
(Fig. 2a,b) were taken to determine the rate of transition between each of the HIV-1 LTR states (LTRR, LTRI, 
LTRA). Briefly, to determine the parameter values kON (LTRR to LTRI) and kATat (LTRI to LTRA), we utilized den-
sitometry counts of the CDK9-IP kinase assays between 0 and 6 h (Fig. 2b). The transition from LTRR to LTRI is 
measured in the absence of an inducer, while the transition from LTRI to LTRA is measured in the presence of 
an inducer of viral transcription. Furthermore, the reverse rates (kOFF and kI; Fig. 1) utilize densitometry counts 
of the total kinase assay (Fig. 2a) between 6 and 24 h in the absence and presence of an inducer, respectively. 
Densitometry analysis was normalized as described in Materials and Methods Section.

The results in Fig. 2c demonstrate the proportion of T-cell HIV-1 LTRs which are in a repressed state at a given 
time over 120 h, as predicted by our mathematical model. The black line demonstrates the value of the original 
parameter set, while the grey lines are all the realizations with respect to the sampling of parameters using a 
Latin hypercube sampling method. The dashed green, red and blue lines represent 80%, 90% and 95% confi-
dence intervals, respectively. These results show a sharp decline in the proportion of HIV-1 LTRs in the repressed 
state following activation, eventually stabilizing at low proportions (1.99%), as expected. Similarly, the results in 
Fig. 2d show the proportion of T-cell HIV-1 LTRs which are in an intermediate state which results in the basal 
transcription of HIV-1 RNAs. The LTRI state demonstrates unique changes in proportions over time, beginning 
with 0% of LTRs in an intermediate state followed by a sharp increase with a peak at approximately 21.31 h result-
ing in 42.96% of the LTRs in an intermediate state. These trends are followed by a decline and subsequent pla-
teau suggesting approximately 5.37% of HIV-1 LTRs are in an intermediate state following activation, which are 

Figure 1. Schematic diagram of a three-state mathematical model of HIV-1 transcription. The HIV-1 LTR 
is represented in three states of activation (as opposed to a two-stage model where activation by noise and 
its regulation in Tat activity is not considered); LTRR denotes a repressed state (i.e. latency); LTRI represents 
an intermediate state of activation; and LTRA is a Tat-dependent activated state of the HIV-1 LTR in which 
full viral production is possible. The terms kON and kOFF represent the rate of activation from latency and the 
return to latency, respectively. KA(Tat) is the rate of Tat-dependent activation from an intermediate LTR to a 
fully activated LTR state and the term kI represents the rate in the opposite direction. The diagram depicts the 
creation of two species of HIV-1 RNAs termed TAR and env (envelope). The rate at which TAR RNA is created 
is given by αm1R, αm1I and, αm1A and the TAR degradation/exportation rate is denoted by γm1. The HIV-1 RNA 
species env (genomic) is produced by the intermediate state LTR (envI) at a rate of αm2I. HIV-1 Tat results in 
a positive feedback mechanism for virus replication, production at a rate of αp1 and Pr55 (Gag) production 
at a rate of αp2. The activated state of the LTR also produces envelope, termed envA, at a Tat-dependent rate of 
fm2(Tat). The Tat-dependent production of envA also results in the production of Pr55 (Gag) at a rate αp2. Finally, 
this model depicts the rate cleavage of Pr55 (Gag) to the viral protein p24 via αp3. Degradation rates (γp1, γp2, 
γm1, γm2) were set to zero for preliminary results.
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likely responsible for the persistent transcription of HIV-1 RNAs seen in long-term, cART treated patients6,32,44. 
Interestingly, despite vastly different approaches, these findings are in line with a model described by Razooky et 
al. which encompasses a two-state model of the HIV-1 LTR that incorporates Tat as a feedback mechanism. Both 
the model presented here and that which is proposed by Razooky and colleagues show a transient state, or a state 
with low probability, of LTR activation that is independent of Tat24,45. The proportion of HIV-1 LTRs in the acti-
vated state (LTRA) is shown in Fig. 2e. As expected, the proportion of LTRA steadily increased after activation with 
20% FBS media and treatment with an inducer, which resulted in the production of full length, genomic HIV-1 
RNA and the production of infectious virions with approximately 92.64% of LTRs in an active state at 120 h. 
Collectively, the relative proportions of LTR activation states changes over time after induction of the virus in 
T-cells is presented in Fig. 2f, indicating that there is dynamic activity over a range of time with the most diversity 
of LTR states occurring between approximately 20–24 h.

RNA production in T-cells as a function of LTR activation. We next examined the production 
of two HIV-1 viral transcripts including TAR RNA, a short, non-coding viral RNA produced as a result of 
non-processive transcription46, and mRNA responsible for the production of the HIV-1 envelope protein, termed 
env, as a marker of full length genomic transcription. As previously described, 3 biological replicates of infected 
T-cells were cultured in low serum media (0.1% FBS) for 36 h, and then were placed in 20% FBS media. Samples 
were analyzed at 0 and 24 h following the addition of high serum media by RT-qPCR in technical triplicate for 
the production of TAR and env RNA to determine the production parameters from LTRI. Figure 3a shows a high 
level of both TAR and env RNA production associated with a repressed transcriptional state (LTRR, 0 h), with an 

Figure 2. HIV-1 LTR Dynamics in T-cells. J1.1 (HIV-1 infected T-cells) were cultured in low serum media 
(0.1% FBS) for 36 h, and subsequently incubated in 20% FBS media and treated with an inducer (IR). Resulting 
whole cell extracts were analyzed using an in vitro total kinase assay (a) or a CDK9 IP kinase assay (b) to assess 
for changes in the HIV-1 LTR. Biochemical data was used to construct parameters for mathematical modeling 
to determine relative proportions of the HIV-1 LTR in the various states; repressed (c), intermediate (d), and 
activated (e) over 120 h. The black line demonstrates the solved value of the original parameter set, while the 
grey lines are all the realizations with respect to the sampling of parameters using a Latin hypercube sampling 
method. The dashed green, red and blue lines represent 80%, 90% and 95% confidence intervals, respectively. 
(f) Overlay of all three LTR states; repressed (LTRR, red), intermediate (LTRI, blue), activated (LTRA, green). 
Selected lanes from the same blot with identical exposure settings are presented in panel a.
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Figure 3. Viral RNA Production in T-cells. (a) HIV-1 infected T-cells (J1.1) were cultured in 0.1% serum 
media for 36 h, followed by incubation in 20% FBS media in biological triplicate. At 0 h and 24 h post-induction, 
RT-qPCR was used to analyze whole cell extracts for TAR RNA and env (genomic) RNA. Bars indicate an 
average of three biological replicates analyzed in technical triplicate ±S.D. (b) HIV-1 infected T-cells (J1.1) were 
cultured in 0.1% serum media for 36 h, followed by incubation in 20% FBS media and treated with an inducer 
(PMA/PHA) at 0 h in biological triplicate. Samples were analyzed by RT-qPCR in technical triplicate at 0, 24, 
48, 72, 96, and 120 h post-induction for TAR and genomic RNA. Values were used to fit parameter rates for 
TAR (c) and env (d) production from LTRA. Obtained RT-qPCR values are shown in conjunction with model 
predictions using solved fitted parameters. Parameter rates for mathematical modeling were constructed using 
RT-qPCR values and numerical estimations. Constructed parameters were used to mathematically model 
production of TAR RNA (e), env RNA from LTRI (f), Tat protein (g), and env RNA from LTRA (h). The black 
line represents the solved value of the original parameter set, the grey lines are all the realizations with respect 
to the sampling of parameters using a Latin hypercube sampling method. The dashed green, red and blue lines 
represent 80%, 90% and 95% confidence intervals, respectively.
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average of 3.00 × 106 and 8.31 × 104, respectively, from three biological replicates analyzed in technical triplicate. 
To accurately estimate RNA production from LTRA, given that the modeled time frame is 120 h, T-cells were cul-
tured as described above with induction using PMA/PHA at time 0. Samples analyzed by RT-qPCR for viral RNA 
production at 0, 24, 48, 72, 96, and 120 h to determine parameter values for the production of RNA from LTRI 
and LTRA. Similar to Fig. 3a, the results in Fig. 3b also show a high TAR and env RNA associated with a repressed 
transcriptional state (LTRR, 0 h), consisting of an average of 1.45 × 107 and 7.08 × 106, respectively, from three 
biological replicates analyzed in technical triplicate. Taken together, these results suggest that there is an increase 
in transcription of both short, noncoding RNAs and long genomic RNAs associated with the LTR activation.

To model experimental results mathematically, we determined RNA production rates for each of the defined 
RNA parameters (Fig. 1). In our model the repressed state of the LTR (LTRR) does not result in the production 
of infectious virus as demonstrated by no transcription of full-length genomic RNA (env). However, there is 
persistent, non-processive transcription which results in the production of TAR RNA, as supported by numerous 
studies which show the presence of TAR RNA in both in vitro and in vivo samples despite suppressive antiretro-
viral regimens6,44,47,48. These studies have found that intracellular levels during antiretroviral treatment can range 
from 1 × 101 to 1 × 105 TAR RNA copies in vivo6,44. Along these lines, we have estimated the production of TAR 
RNA in infected T-cells to occur at a rate of 2.5 × 104 copies/mL/h (αm1R). The hourly rates at LTRI for TAR RNA 
production (αm1I) and env RNA production (αm2I) were constructed using experimentally derived averages at 
the corresponding time (Table 1). The parameter values for TAR and env RNA production from LTRA, αm1A and 
αm2A, (Fig. 3c,d) as well as degradation/exit rates of both RNAs were fit to the experimental data in Fig. 3b using 
the standard least square fitting procedure (see Materials and Methods). The degradation/exit rates can encom-
pass multiple potential mechanisms beyond just degradation. This can include the export of viral RNA out of the 
cell through such cellular secretory pathways as secretory autophagy and extracellular vesicle release33,35,44,48,49. 
Furthermore, to correlate RNA transcription rates with the expression of HIV-1 Tat protein, we utilized den-
sitometry counts of Tat Western blots (Supp. Fig. 1) at the corresponding times to calculate a Tat production 
parameter value (αp1) which is modeled as a function of env RNA production from LTRs in the intermediate 
state. The production of HIV-1 Tat from the repressed and activated LTR state is not included in our model due 
to predominant production of Tat from early doubly spliced mRNAs which are produced from full length tran-
scription of genomic RNA. Detailed information regarding governing equations is presented in the Materials and 
Methods section.

According to our mathematical model, the production of TAR RNA is low during the repressed state but upon 
progression through the intermediate to the active state of the LTR there was sustained, increasing production of 
TAR RNA (Fig. 3e). The dynamics of env (genomic) RNA production from LTRI (Fig. 3f) show a slight increase 
in production starting at approximately 1.49 h and ending at approximately 81.18 h, which correlates to the mod-
eled LTRI dynamics. Furthermore, there is a relatively sustained production of approximately 3.63 × 105 copies 
of genomic RNA from an estimated 5.37% of LTRs that persist in the intermediate state following activation 
(Fig. 2f). Since the presence of HIV-1 Tat protein is critical for activated transcription, we also investigated the 
dynamics of Tat expression as a function of time. As the results in Fig. 3g suggest, the production of Tat increases 
linearly over the modeled time frame measuring 5.19 × 105 proteins at 120 h indicating continual transcription 
activation resulting in the production of virus. To confirm this, we evaluated the production of genomic RNA 
(env) from a fully activated LTR, which we have modeled to elicit the production of fully infectious virions, over 

Calculations T-Cell Monocyte/Macrophage

kON LTRR → LTRI
[0–6 h Cdk9-IP H1 kinase densitometry counts from 
Untreated samples]/6

kON = 5.785% H1 phosphorylation 
(densitometry) change/mL/hour

kON = 9.245% H1 phosphorylation 
(densitometry) change/mL/hour

kOFF LTRI → LTRR
[6–24 h H1 kinase densitometry counts from 
Untreated samples]/18

kOFF = 1.220% H1 phosphorylation 
(densitometry) change/mL/hour

kOFF = 1.228% H1 phosphorylation 
(densitometry) change/mL/hour

kATat LTRI → LTRA
[0–6 h Cdk9-IP H1 kinase densitometry counts from 
Inducer-treated samples]/6

kATat = 3.409% H1 phosphorylation 
(densitometry) change/mL/hour

kATat = 9.010% H1 phosphorylation 
(densitometry) change/mL/hour

ki LTRA → LTRI
[6–24 h H1 kinase densitometry counts from Inducer-
treated samples]/18

kI = 0.0% H1 phosphorylation 
(densitometry) change/mL/hour

kI = 2.451% H1 phosphorylation 
(densitometry) change/mL/hour

αm1R LTRR → TAR [0 h TAR-(−24 h TAR)]/24 ~2.5 × 104 copies/mL/h αm1R = 2.5 × 104 copies/mL/hour αm1R = 2.9 × 104 copies/mL/hour

αm1I LTRI → TAR [0–24 h TAR PCR average from Untreated]/24 αm1I = 2.8 × 106 copies/mL/hour αm1I = 6.54 × 104 copies/mL/hour

αm1A LTRA → TAR Numerically estimated αm1A = 1.37 × 107 copies/mL/hour αm1A = 4.51 × 105 copies/mL/hour

αm2I LTRI → envI [0–24 h genomic PCR average from Untreated]/24 αm2I = 3.63 × 105 copies/mL/hour αm2I = 8.13 × 103 copies/mL/hour

αm2A LTRA → envA Numerically estimated αm2A = 2.47 × 106 copies/mL/hour αm2A = 4.00 × 104 copies/mL/hour

αp1 env → Tat [(0–24 h Tat densitometry counts from Inducer-
treated samples)/24]/3

αp1 = 0.040% Tat (densitometry) change/
mL/hour

αp1 = 0.038% Tat (densitometry) change/
mL/hour

αp2 env → Pr55 [(0–24 h Pr55 densitometry counts from Inducer-
treated samples)/24]/3

αp2 = 0.154% Pr55 (densitometry) change/
mL/hour

αp2 = 0.194% Pr55 (densitometry) change/
mL/hour

αp3 Pr55 → p24 [(0–24 h p24 densitometry counts from Inducer-
treated samples)/24]/3

αp3 = 0.136% p24 (densitometry) change/
mL/hour

αp3 = 0.081% p24 (densitometry) change/
mL/hour

γp2 p24 → Degradation 0 γp2 = 0 p24/mL/hour γp2 = 0 p24/mL/hour

γm1
TAR → Degradation/
Exit Numerically estimated γm1 = 1.17 × 104 RNA1/mL/hour γm1 = 2.68 × 104 RNA1/mL/hour

γm2 env → Degradation/Exit Numerically estimated γm2 = 2.24 × 103 RNA2/mL/hour γm2 = 5.91x × 102 RNA2/mL/hour

Table 1. Mathematical Model Parameter Values.
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120 h. The results in Fig. 3g confirm this showing an increase in production of genomic RNA. Following induc-
tion there is a steady increase in the number of genomic RNA transcripts with approximately 1.48 × 108 copies 
at 120 h. Altogether, our model effectively demonstrates the sustained production of small non-coding RNA, 
regardless of the activation state of the LTR, and the complex dynamics of genomic RNA production as a function 
of LTR activation.

LTR activation-dependent protein expression in T-cells. Following transcription, the Gag polypro-
tein (Pr55) is expressed from unspliced genomic RNA. During maturation, Pr55 is cleaved by a virally encoded 
protease to produce four smaller viral proteins, including the HIV-1 capsid protein, p24, a marker of virus mat-
uration. Along these lines, we examined the production of both Pr55 and p24 in T-cells following incubation 
in low serum media (0.1% FBS) for 36 h, subsequently cultured in 20% FBS media, and treated with an inducer 
for 24 h. Whole cell extracts were analyzed by Western blot using a p24 antibody. Not surprisingly, the results in 
Fig. 4a show a high level of p24 background expression in T-cells at 0 h (lane 1), which was expected due to higher 
levels of basal transcription in these cells. Furthermore, there is little to no detection of Pr55, suggesting efficient 
cleavage of the polyprotein to produce p24. Analysis of whole cell extracts at 24 h after introduction of an inducer 
and the addition of 20% serum media (Fig. 4a; lane 2) indicate an increased production of Pr55 as compared to 
0 h samples which subsequently results in the increased production of p24 mediated by viral protease cleavage of 
the polyprotein.

To determine parameter values for our mathematical model, densitometry counts were taken of the Pr55/
p24 Western blot (Fig. 4a) to estimate rates of protein production (αp2) and subsequent cleavage (αp3). As it can 
be assumed that the translation of Pr55 from genomic RNA is unaffected by the introduction of an inducer, αp2 
has equivalent production rate values from both pools of genomic RNA, termed envI and envA (Fig. 1). To better 
represent the system, αp3, the rate of Pr55 cleavage into p24, has been derived from densitometry counts corre-
sponding to the increase in p24 production over 24 h, rather than the increase in p24 relative to Pr55 production. 
Additionally, although Fig. 4a demonstrates the presence of p24 at 0 h, we hypothesized that this is unlikely to 
be production of novel RNAs produced by transcriptional activation coming from LTRR. To test this, T-cells 
were cultured in low serum media (0.1% FBS) for 36 h followed by the addition of 20% FBS media. Cells were 
then lysed using a non-detergent lysis buffer and the lysates and conditioned supernatants were used to treat 
uninfected T-cells and myeloids +/− an entry enhancer. The results from the infectivity assay in Supp. Fig. 2a 
show no p24 in recipient cells when treated with lysates or supernatants from transcriptionally latent cells (0 hr; 
lane 3 and 7, respectively) in the absence an of entry enhancer. Interestingly, when an enhancer is added, p24 is 
present in recipient cells (lane 4 and 8). However, this p24 is unlikely to represent the production of virus as there 
is a distinct lack of gp120, the HIV-1 envelope protein. These results suggest that incubation in low serum media 
effectively induces a transcriptionally repressed state without the production of infectious virus and that the pres-
ence of p24 in recipient uninfected cells is likely due to the uptake of Gag-coding mRNA or genomic RNA from 
the cell lysates either as free RNA or RNA packaged into extracellular vesicles (EVs) 33,39,48. Furthermore, these 
results confirm the production of fully infectious virus at 24 h from LTRA (Supp. Fig. 2a, lanes 5–6 and 9–10). 
These conclusions were confirmed using RT-qPCR (Supp. Fig. 2b–e). For clarity of the proposed model, 0 h p24 
values have been set to zero.

The results in Fig. 4b show the modeled dynamics of Pr55 production over 120 h, with no Pr55 associated early 
time points as 100% of the LTRs are in the repressed state. This is followed by a slow increase in Pr55 production 
over the modeled time frame resulting in approximately 1.17 × 107 Pr55 at 120 h. Similarly, the expression of p24 
shows little fluctuation over the modeled time frame (Fig. 4c). These results suggest there is a slow, but steady 
increase beginning at 0 h which is sustained throughout 120 h, potentially due to accumulation of Pr55 as the LTR 
switches from an intermediate state to one of full activation, resulting in 5.67 × 105 p24 at 120 h. Taken together, 
these results show an increase in the production of both viral proteins, Pr55 and p24, as a result of viral activation.

Modeling dynamics of LTR activation in macrophages. To determine transcriptional differences 
between HIV-1 infected T-cells and myeloid cells, the same experiment was performed as described previously 
using U1 whole cell extracts for in vitro kinase labeling with [γ-32P]-ATP with Histone H1 as a substrate. Results 
in Fig. 5a show that, similar to T-cells, the presence of low serum media elicited low kinase activity levels at 0 h 
(lanes 1 and 4). When cells were introduced to 20% FBS media there was an observed increase in kinase levels 
(6 h, lane 2) followed by a reduction in activity at 24 h, although kinase activity levels did not return to basal levels 
(lane 3) as seen in T-cells (Fig. 2a, lane 3), suggesting sustained transcriptional activation in myeloid cells from 
the intermediate state of the LTR as compared to T-cells. Upon induction, myeloid cells followed a similar pattern 
with an increase in kinase activity at 6 h, however, there was a faster return to baseline levels at 24 h in comparison 
to T-cells (Fig. 5a, lane 6). These results indicate distinct transcriptional timing in myeloid cells as compared to 
T-cells with myeloid cells having a more sustained level of LTRI transcription.

Similar to the T-cell experiments, CDK9/Cyclin T1 complex was immunoprecipitated from infected U1 whole 
cell extracts from 0 and 6 hrs (+/− inducer) and used for an in vitro kinase assay. The results in Fig. 5b, show low 
background levels of CDK9 kinase activity at 0 h, similar to J1.1 (Fig. 2b). Following introduction of 20% FBS 
media, there was a 55.5% increase in CDK9 activity at 6 h (lane 2) with a similar increase activation (lane 3; 54%) 
in the presence of an inducer. Taken together, these results demonstrate that basal p-TEFb transcription in HIV-1 
infected myeloid cells can be increased upon the introduction of serum and that the activation from basal tran-
scription in myeloid cells may be distinctly different from T-cells, potentially due to differences in transcriptional 
machinery.

To mathematically model the changes in the HIV-1 LTR dynamics in myeloid cells, parameter values were 
constructed as previously described. The results in Fig. 5c indicate the proportion of myeloid cell LTRs in a 
repressed state over the modeled time frame (120 h). These data show that there was in a sharp decline in the 
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relative amount of LTRs in a repressed state following activation of the HIV-1 LTR, resulting in the repression of 
only 2.77% of LTRs at 120 h. Figure 5d shows the relative proportion of intermediate state LTRs in U1 cells which 
result in the production of HIV-1 RNAs via basal transcription. Initially following activation with 20% serum, 
there was a drastic increase in the proportion of LTRI which resulted in a peak at 12.43 h post induction yielding 
approximately 37.80% of HIV-1 LTRs in an intermediate state. The observed increase was followed by a subse-
quent plateau (20.81%) which was sustained throughout the modeled time frame. Not surprisingly, there was an 
associated increase in the activated LTR state (LTRA; Fig. 5e) following induction which resulted in approximately 
76.42% of HIV-1 LTRs producing full length, genomic HIV-1 RNA and, in turn, replication-competent virions 
at 120 h. Altogether, the changes in LTR activation states post-induction in myeloid cells is shown in Fig. 5f. 
Although the overall patterns of change in LTR states was similar to that of T-cells, these data indicate LTR 
dynamics unique from that of HIV-1 infected T-cells in terms of timing, relative proportions of LTR states during 
extended time frames (120 h), and notably less variability (i.e. noise) as indicated by the confidence intervals.

Production of viral RNA in macrophages. To compare production rates and copy numbers of short, 
non-coding and full-length HIV-1 viral RNA transcripts, infected U1 cells were cultured as previously described 
for T-cells. RT-qPCR of three biological replicates analyzed in triplicate was used to examine the production of 
two HIV-1 viral transcripts, TAR and env (i.e. genomic) RNA. For RNA production from LTRI, samples taken at 0 
and 24 h in the absence of an inducer were analyzed and results in Fig. 6a indicate a high level of background tran-
scription of TAR and genomic RNA associated with 0 h (4.70 × 106 and 2.96 × 105, respectively). This was likely 
due to low levels of basal transcription during a latent state, a finding that is consistent with several in vivo stud-
ies6,32,44. Upon introduction of 20% FBS media, there was little increase in the transcription of TAR (6.27 × 106 
copies) and genomic (4.91 × 105 copies) RNAs at 24 h.

RT-qPCR was also performed in technical triplicate to assess for viral RNA production in three biological rep-
licates at 0, 24, 48, 72, 96, 120 h to determine production at LTRA. Data in Fig. 6b show a high level of background 

Figure 4. Viral Protein Production in T-cells. J1.1 cells were placed in 0.1% FBS media for 36 h, and 
subsequently placed in 20% FBS media and treated with an inducer (IR). Resulting whole cell extracts were 
analyzed by Western blot at 0 h and 24 h post-induction for the presence of Pr55 and p24 (a). Densitometry 
counts were normalized and used to determine parameter rates for mathematical modeling of protein 
production, Pr55 (b) and p24 (c), over 120 h. The black line indicates the solved value of the original parameter 
set, while the grey lines are all the realizations with respect to the sampling of parameters using a Latin hypercube 
sampling method. The dashed green, red and blue lines represent 80%, 90% and 95% confidence intervals, 
respectively. Selected lanes from the same blot with identical exposure settings are presented in panel a.

https://doi.org/10.1038/s41598-020-59008-0


9Scientific RepoRtS |         (2020) 10:2227  | https://doi.org/10.1038/s41598-020-59008-0

www.nature.com/scientificreportswww.nature.com/scientificreports/

transcription of both RNAs at 0 h (3.13 × 106 and 1.49 × 105, respectively). This was likely due to high levels of 
RNA prior to transcriptional suppression by low serum media. Upon introduction of 20% FBS media and PMA/
PHA, there was an increase in both TAR and env RNA in all measured time points relative to 0 h, with a peak in 
transcripts at the 72 h time point. Collectively, these data show an increase in the transcription of both measured 
RNAs following introduction of 20% serum media and that myeloid cell transcription is better activated by the 
introduction of an inducer (PMA/PHA).

To mathematically model our experimental results, we constructed RNA production rates as previously 
described. Similar to T-cells, we reasoned that the persistent, non-processive transcription observed in several 
studies involving in vitro and in vivo analysis of RNA production during antiretroviral therapy suggests that there 
is TAR RNA production during the repressed state of the HIV-1 LTR6,44,47,48. As such, we have estimated the 
production of short, non-coding TAR RNA in infected myeloid cells to happen at a rate of 2.9 × 104 copies/mL/h 
(αm1R). As previously described, rates for TAR (αm1I) and env RNA production (αm2I) from LTRI were determined 
using experimental data from Fig. 6a. LTRA RNA production rates (αm1A and αm2A) as well as RNA degradation 
rates (γm1 and γm2) were determined using parameter fitting (Fig. 6c,d). Densitometry counts of Tat Western blots 
(Supp. Fig. 1) were used to calculate a Tat production value (αp1).

The results in Fig. 6e demonstrate that the production of TAR RNA occurred in HIV-1 infected myeloid 
cells regardless of the state of the LTR, as evident by the background level of TAR RNA (3.13 × 106 copies). 
Furthermore, the production of short, non-coding RNA continued to increase throughout the measured time 
frame resulting in approximately 1.09 × 104 copies at 120 h. The production of env (genomic) RNA from the 

Figure 5. HIV-1 LTR Dynamics in Macrophages. U1 (HIV-1 infected myeloids) were placed in low serum 
media (0.1% FBS) for 36 h, and subsequently incubated in 20% FBS media and treated with an inducer (IR). 
Whole cell extracts were then analyzed using an in vitro total kinase assay (a) or a CDK9 IP kinase assay (b) 
to evaluate for changes in the HIV-1 LTR. Biochemical assays were analyzed by densitometry, counts were 
normalized and used to construct parameters for mathematical modeling to assess relative proportions of the 
HIV-1 LTR in the various states; repressed (c), intermediate (d), and activated (e) over 120 h. The black line 
demonstrates the solved value of the original parameter set, grey lines are realizations due to the sampling of 
parameters using a Latin hypercube sampling method. The dashed green, red and blue lines represent 80%, 
90% and 95% confidence intervals, respectively. (f) All three LTR states; repressed (LTRR, red), intermediate 
(LTRI, blue), activated (LTRA, green) are superimposed to indicate changes relative to each state at a given time. 
Selected lanes from the same blot with identical exposure settings are presented in panel a.
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Figure 6. Production of Viral RNAs in Macrophages. (a) HIV-1 infected myeloids (U1) were cultured in 
0.1% serum media for 36 h, followed by incubation in 20% FBS media in biological triplicate. At 0 h and 24 h 
post-induction, RT-qPCR was used to analyze whole cell extracts for TAR RNA and env (genomic) RNA. 
Bars indicate an average of three technical replicates analyzed in technical triplicate ±S.D. (b) HIV-1 infected 
myeloids (U1) were cultured in 0.1% serum media for 36 h, followed by incubation in 20% FBS media and 
treated with an inducer (PMA/PHA) at 0 h in biological triplicate. Samples were analyzed by RT-qPCR in 
technical triplicate at 0, 24, 48, 72, 96, and 120 h post-induction for TAR and genomic RNA. Values were used 
to fit parameter rates for TAR (c) and env (d) production from LTRA. Obtained RT-qPCR values are shown in 
conjunction with model predictions using solved fitted parameters. Parameter rates for mathematical modeling 
were constructed using RT-qPCR values and numerical estimations. Changes in TAR RNA (e), env RNA from 
LTRI (f), Tat protein (g), and env RNA from LTRA (h) were determined using mathematical modeling. The black 
line represents the solved value of the original parameter set, the grey lines are all the realizations with respect 
to the sampling of parameters using a Latin hypercube sampling method. The dashed green, red and blue lines 
represent 80%, 90% and 95% confidence intervals, respectively.
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intermediate state of the LTR (LTRI) is shown in Fig. 6f. These data indicate a slight increase in the production of 
full-length genomic RNA from the intermediate state of the LTR over 120 h which yielded an estimated 3.03 × 105 
copies from approximately 20.81% of the HIV-1 LTRs which maintained an intermediate state following acti-
vation. Similar to T-cells, we have also modeled the production of HIV-1 Tat protein. Figure 6g shows a modest 
increase in the production of Tat resulting in approximately 1.09 × 104 proteins at 120 h, indicating sustained 
activated transcription over the modeled time frame and resulting in the increased production of infectious viri-
ons. In agreement, Fig. 6h shows an increased production of env from an activated LTR state (LTRA). Initially 
(0 h), 100% of the HIV-1 LTRs were in a repressed state due to the presence of low serum media. Upon addition 
of 20% serum media there was a continued increase in the production of env which resulted in approximately 
2.14 × 106 copies at 120 h. Taken together these results indicate the continuous production of TAR RNA from 
HIV-1 infected myeloid cells and demonstrates the production of viral RNA as a function of the HIV-1 LTR acti-
vation state. Furthermore, these data suggest the magnitude of production of viral products may be inherently 
different in myeloid lineage cells as compared to T-cells.

Viral protein production in HIV-1 infected macrophages. To complement the T-cell experiments, 
we analyzed the production of Pr55 (Gag polyprotein) and p24 in myeloid cells post-incubation with 0.1% FBS 
media for 36 h and subsequent treatment with an inducer for 24 h. Following treatment, cells were lysed and 
analyzed for the presence of these viral proteins using a p24 antibody. The results in Fig. 7a show very low overall 
levels of Pr55 and p24 background expression in U1 cells at 0 h (lane 1), which is in line with infectivity assay 
results in Supp. Fig. 2. Interestingly, these levels were markedly reduced as compared to T-cell whole cell extracts 
at 0 h (Fig. 4a; lane 1). Following treatment with an inducer and the addition of 20% FBS media (Fig. 7a; lane 2) 
there was an increased production of Pr55 and p24, albeit expression was lower than that of J1.1 (Fig. 4a; lane 2).

To model these biochemical results mathematically, parameter values were constructed as previously 
described. Figure 7b,c indicate the changes in viral protein production over 120 h including the presence of no 
Pr55 (Fig. 7b) and p24 (Fig. 7c) at 0 h due to 100% of the HIV-1 LTRs in the repressed state (LTRR). The data in 
Fig. 7b show a slow, yet steady, increase in the production of Pr55 following activation of the LTR by 20% serum 
and introduction of an inducer, which resulted in approximately 2.17 × 105 Pr55 at 120 h. The same trend was 
observed for p24 levels which yielded an estimated 5.84 × 103 p24 proteins (Fig. 7c). Not surprisingly, the data 
suggests overall lower levels of Pr55 and p24 in myeloid cells as compared to T-cells at extended time points. 
Interestingly, the 2-log difference between cell types is maintained for both Pr55 and p24 suggesting similar rates 
of Pr55 polyprotein cleavage in both cell types.

Comparing transcriptional differences in HIV-1 infected T-cells and macrophages. To address 
differences in LTR state dynamics amongst cell types, solved parameter values for myeloid and T-cells were super-
imposed to determine timing and magnitude differences between cell types. The data in Fig. 8a demonstrates that 
myeloid LTRs exhibit faster changes in LTR states as indicated by rapid exit of the LTR from the repressed state, 
complemented by quick entry into an activated LTR as compared to T-cells. These cell-type differences are sup-
ported by a 2018 study that utilized a multiply spliced transcript reporter assay to measure the generation of RNA 
over time and found that primary myeloid cell multiply spliced transcripts, such as those which would be gen-
erated by LTRI, peaked more quickly than T-cells50. This trend was validated in primary latent peripheral blood 
mononuclear cells (PBMCs), which were separated into T-cell and myeloid populations and measured for rates 
of LTR state activation by the same methods as previously described for our cell lines (Supp. Fig. 3). Furthermore, 
these data show a more heterogeneous population of LTR states in myeloids given that, at extended time frames 
(120 h), approximately 76.42% of LTRs were in the activated state (dotted blue line), 20.81% of LTRs were in an 
intermediate state (dotted green line), with the remaining 2.77% in a repressed state (dotted red line) following 
activation. Conversely, T-cells exhibited 92.64% of LTRs in an activated state (blue line) post-induction, with only 
5.37% and 1.99% in intermediate (green line) and repressed (red line) states, respectively. Not surprisingly, the 
production of short, non-coding RNA (TAR) was increased in T-cells (solid red line) as compared to myeloid cells 
(dotted red line; Fig. 8b), likely due to the larger proportion of T-cell LTRs in the activated state. Tat production, 
produced from LTRI in our model, closely follows a similar trend (Fig. 8c), due to a lower calculated production 
rate for myeloids despite a larger proportion of myeloid LTRs in an intermediate state at 120 h. The production of 
full-length genomic RNA from both LTRI (green) and LTRA (blue) in T-cells and myeloid cells is shown in Fig. 8d. 
As expected, the production of envI (green lines) was higher than envA (blue lines) in both T-cells and myeloids 
at early time points. Interestingly, the transition from a predominately envI state to a predominately envA state 
occurred earlier in T-cells (approximately 28.5 h) than myeloid cells (approximately 50 h) despite the more rapid 
change in LTR state exhibited by myeloid cells. This is likely due to the high rate of RNA production in T-cells as 
compared to myeloids. Finally, the production of HIV-1 viral proteins, Pr55 and p24, was increased in T- cells as 
compared to myeloid cells (Fig. 8e). Collectively, these results suggest that T-cells produce viral products at higher 
levels compared to their myeloid counterparts although the myeloids show a more rapid change in the LTR state.

Modeling the use of F07#13. The dependence of activated viral transcription on the HIV-1 Tat protein 
makes it an attractive target for therapeutics aimed at inhibiting transcription of the HIV-1 virus. As a result, Tat 
peptide mimetics, specifically F07#13, have been developed and shown to inhibit transcription both in vitro and 
in vivo15,51. To further test our model, we tested transcriptional changes associated with the introduction of the 
transcriptional inhibitor F07#13. F07#13 treatment was incorporated into the governing equations of the model 
within the terms kA(Tat) and kI (Fig. 1). Data in Fig. 9a show low levels of kinase activity at 0 h (Lanes 1 and 4), 
indicating a repressed transcriptional state of the HIV-1 LTR. When cells were induced (20% FBS media/PMA/
PHA) the addition of F07#13 drastically mitigated the increase in transcriptional activity observed in HIV-1 
infected T-cells in the absence of F07#13 at 24 h (J1.1; lanes 3 and 6). Interestingly, F07#13 treatment elicited a 
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reduction in p-Histone H1 (i.e. maximal drug effect) in HIV-1 infected myeloids at 6 h post-induction (U1; lanes 
2 and 5), suggesting differences in transcription between cell types and variation in drug efficacy. The simulation 
data in Fig. 9b,c show the mathematically derived prediction of the relative proportions of LTR states ± F07#13 
in T-cells and myeloids, respectively. As described in Figs. 2f and 5f, in the absence of F07#13, there was a rapid 
decrease in the number of LTRR (red line) concomitant with a sharp increase in the proportion of LTRI (blue line) 
until ~21.31 h and 12.43 h in T-cells and myeloids, respectively. Furthermore, there was an associated increase in 
activated LTRs (green line) following induction. The graphs show a decrease in the proportional of LTRs in the 
active state in response to F07#13 treatment (dotted green line). Interestingly, there was a slight increase (9.35%) 
at 120 h in the relative amount of LTRs in the basal transcriptional state (LTRI; dotted blue line) observed in 
T-cells (Fig. 9b) which is evident at approximately 9 h and was sustained through the modeled time frame. In 
myeloid cells there was a larger increase (35.66%) at 120 h in the relative proportion of LTRI, evident at approxi-
mately 6 h, which was similarly sustained throughout the 120 h time frame. Finally, there was a slight increase in 
the number of LTRs in latency (LTRR; dotted red line) in both cell lines, suggesting preferential basal transcription 
during F07#13 treatment and thereby the production of non-coding RNAs such as TAR. In agreement with our 
biochemical assays, graphs generated from our model demonstrate the F07#13-mediated LTR effect in T-cells 
peaks at ~24 h (Fig. 9a) whereas the same effect was observed earlier in myeloid cells (6 h; Fig. 9a). To illustrate 
the potential utility of the model to explore the effects of F07#13 on the production of viral proteins and, in turn, 
infectious virions, the production of Pr55 in the presence of F07#13 was modeled and compared to the produc-
tion of the protein in the absence of the drug. These data show the post-treatment outcomes for T-cells (Fig. 9d) 
and myeloid cells (Fig. 9e) in terms of viral protein production. Interestingly, these results indicate that F07#13 
is more effective in lowering virus production in myeloid cells as compared to T-cells despite a decrease in the 
relative proportion of LTRA in both cell types. The decrease efficacy in T-cells is likely due to compensation by 
LTRI in the production of env resulting in no change in the production of Pr55. These data are in line with our 
previously published results which found that RNAPII was still present on the HIV-1 promoter post-treatment 

Figure 7. Production of Viral Proteins in Macrophages. U1 cells were cultured in serum starved media (0.1% 
FBS) for 36 h and then placed in 20% FBS media and treated with an inducer (IR). Cells were lysed and whole 
cell extracts were analyzed by Western blot for the presence of HIV-1 Pr55 and p24 at 0 and 24 h post-induction. 
Western blots were assessed via densitometry, counts were normalized and used for calculation of protein 
production parameter values which were utilized for mathematical modeling of viral production of Pr55 (b) and 
p24 (c). The black line demonstrates the solved value of the original parameter set, while the grey lines are all the 
realizations with respect to the sampling of parameters using a Latin hypercube sampling method. The dashed 
green, red and blue lines represent 80%, 90% and 95% confidence intervals, respectively. Selected lanes from the 
same blot with identical exposure settings are presented in panel a.
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with F07#13 using an in vitro transcription assay31. Conversely, the addition of F07#13 in myeloid also decreases 
the relative proportion of LTRA, however, unlike T-cells this proportionate drop outweighs the relative increase 
in the proportion of LTRI.

Discussion
Here, we have generated a mathematical model to describe three states of HIV-1 transcription. This model was 
created in such a way that it is open to broad applications. We utilized 100% HIV-1 infected cell lines of two dif-
ferent immune cell types to show differences in the production magnitude and induction speeds between infected 
T-cells and myeloids. Specifically, our model demonstrates that latent infected myeloids become activated sooner 
than T-cells under the influence of a transcriptional inducer; however, latent infected T-cells generate more viral 
products than myeloids, despite a slower activation rate (Fig. 10). Interestingly, the rates of LTR activation in 
primary cells followed a similar trend to that seen with cell lines, although the overall rates were lower (Supp. 
Fig. 3). This could potentially be due to the fact that the primary cells were infected in vitro and likely not 100% 
infected. The fact that myeloid and T-cells show variances in the speed of LTR state change and levels of viral 
components produced points to differences in transcriptional machinery between the cell types. This notion has 
been supported by previous findings that have shown many differences in transcriptional machinery compo-
nents, particularly host transcription factors, between myeloid and T-cells, which has been previously described 
at length by Rohr et al.52. The lack of an FDA-approved transcription inhibitor for HIV-1 illustrates the need for 
further research into compounds with the potential to limit viral transcription. As a result, we have integrated 
potential therapeutic interventions, such as F07#13, into our model to explain their effects on HIV-1 activation 
and generation of viral products.

The observed high production of TAR RNA in both cell lines (106 to 108) at all time frames as compared to 
the relative levels of other viral proteins and RNAs, suggests that regardless of cell type, HIV-1 produces short, 
non-coding RNAs (Figs. 3e and 6e) from all states of the LTR. These findings are confirmed by several patient and 
in vitro studies which show the presence of TAR RNA within infected cells despite antiretroviral therapy, which 
is effective in reducing other viral products and suppressing the virus in the plasma6,32,44,48. Several studies have 
previously shown that TAR RNA is released from HIV-1 infected cells, including during latent infection, which 
can then induce numerous inflammatory responses in neighboring cells33,35,48.

Other research suggests that during activated transcription, which results in the production of genomic RNAs, 
the ratio of TAR:Tat:Cyclin T1 is 1:1:153–55. Furthermore, the presence of Cyclin T1 greatly enhances the binding 
affinity of Tat to TAR, with a Hill coefficient of 2.7 and a dissociation constant (KD) of 2.45 nM56. However, we 
propose that the production of TAR RNA as a short non-coding RNA within the cell could result in the bind-
ing of TAR RNA to Tat protein in the absence of Cyclin T1, potentially resulting in TAR RNA produced at high 
copy numbers to inhibit Tat-activated transcription. Along these lines, our experimental data show a relative 
abundance of TAR RNA in infected cells as compared to other viral products (i.e. Tat), which could potentially 

Figure 8. Comparison of T-cell and Macrophage Transcription Activation and Viral Product Production. 
Solved values using the original parameter set for J1.1 and U1 are superimposed to illustrate differences in the 
changes of relative proportions of LTRs over time (a), as well as differences in the magnitudes of TAR RNA 
production (b), Tat protein levels (c), env RNA production (d), and Pr55/p24 levels (e). Solid lines indicate 
T-cell values and dashed lines indicate myeloid values over 120 h.
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indicate that TAR RNA could be utilized to sequester Tat protein, thereby slowing activated viral transcription 
and promoting latency of the virus. Altogether, this finding may potentially point to a novel mechanism of viral 
maintenance of latency.

It has been previously shown that TAR RNA is released in EVs such as exosomes both in vitro and in vivo even 
under antiretroviral regimens33,35,44,48. Therefore, the γm1 and γm2 parameters include exit of viral products from 
the cell through these secretory mechanisms. Additionally, the fact that there is a high levels of TAR RNA in T-cell 
EVs may suggest enhanced efficiency of T-cells in the packaging of EV products. The data in Supp. Fig. 5 support 
this hypothesis and demonstrate that the EV-associated viral RNA copy number (white bars; TAR, Supp. Fig. 5a; 
env, Supp. Fig. 5b) is higher in T-cells as compared to myeloids. Furthermore, there are innate differences in the 
distribution of viral RNA (TAR and env) within T-cells and myeloids. T-cells exhibit approximately equal copy 
numbers of both TAR (Supp. Fig. 5a) and env (Supp. Fig. 5b) within the nucleus (black bars) and cytoplasmic 
fractions (grey bars) while myeloids show a higher proportion of TAR (Supp. Fig. 5a) and env (Supp. Fig. 5b) in 
the cytoplasmic fraction in comparison to the nuclear fraction. These data may suggest differences in the nuclear 
export of viral RNA which could potentially lead to variations in protein expression as previously demonstrated 
by the model. Additionally, these data imply that a TAR-mediated Tat inhibition could potentially play a larger 
role in T-cell latency as compared to myeloids. These observations reiterate broad utility of the model shown 

Figure 9. Introduction of F07#13 Induces Changes in HIV-1 LTR Dynamics. J1.1 (HIV-1 infected T-cells) 
and U1 (HIV-1 infected myeloid) cells were placed in a repressed state using low serum media for 36 h and 
subsequently induced using 20% serum media and PMA/PHA. At the same time, cells were treated with 
F07#13. An in vitro kinase assay with Histone H1 as the substrate was used to analyze overall transcriptional 
activity of the cell at 0, 6, and 24 h post-induction (a). Densitometry was used to analyzed relative changes in 
LTR activation and resulting counts were normalized and used to construct parameter values. Mathematically-
solved predictions from the three-stage model of LTR activation in J1.1 (b) and U1 (c) cells shows the relative 
proportions of three LTR states [repressed (LTRR; red line), intermediate/basal transcriptional state (LTRI; blue 
line) and activated (LTRA; green line)] over a 120 h simulation. The graph depicts F07#13 induced changes 
in LTR dynamics [LTRR (dotted red line), LTRI (dotted blue line), and LTRA (dotted green line)] over the 
same time frame. Modeling predictions for Pr55 for T-cells (d) and monocytes (e) are also shown. Solid lines 
represent model predictions in the absence of F07#13 and dotted lines represent model prediction sin the 
presence of F07#13.
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herein such as the far-reaching effects of viral transcription in various cell types and potential impacts on viral 
pathogenesis.

An interesting finding within our biochemical assays showed that there were background levels of p24 con-
sistently produced from latent T-cells suggesting persistent production of mature Gag. Previously, we have shown 
that exosomes contribute to the lack of transcriptional latency within HIV-1 infected cells32. Therefore, the pres-
ence of p24 despite a serum-starvation induced latent state further supports the notion that there may not be a 
true transcriptional latency during HIV-1 infection of T-cells (Fig. 4a). This is in contrast with our observation 
in myeloid cells (Fig. 7a) which showed minimal levels of p24 in serum-starved cells suggesting different mech-
anisms of maintaining viral latency between these cell types. This could pose a potential hurdle in designing 
targeted antiretrovirals and the development of future transcription inhibitors against HIV-1.

The mathematical model presented in this paper is novel in that it incorporates new biological mechanisms 
in a way that preserves important biologically realistic features. Work is currently under way to study analytical 
properties of this system, and several important facts have been already established. For example, starting with 
a positive amount of LTRR, positivity of all variables is maintained during evolution. Furthermore, all variables 
are bounded, which is consistent with the fact that no realistic environment can support indefinite exponential 
growth. During the construction of the model, some simplifying assumptions were made regarding the switching 
function, 𝑘A(Tat) and 𝑓𝑚2(Tat), and the production/decay parameter. This is reasonable because, for a short time 
frame (5 d), step-wise constant rate approximation is sufficient for capturing the complexity of the system behav-
ior. However, we speculate that nonlinear forms of the switching functions and more biologically realistic forms 
of the rates of change would be more suitable to study the long-term behavior of the system. While simplistic, the 
linear system allows for a more thorough understanding of the transient modes, for instance, it may be helpful 
in clarifying how different rates contribute to the dynamics of each variable at the beginning of transcription. In 
this manuscript, parameter estimations were carried out for a relatively small subset of parameters that cannot be 
directly inferred from the data. In future work, a more thorough sensitivity analysis can be performed to establish 
the role of each of the parameters.

In the future, additional cell types, including primary cells and other immune cell types, or various drug 
treatments designed to act at multiple stages of latent virus reactivation may be easily integrated into the model 
we present here to show their downstream effects and optimal time frame for usage. To demonstrate this utility, 
we have integrated the transcription inhibitor F07#13 into the model to show elicited changes in LTR activation 
post treatment, which varied between cell types. Specifically, F07#13-repressed transcription was more quickly 
achieved in myeloid cells in comparison to T-cells (Fig. 9b,c). Furthermore, the differences in the relative pro-
portions of LTRs during various time points may dictate the efficacy of the drug in terms of virus production 
(Fig. 9d,e). One of the potential applications of the proposed model is the study of the effectiveness of drugs in 
silico. While this type of work can be carried out numerically on a case-by-case basis, we suggest that valuable 
insight may be derived by first studying the model analytically and establishing conditions when a certain drug is 
effective, especially when it is used in combination with other drugs. Other applications of the dynamics of this 
system or its nonlinear version may potentially be extended to other retroviruses including endogenous ones 
that are known to activate under given stimuli. An example of this could be the activation of human endogenous 
retrovirus type-K (HERV-K) by HIV-1 Tat57. Moreover, the model could be used to more closely study the various 
states of the HIV-1 LTR (repressed, intermediate, and activated). For the repressed state of the LTR, these studies 

Figure 10. Summary Model. The three LTR states for T-cells and myeloid cells are illustrated as a percentage 
over time. The relative proportion of viral products are depicted as indicated in the key over the relevant LTR 
state where each is mostly produced. TAR RNA (green circle) is produced at all three states, env RNA (blue 
circle) is produced at LTRI and LTRA, Tat (black triangle) is produced only at LTRI, and Pr55/p24 (yellow 
triangle) are produced only at LTRA. Furthermore, the height of each step to a new LTR state signifies the 
approximate amount of time required to progress to the next stage of activation. Finally, the width of each LTR 
“step” indicates the relative percent of the LTR state post-activation.
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could include exploring the effects of various suppressive transcription factors, transcriptional gene silencing 
mechanisms, and suppressive chromatin complexes on relative proportions of the LTR transcriptional state and 
the production of viral RNAs and proteins. Inquiries into the intermediate state of the LTR such as RNAPII phos-
phorylation, basal transcription factors, chromatin looping, and enhancers which could also be incorporated into 
the model. Additionally, Tat-activated transcription studies such as RNAPII elongation through various genome 
regions and RNA processing (capping, splicing, 3′end processing) could also be explored. For example, Yukl et al. 
has designed a set of primer and probe sequences which could be easily incorporated to increase the resolution of 
the model presented here by analyzing several different RNA transcripts. This approach could aid in fine-tuning 
the model as it includes the use of droplet digital PCR to measure transcripts associated with various blocks in 
transcription which would allow for more precise inclusion of drug mechanisms58. Finally, the presented model 
could be used to larger data sets regarding integration sites of the HIV-1 genome or other viral genomes and the 
downstream effects in terms of transcriptional regulation of viral products using chemical or other biological 
compounds that serve as therapeutics.

Materials and Methods
Cell culture and reagents. U1 (HIV-1 infected promonocytic cell with 2 copies of virus; one wild-type and 
one mutant) and J1 (HIV-1 infected T-cell with one copy of wild-type virus) cells were cultured and maintained in 
RPMI 1640 supplemented with 10% fetal bovine serum (FBS), 1% penicillin/streptomycin, and 1% L-glutamine 
(Quality Biological) and incubated in 5% CO2 at 37 °C. U1 cells were activated with phorbol 12-myristate 13-ace-
tate (PMA; 1 µM) and phytohemagglutinin (PHA; 10 µg/µL) and then treated with F07#13, an allosteric Tat/
CDK9 inhibitor (1 µM), or irradiation (5 Gy). Treated cells were incubated in 5% CO2 at 37 °C. Both cell lines (U1 
and J1) were provided by the AIDS Reagent Program (National Institutes of Health). Both U1 and J1 cells were 
serum starved for 3 days, washed, counted, and plated in 20% FBS media +/− inducer. Samples were collected 
at 0, 6, 12, 24, 48, 72, 96, and 120 h post-induction. The 0 h sample represents samples that were collected 10 min-
utes post-treatment due to the size of experimental design and handling procedures. Therefore, these samples 
would have shown some level of transcription within the first 10 min, since the rate of RNA Pol II transcription 
is fairly rapid and high (the RNAPII complex moves through very long introns and also through regions dense 
with alternating exons and introns at an average rate of ∼3 kb per min)59. Peripheral blood mononuclear cells 
(PBMCs) were treated with PHA/PMA and IL-2 treatment. After one week, they were infected with HIV-1 (89.6; 
multiplicity of infection = 3.0). Adherent macrophage cells were separated from T-cells using centrifugation, and 
3 days post-infection, T-cells were treated with cART and IL-7, which allowed cells to enter latency. Adherent 
macrophages were also treated with cART to obtain latent cells. Prior to activation with 20% FBS media and 
PMA/PHA, cells were kept in low serum media to suppress basal transcription.

Kinase assay. In vitro kinase assays were carried out using whole cell extract (prepared as described below). 
Total lysates and immunoprecipitated samples were washed three times with appropriate TNE buffer (10 mM Tris, 
100 mM NaCl, 1 mM EDTA) and kinase buffer. The reaction mixtures (approximately 30 μl) contained the follow-
ing final concentrations: 40 mM β-glycerophosphate (pH 7.4), 5% glycerol, 7.5 mM MgCl2, 1 mM orthovanadate, 
7.5 mM EGTA, [γ-32P]-ATP (0.4 mM, 1 μCi), 50 mM NaF, and 0.1% (v/v) β-mercaptoethanol. Phosphorylation 
reactions were performed with total lysates and immunoprecipitated material and [γ-32P]-labeled histone H1 
(0.5 μg) as a substrate in threonine tyrosine kinase buffer containing 50 mM HEPES (pH 7.9), 10 mM MgCl2, 
6 mM EGTA, and 2.5 mM dithiothreitol. Reactions were incubated at 30 °C for 1 h, stopped by the addition of 
1 volume of Laemmli sample buffer (5% β-mercaptoethanol), and run on 4–20% SDS-polyacrylamide gel. Gels 
were subjected to autoradiography followed by quantification using PhosphorImager software (Amersham 
Biosciences).

Infectivity assay. HIV-1 infected cells (1 × 106) J1.1 sample were cultured and then starved in supplemented 
RPMI media containing 0.1% FBS for 3 days. Cells were centrifuged (325 × g) for 5 min and resuspended in sup-
plemented RPMI media containing 20% FBS for 0 and 24 h incubations periods. Cells were obtained and spun 
down for 5 min, washed with PBS, followed by cell lysis using 100 µL non-detergenic lysis buffer (50 mM ammo-
nium bicarbonate (pH = 7.8)), Pierce™ Protease and Phosphatase Inhibitor Mini Tablets (1 tablet per 10 mL lysis 
buffer), and 100 mM NaCl solution. Cellular debris was pelleted and discarded. A total of 1/5th of the intracel-
lular lysate material was treated (±5 µL) InfectinTM (Virongy, LLC, Manassas, VA) onto uninfected Jurkat T cells 
(1 × 106), uninfected CEM T cells, and uninfected U937 monocytes (data not shown) for a total of 3 days. Cells 
were pelleted and supernatant was nanotrapped using NT80/82/86 beads (to collect viral EVs and viruses) for 
Western blot and RT-qPCR analysis.

RNA isolation, generation of cDNA, and quantitative real-time PCR. For quantitative analysis 
of HIV-1 RNA, total RNA was purified from infected cell pellets in triplicate using Trizol Reagent (Invitrogen) 
according to the manufacturer’s protocol. Total RNA was used to generate cDNA with the GoScript Reverse 
Transcription System (Promega) using specific reverse primers, Envelope Reverse: (5′-TGG GAT AAG GGT 
CTG AAA CG-3′; Tm = 58 °C) and TAR Reverse: (5′- CAA CAG ACG GGC ACA CAC TAC -3′, Tm = 58 °C). 
Quantitative real-time PCR analysis was performed with 2 μl of undiluted aliquots of cDNA using iQ supermix 
(Bio-Rad) with the following pair of primers specific for target TAR sequences: TAR- Reverse: (5′- CAA CAG 
ACG GGC ACA CAC TAC -3′, Tm = 58 °C) and TAR-Forward (5′- GGT CTC TCT GGT TAG ACC AGA TCT G 
-3′, Tm = 60 °C). Serial dilutions of DNA from 8E5 cells (CEM T-cell line containing a single copy of HIV-1 LAV 
provirus per cell) were used as the quantitative standards. The PCR conditions were as follows: one cycle at 95 °C 
for 2 min, 41 cycles at 95 °C for 15 s and 58 °C for 40 s. Real-time PCR reactions were carried out in triplicate using 
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the BioRad CFX96 Real Time System. Quantification of the samples was determined based on the cycle threshold 
(Ct) value relative to the standard curve.

Preparation of whole cell extracts and western blot analysis. Infected cell pellets were harvested 
and washed with 1X PBS without calcium and magnesium. The resulting pellet was resuspended in lysis buffer 
[50 mM Tris-HCl (pH 7.5), 120 mM NaCl, 5 mM EDTA, 0.5% Nonidet P-40, 50 mM NaF, 0.2 mM Na3VO4, 1 mM 
DTT, and 1 complete protease inhibitor mixture table/50 mL (Roche Applied Science, Mannheim, Germany)]. 
The mixture was incubated on ice for 20 min with vortexing every 5 min followed by separation via centrifugation 
at 10,000 × g at 4 °C for 10 min. Lysate total protein concentration was assessed using Bradford protein assay 
(Bio-Rad).

For analysis, sample lysates (10–20 µg) were added to SDS sample buffer supplemented with 10% 
2-mercapthoethanol, heated at 95 °C for 3 min, vortexed, and spun (15,000 × g) for 10 sec until fully collected. 
Approximately 10 µl of each sample was loaded onto a 4–20% Tris/glycine gel (Invitrogen), run at 200 V, and trans-
ferred onto Immobilon PVDF membranes (Millipore) at 0.05 Amp overnight. Membranes were then blocked in 
5% milk in PBS with 0.1% Tween-20 (PBS-T) for 2 hours at 4 °C, then incubated overnight at 4 °C PBS-T with 
the appropriate primary antibody α-p24 (Cat# 4121; NIH AIDS Reagent Program), α-Tat (Cat# 705; NIH AIDS 
Reagent Program), α-Actin (ab-49900). Membranes were incubated with the appropriate HRP-conjugated sec-
ondary antibody for 2 h at 4 °C. HRP luminescence was activated with Clarity Western ECL Substrate (Bio-Rad) 
and visualized by the Molecular Imager ChemiDoc Touch system (Bio-Rad). Images were quantified using den-
sitometry (ImageJ).

Isolation of nuclear and cytoplasmic compartments. Cytoplasmic and nuclear compartments were 
separated and extracted using the NE-PER Nuclear and Cytoplasmic Extraction Reagent kit (Thermo Fisher 
Scientific) as per the manufacturer’s instructions. Briefly, log-phase J1.1 and U1 cells were collected and result-
ing culture supernatant was used for exosome isolation as described below. Cell pellets were washed in 1X PBS 
and incubated with 100 µL of cold CER I followed by vortexing (10 seconds) and subsequent incubation on ice 
for 10 min. Following incubation, 5.5 µL ice cold CER II was added to both samples and vortexed for 10 seconds 
followed by a 1 min incubation on ice. Samples were then vortexed, centrifuged for 5 min at 16,000 × g to separate 
the cytoplasmic compartment which was transferred to a new, pre-chilled tube. Pelleted nuclei were treated with 
50 µL of ice cold NER, vortexed for 20 seconds and incubated on ice for 45 min with additional vortexing (every 
10 min). Following incubation, samples were centrifuged at 16,000 × g for 10 min and resulting nuclear extract 
was transferred to a new prechilled tube. Both cytoplasmic and nuclear fractions were then subjected to subse-
quent RNA isolation, reverse transcription, and qPCR as described above.

Isolation of exosomes. J1 and U1 culture (five days post last feed; late log phase of growth) supernatant was 
harvested and enriched for exosomes using Nanotrap particles (NT80/82) as previously described32–35,48,60. Briefly, 
30 µL of a 30% slurry of NT80/82 (1:1) was added to 1 mL of cell culture supernatant and incubated with rotation 
overnight at 4 °C. The next day NTs were pelleted and washed with 1 mL of sterile 1X PBS and subjected to RNA 
isolation, reverse transcription, and RT-qPCR as described above.

Densitometry. Raw densitometry counts were obtained using ImageJ software. Exposures were matched 
between membranes according to positive control signals. Densitometry data was normalized by a two-step 
process. First, the background measurements for each membrane were subtracted from each band of interest. 
Second, each protein band’s raw densitometry count was converted to a percentage by dividing it by the back-
ground measurement for each membrane and multiplying by 100%. This normalization accounted for differences 
in the backgrounds and exposures between membranes, while also converting densitometry counts to an appro-
priate unit for use in our model.

Statistical analysis. Standard Deviations (S.D.) were calculated from technical triplicates for every quantita-
tive experiment using Microsoft Excel. To determine the sensitivity of the model is to its parameters, we employed 
the Latin Hypercube Sampling method. First, we assumed each parameter is normally distributed, whose mean 
is the estimated value from the data (either experimentally and numerically derived) and standard deviation is 
taken to be 1% of the parameter value. Using this method, we selected 200 parameter sets and generated 200 real-
ization curves for the model, which are plotted along with the solution curve. The 80%, 90% and 95% confidence 
intervals were constructed to contain 80%, 90% and 95% of the realization curves, respectively.

Model. The mathematical model presented in this manuscript aims to describe key features associated with 
basal and activated transcription of the HIV-1 genome. In order to produce a model which closely represents 
the series of events which occur in vivo, the associated model parameters have been determined using in vitro 
experiments in HIV-1 infected T-cell (J1.1) and macrophage (U1) cell lines, with the exception of transcription 
rates from the activated promoter state (αm1A and αm2A), which we obtained by numerical fitting of our model 
predictions to the experimental measurements of TAR and env. Our model, as shown in Fig. 1, categorizes the 
long-terminal repeat (LTR) into three states; a repressed state (denoted by LTRR), an intermediate state (denoted 
by LTRI), and an activated state (denoted by LTRA), similar to that used in a previous report27. Furthermore, the 
relative proportions of viral RNAs, including short, non-coding RNA (TAR) and long genomic RNA (env), and 
resulting functional proteins have been attributed to each LTR state.

Activation of the HIV-1 LTR is dependent on Tat association with CDK9 and Cyclin T1. The phosphoryla-
tion of Histone H1 is directly correlated with exposure of the promoter and transcriptional activation. As such, 
a Histone H1 kinase assay (see Materials and Methods section) was used to quantitate activation of the LTR at 
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the three transcriptional states (repressed, intermediate, and activated). The repressed and intermediate HIV-1 
promoters are considered to be in the ‘OFF’ state while the activated HIV-1 promoter is considered to be in the 
‘ON’ state. Transitions between these states occur with rates kON (repressed to intermediate), kOFF (intermediate 
to repressed), kA(Tat) (intermediate to active), and kI (active to intermediate). The intermediate LTR state to an 
active LTR transition rate is Tat-dependent and has be described as a step-wise function. In this work we have 
used constant approximation for this parameter due to extremely rapid transition to the active state. There have 
been several reports of sustained intracellular levels of TAR RNA during antiretroviral treatment which can range 
from 1 × 101 to 1 × 105 RNA copies in vivo6,44. Therefore, assuming a 1:1 binding ratio of TAR:Tat, we conserva-
tively estimated the critical Tat value to be equal to 3001 to allow a large enough pool of Tat protein to overcome 
potential sequestration by TAR RNA33,35,48, and thereby allow for efficient Tat-activated transcription. As a result, 
we propose that these LTR states and associated rates can be expressed as

⟶LTR LTR (1)R
k

I
ON

⟶LTR LTR (2)I
k

R
OFF

 →LTR LTR (3)I
k

A
(Tat)A

⟶LTR LTR (4)A
k

I
I

We have interpreted the three LTR states as proportions of the total LTR count so that 
LTRR + LTRI + LTRA = 100%. The rates kON, kOFF, kA(Tat), and kI have units of inverse time with the change in 
each LTR state being a (unitless) proportion of the total LTR count.

A key new feature of our model is the inclusion of three different transcriptional states as described by in vitro 
quantitation of two different HIV-1 RNAs – long, genomic RNA transcripts which we have denoted as envI and 
envA (for transcripts that associate with the corresponding promoter states LTRI and LTRA, respectively)–and one 
short, non-coding RNA sequence which is denoted by TAR. HIV-1 TAR RNA is produced from a virally infected 
cell regardless of latency or suppressive cART therapy33,35. TAR generation occurs from each of the three LTR 
states (repressed, intermediate and activated) at specified rates. This short RNA sequence is transcribed by all 
three promoter states with associated rates as indicated by the following biochemical reactions:

→ +
α

LTR LTR TAR (5)R R
m R1,

→ +
α

LTR LTR TAR (6)I I
m I1,

→ +
α

LTR LTR TAR (7)A A
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During latent infection (i.e. repressed LTR), RNAPII does not produce full length genomic RNA (env). 
Measurement of env is representative of the production of full-length genomic RNA which results in the produc-
tion of functional virions. The biochemical reactions for envI and envA are given by

→ +
α

LTR LTR env (8)I I I
m I2,

 → +LTR LTR env (9)A
f

A A
(Tat)m2

The production of Tat (i.e. translation of mRNA into a functional protein) occurs in our model through the 
intermediate, envI, long RNA. The production of Tat further enhances activation of the intermediate LTR state, 
giving a possible gene-activated feedback mechanism, as well as enhances transcription of activated long RNA 
transcripts envA, giving a transcription-activated feedback mechanism61. The expression of transcripts generates 
more virions that go on to infect more cells and continue the HIV-1 gene regulation. The Tat protein produced 
from the long, full-length transcript envI from the intermediate state of the LTR is expressed as

+
α

⟶env env Tat (10)I I
p1

Both long RNA transcripts, envI and envA, lead to the production of the HIV-1 Gag polyprotein, Pr55, which 
in turn produces p24. The levels HIV-1 Pr55 and p24 were visualized using Western blot analysis and quantitated 
using densitometry. Densitometry counts of Pr55 were then utilized to find the rate of Pr55 production (α p2

) from 
both envI and envA. The production of the HIV-1 capsid protein p24 which is cleaved from the gag polyprotein 
Pr55 at a calculated rate α p3

.
Finally, we expressed degradation and exit of viral products into the extracellular space through the parame-

ters γp1
. (degradation of Tat), γm1

 (degradation/exit rate of TAR), γm2
 (degradation/exit rate of envI and envA), and 

γp2
 (degradation/exit rate of P24). As we are primarily interested in the dynamics of these quantities over a short 

time frame (e.g. several days) simulations were run with the degradation/exit rate rates set to zero for Tat and p24. 
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Conversely, to account for the variability inherent in the measure of RNA via RT-qPCR, we have attempted to 
estimate the degradation/edit rates of TAR and env using a best-fit to the experimental data. Other authors and 
references therein have defined the burst frequency as the promoter activation rate (defined as kA(Tat) in our 
model) divided by the transcript degradation rate (in our model γm1

 or γm2
 are the short and long mRNA tran-

script degradation/exit rates)27 and so with degradation/exit rates set to zero we effectively study the infinite burst 
frequency limit. The burst size is defined as the basal transcription rate (in our model α

v
m A

a

2, ) divided by the inacti-
vation rate of the promoter (kI in our model).

The model described in Fig. 1 and characterized by the biochemical reactions described above is written as 
a coupled system of differential equations that give the evolution of the three LTR states, the basal and activated 
transcripts TAR, envI and envA, the trans-activator of transcription, Tat, and the byproducts Pr55 and p24. From 
a mathematical point of view, our model follows many other efforts to describe various stages of the HIV/AIDS 
progression using systems of coupled differential equations. Many of these mathematical models have the objec-
tive of capturing cell and virus population dynamics on time scales associated with the long-term progression and 
treatment of HIV-1 and AIDS over years if not decades62–64. Others address the dynamics over shorter time scales 
of hours and/or days with a focus on processes occurring at the cellular level27,65,66. Our focus is on the later time 
scales for which our in vitro experiments have been conducted.

The model we consider here is related to that presented by Chavali et al., who were interested in describing 
noise-driven HIV-1 gene expression and promoter activation27. Our work is novel and distinct from previous 
work in that we explore the role of both basal and activated transcription with application to both T-cells and 
macrophages and that we base our model parameter estimates on our own in vitro experiments. We fit a total 
of four parameters numerically corresponding to genomic and TAR RNA transcription rates from the activated 
promoter states and their associated degradation/exit rates. Our focus is on a deterministic model; however, we 
performed sensitivity analyses of our predictions on the various biochemical rates. Numerical solutions of these 
coupled equations are described in the next section.

The governing differential equations for the time evolution of LTRR, LTRI, LTRA, Tat, TAR, envI, envA, Pr55 
and p24 are given below:

= −
d
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In our calculations, for the activated transcription rate, fm2(Tat), we have chosen to use the relatively simple 
stepwise-defined function
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which allows a step increase (for va > 1 and fixed value of αm A,2
) in the rate of activated transcription once the Tat 

concentration exceeds a specified critical value Tatcrit.
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The first three of these differential equations (Eqs. 11–13) describe the evolution and transitions that occur 
between the three LTR promoter states. The dynamics of these three quantities depend on the dynamics of Tat 
through the activation rate kA(Tat). However, if the coefficient kA(Tat) is constant, then the LTR states are mathe-
matically decoupled from other dynamic variables in our model. Our initial computations have used kA(Tat) as a 
constant although measured Tat-dependent rates can be easily incorporated. The three states LTRR, LTRI and 
LTRA are defined as proportions of the total LTR count and thus we have LTRR + LTRI + LTRA = 100%. That is, the 
sum of the three LTR state variables, which represent proportion of the total number of LTR sequences, is pre-
served. The fourth equation (Eq. 14) gives the rate of change of Tat which is produced by the long transcript envI 
and degrades at rate γp1

. The fifth equation (Eq. 15) characterizes the dynamics of the transcript TAR, which is 
generated at various rates by all three promoter states, LTRR, LTRI and LTRA. The sixth and seventh equations 
(Eqs. 16–17) describe the dynamics of intermediate and activated transcripts envI and envA which are generated 
by their counterpart promoter states LTRI and LTRA and are translated to Tat and Pr55 as well degraded. Finally, 
the eighth and ninth equations give the rates of change of Pr55 and p24.

In addition to describing the dynamics of the transcription process, we have incorporated into the system of 
differential equations a means to assess the effectiveness of F07#13, Tat peptide mimetic. We have modeled F07#13’s 
interaction with the HIV-1 LTR as an increase in the transition from LTRA to LTRI and simultaneous decrease in the 
transition from LTRI to LTRA. Thus, taking the effect of F07#13 into account, the rate of transition from LTRI to 
LTRA becomes k (Tat)LTR

w A I
1

5
 and the rate of transition from LTRA to LTRI becomes w1k1LTRA. Here, w1 and w5 are 

constants representing the effect of F07#13 which have value greater or equal to 1 that have been obtained experi-
mentally. These constants have been incorporated into the previously described governing equations as follows:

= −




 +





 + +

d
dt w

k k w k LTR k[LTR ] 1 (Tat) LTR LTR
(21)

I A OFF I I A ON R
5

1

= −
d
dt w

k w k[LTR ] 1 (Tat)LTR LTR
(22)A A I I A

5
1

Parameter fitting. To account for the uncertainty associated with measurements of TAR and env in T-cells 
and macrophages, a numerical means was used to estimate four parameters: 𝛼m1A, 𝛼m2𝐴, 𝛾m1 and 𝛾m2. The model 
was fit simultaneously to the experimental values of TAR and total env (e.g. time series data of TAR and env per-
formed in three biological replicate and analyzed in technical triplicate by RT-qPCR) independently for T-cells 
and Macrophages. In order to initialize the parameter estimation process, experimentally derived rates for the 
production of TAR and env were used as initial approximations of the parameter values. The initial approxima-
tions of the degradation/exit rates for TAR and env are taken as the linear rates of change of extracellular TAR and 
env RNA. The objective function to be minimized is the standard objective in least squared fitting. All time series 
data was simultaneously fit for each triplicates and replicates of both env and TAR. The function fmincon – a 
commercial product of MATLAB – was used to estimate these parameters within reasonable ranges. The ranges 
for the estimation extend from 0.1 to 10 times the initial approximations. Through testing, changing this range 
does not affect the overall results. The estimated values are given in Table 1.

Impact statement. We propose a novel 3-state LTR model (LTRR, LTRI, LTRA) incorporating long and short 
RNAs that offers insight into HIV-1 transcriptional dynamics in latently infected macrophages and T-cells and 
provides a framework for future mathematical analysis of HIV-1 transcriptional interactions and drug interven-
tions. Specifically, presence of short non-coding RNAs such as TAR at high levels such as that produced from an 
activated LTR state may explain Tat sequestration and transcription inactivation leading to viral latency.

Data availability
The datasets generated during and/or analyzed during the current study are available from the corresponding 
author on reasonable request.
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