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Abstract. Efficient data visualization techniques are critical for many scientific applica-

tions. Centroidal Voronoi tessellation (CVT) based algorithms offer a convenient vehicle

for performing image analysis, segmentation and compression while allowing to opti-

mize retained image quality with respect to a given metric. In experimental science

with data counts following Poisson distributions, several CVT-based data tessellation

algorithms have been recently developed. Although they surpass their predecessors

in robustness and quality of reconstructed data, time consumption remains to be an

issue due to heavy utilization of the slowly converging Lloyd iteration. This paper dis-

cusses one possible approach to accelerating data visualization algorithms. It relies on

a multidimensional generalization of the optimization based multilevel algorithm for

the numerical computation of the CVTs introduced in [1], where a rigorous proof of

its uniform convergence has been presented in 1-dimensional setting. The multidimen-

sional implementation employs barycentric coordinate based interpolation and maxi-

mal independent set coarsening procedures. It is shown that when coupled with bin

accretion algorithm accounting for the discrete nature of the data, the algorithm out-

performs Lloyd-based schemes and preserves uniform convergence with respect to the

problem size. Although numerical demonstrations provided are limited to spectroscopy

data analysis, the method has a context-independent setup and can potentially deliver

significant speedup to other scientific and engineering applications.

AMS subject classifications: 65D99, 65C20
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1. Introduction

Centroidal Voronoi tessellations have diverse applications in many areas of science

and engineering and the development of efficient algorithms for their construction is a

key to their success in practice. Its use in imaging applications is the subject of many
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recent studies (e.g. [2–4] and references therein). This work will demonstrate how this

concept can bring significant advantages to applications dealing with data visualization of

extremely large data sets.

In particular, we focus on the problem of adaptively binning intensity images in physics

applications, such as those coming from spectroscopy data with counting (Poisson) statis-

tics. Hardness ratio maps, temperature maps and other types of images can be analyzed

in a much similar manner. Spectroscopy has established itself as an unrivaled technique

for a wide variety of scientific problems. However, experiments carried out using such

techniques suffer from severe intensity limitations inherent to imperfect measurement in-

struments. Because of these limitations one usually needs to trade off signal-to-noise ratio

(SNR) and instrumental resolution to raise statistical significance of measured data, which

leads to the need to bin (or group) spatially close data for a better view of the image as a

whole — a process referred to as binning. Adaptive techniques, able to relate bin sizes to

local signal-to-noise ratios, are of extreme importance, since they prevent loss of resolution

in high intensity areas. Even with adaptive binning, the size of the data to be processed is

very large, with a typical modern day spectrometer delivering data sets of the order of 108

detector pixels. Hence high-speed and high-accuracy computational algorithms are crucial

in order to make online data visualization and assessment possible.

This work builds upon several recently developed CVT-based methods for binning scat-

tering data. Capellari and Copin [5] working on astrophysics imaging data were the first to

develop a CVT-based adaptive binning method that achieves a homogeneous distribution

of SNR across the image. Diehl and Statler [6] improved its performance by utilizing the

concept of a weighted Voronoi diagram for added flexibility. Recently, Bustinduy et al. [7]

proposed another adaptive algorithm that is able to preserve high-SNR features and avoid

blurring common to the previous two approaches. While pursuing slightly different goals,

all of the above works share one common drawback, which is high computational com-

plexity associated with constructing optimal centroidal Voronoi tessellations of the given

dataset. This fact serves as a motivation for the current study.

We suggest that a multidimensional extension of a multilevel scheme previously de-

veloped and extensively analyzed in 1-dimensional quantization context can significantly

accelerate these and other data visualization techniques. The method was originally de-

vised in one space dimension in [1], where it was proved to have uniform convergence

with respect to the grid size for a large class of densities. Numerical studies of its behavior

for some 2-dimensional domains with simplified geometries have been carried out in [1]

and [8] with similar results, so the method is conjectured to have superior convergence

properties regardless of dimension. Other possible acceleration techniques such an hybrid

Lloyd-Newton and quasi-Newton algorithms, were considered in [8] and their applicabil-

ity to imaging applications are subject to current explorations. In the version adapted for

image analysis, the multilevel method is presently tested in the Capellari-Copin setting

which aims at minimizing the spread of the signal-to-noise ratio around a target value

(S/N)T , but it can be very easily reformulated to fit other scenarios. More importantly, the

multilevel algorithm description provided in current work is independent of the problem

dimension or the features of the discrete dataset.
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It has to be noted that an idea of using multiple grid levels to represent the scatter-

ing data has appeared in a previous work by Bustinduy et al [9] where they introduced a

“multiresolution” adaptive binning algorithm that operates on several sequentially coars-

ened grids. The method serves a different purpose than that discussed here, and being

restricted to rectangular grids suffers from very large variation of bin sizes (factors of 2d ,

with d being the space dimension), which limits its applicability. We propose a completely

different use of the multigrid context by suggesting a multilevel method that is able to:

• optimize the quality of the image in any given metric due to the flexibility and opti-

mality of CVT-based grids;

• accelerate convergence comparing to other CVT-based schemes by replacing the

costly Lloyd iteration with a more efficient alternative.

The paper is organized as follows. Section 2 introduces some necessary terminology

and discusses computational features related to the Lloyd iteration employed by tradi-

tional adaptive binning algorithms. It is followed by Section 3 where we build a higher-

dimensional extension of the multilevel algorithm. Application of the method to intensity

image analysis, implications related to the discrete nature of the data and the descrip-

tion of Multilevel CVT-based Binning algorithm (MCVTBin) are given in Section 4. Results

of numerical experiments and performance tests for the new method are summarized in

Section 5.

2. Background and notations

A tessellation represents a mapping of N -dimensional vectors zi in the domain Ω⊂ RN

into a finite set of vectors {zi}
k
i=1

. A Voronoi tessellation associates with each Z = zi , also

called a generator, a nearest neighbor region that is called a Voronoi region {Vi}
k
i=1. That

is, for each i, Vi consists of all points in the domain Ω that are closer to Z = zi than to all

the other generating points, and a Voronoi tessellation refers to the tessellation of a given

domain by the Voronoi regions {Vi}
k
i=1 associated with a set of given generating points

{zi}
k
i=1 ⊂ Ω. For a given density function ρ defined on Ω, we may define the centroids, or

mass centers, of regions {Vi}
k
i=1 by

z∗i =
�

∫

Vi

yρ(y) dy
��

∫

Vi

ρ(y) dy
�−1

. (2.1)

Then, an optimal tessellation may be constructed through a centroidal Voronoi tessellation

(CVT) for which the generators of the Voronoi tessellation are the centroids of their respec-

tive Voronoi regions, in other words, zi = z∗i for all i. An example of such a tessellation

is given in Fig. 1(b), where it is compared to the regular Voronoi tessellation for the same

choice of the density functional (a) and to a CVT with a different choice of density.

Given a set of points {zi}
k
i=1 and a tessellation {Vi}

k
i=1 of the domain, we may define
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the energy functional or the distortion value for the pair ({zi}
k
i=1, {Vi}

k
i=1) by:

G
�

{zi}
k
i=1, {Vi}

k
i=1

�

=

k
∑

i=1

∫

Vi

ρ(y)|y− zi|
2 dy . (2.2)

The minimizer of G , that is, the optimal tessellation, necessarily forms a CVT which illus-

trates the optimization property of the CVT [10].
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Figure 1: (a) Voronoi tessellation for ρ = exp−((x − 50)2 + (y − 50)2)/1000; (b) CVT for ρ =
exp−((x − 50)2 + (y − 50)2)/1000; () CVT for ρ = exp−(x2 + y2)/500+ exp−((x − 100)2 + y2)/500+

exp−(x2 + (y − 100)2)/500+ exp−((x − 100)2+ (y − 100)2)/500.
In [11], Lloyd proposed the following iterative procedure for computing optimal tes-

sellations: starting from an initial quantization (a Voronoi tessellation corresponding to an

old set of generators), a new set of generators is defined by the mass centers of the Voronoi

regions. This process is continued until certain stopping criterion is met. It is easy to

see that the Lloyd algorithm is an energy descent iteration of the energy functional (2.2),

which gives strong indications to its practical convergence.

Lloyd’s algorithm and its variants have been proposed and studied in many contexts for

different applications [2,3,12–18]. A particular extension using parallel and probabilistic

sampling was given in [19] which allows efficient and mesh free implementation of the

Lloyd’s algorithm. Still, Lloyd algorithm is at best linearly convergent, besides it slows

down as the number of generators gets large. In fact, it was shown in [20] that most

smooth densities, convergence factor ρ satisfies

ρ ≈ 1−
c

k2
,

where k is the number of generators. We refer to [20] and [21] for some recent results

and development of a rigorous convergence theory.

In [1], an energy-based multilevel acceleration scheme has been proposed that was

shown to have a uniform convergence with respect to the problem size in 1-dimensional

case. We are now ready to outline its higher-dimensional implementation and demonstrate

its superior performance for some data visualization examples.
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3. Optimization-based nonlinear multilevel algorithm

Since the original concept of centroidal Voronoi tessellations is related to the solution of

a nonlinear optimization problem, and the monotone energy descent property is preserved

by the Lloyd’s iteration [10], it is natural to explore whether monotone energy reduction

can be achieved in a multilevel procedure which would also improve the performance of

the simple-minded iteration.

The problem of constructing a CVT is nonlinear in nature, hence standard linear multi-

grid theory cannot be directly applied. There are still several ways one could implement

a nonlinear multilevel scheme in this context (see [8, 22, 23]). A Newton type acceler-

ation method, studied earlier in [8], is based on some global linearization as the outer

loop, coupled with other fast solvers in the inner loop. As an alternative, we studied an

approach that overcomes the difficulties of the nonlinearity by essentially relying on the

direct energy minimization without any type of global linearization.

Let us define the energy functional

H
�

{zi}
k
i=1

�

= G
�

{zi}
k
i=1, {Vi}

k
i=1

�

, (3.1)

where {Vi}
k
i=1 forms the Voronoi tessellation with generators {zi}

k
i=1. The CVTs and optimal

quantizers are closely related to the problem of minimization of the functionalH . In fact,

we may note that the vector of generators of a CVT forms a critical point of H and vice

versa [10]. That is, at a CVT (or optimal quantizer), we have ∇H = 0. This is one of the

important characterizations of the CVTs which will be used in the later discussion.

In developing the multilevel quantization method, we followed the ideas presented

in the literature on the extension of multigrid ideas to nonlinear optimization problems

(see [24,25] and the references cited therein).

3.1. Space decomposition

Since the energy functional is in general non-convex, it turns out to be very effec-

tive to relate our problem to an equivalent optimization problem through a technique

that mimics the role of a dynamic nonlinear preconditioner. More precisely, denote R =diag(R−1
i

,R−1
2 , · · · ,R−1

k
) a diagonal matrix whose diagonal entries {Ri =

∫

Vi
ρ(y) dy} are

the masses of the corresponding Voronoi cells. It is easy to deduce that R∇H = 0 at a CVT.

Hence we arrive at an equivalent formulation of the minimization problem: min ||R∇H ||2,

with respect to the standard Euclidean norm.

A key observation is that as R varies with respect to the generators, the above trans-

formation or dynamic preconditioning keeps the modified objective functional convex in a

suitably large neighborhood of the minimizer and therefore makes the new formulation

more amenable to analysis than the original problem. Now, if we define the set of iteration

points W by

W=
n

(wi)|
k
i=1| wi ∈ Ω, ∀ 1≤ i ≤ k

o

,
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we can design a new multilevel algorithm based on the following nonlinear optimization

problem

min
Z∈W
H̃ (Z), where H̃ (Z= {zi}

k+1
i=0
) = ||R∇H ({zi}

k
i=1)||

2 . (3.2)

The functional H̃ may be regarded as a dynamically preconditioned energy. Viewing W as

a set of grid points in Ω, we may denote by T = TJ a finite element mesh corresponding

to W, and consider a sequence of nested quasi-uniform finite element meshes T1 ⊂ T2 ⊂
· · ·TJ , where Ti consists of all finite element meshes {τi

j
}ni

j=1
with mesh parameter hi, such

that ∪ni

j=1
τi

j = Ω. Corresponding to each finite element partition Ti (i = 1, · · · , J), there is

a finite element space Wi defined by

Wi =
n

v ∈ H1(Ω) | v|τ ∈ P1(τ),∀τ ∈ Ti

o

,

where H1 is a Sobolev space with the usual norm || f ||2
H1 , and P1 denotes a space of

piecewise linear functionals.

For each Wi, there corresponds a nodal basis {ψi
j
}ni

j=1
, such that ψi

j
(x i

k
) = δ jk, where

δ jk is the usual Kronecker Delta function and {x i
k
}ni

k=1
is the set of all nodes of the elements

of Ti. Define the corresponding one-dimensional subspaces Wi, j = span{ψi
j
}. Then the

decomposition can be regarded as

WJ =

J
∑

i=1

ni
∑

j=1

Wi, j =

J
⊕

i=1

W̄i ,

where

W̄i =Wi/Wi−1 for i > 1 and W̄1 =W1.

Now clearly for each ψi
j
∈Wi, we can find a vector ψ̄i

j
= {ψ̄i

jm
} ∈ RnJ , such that ψi

j
(x) =

∑nJ

m=1 ψ̄
i
jm
ψJ

m(x), for x ∈ Ω.

The set of basis functions

Q i = [ψ̄
i
1, · · · , ψ̄i

ni
]T ∈ Rni×k

used at each iteration can be pre-generated using the recursive procedure:

QJ = Ik×k and QJ−s = (Π
s
i=1PJ−i)QJ ,

where Pi is the basis transformation from space Wi+1 to Wi which plays a role of a restric-

tion operator.

3.2. Description of the algorithm

Using the above notations, we design the Algorithm 3.1 which is a multilevel succes-

sive subspace correction algorithm. Each step of the procedure outlined below involves

solving a system of nonlinear equations which plays the role of relaxation. We can use

the Newton iteration to solve this nonlinear system. Solution at current iterate is updated

after each nonlinear solve by the Gauss-Seidel type procedure, hence the resulting scheme

is successive in nature. The “slash” cycle can be defined as described in Algorithm 3.1.
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Algorithm 3.1. Successive correction V (ν1, 0) scheme

Input:

k, number of generators; u1 = {zi}
k
i=1, the initial set of generators.

Output after n cycles:

un = {zi}
k
i=1, the set of generators for CVT {Vi}

k
i=1.

Method: For n> 1, given un, do

1. For i = 1 : J

ūn+ i−1

J

= un+ i−1

J

For l = 1 : ν1

ūn+ i−1

J

= ūn+ i−1

J

+α0
j l
ψ̄i

j
∈ W̄i sequentially for 1≤ j ≤ ni,

such that

H̃ (ūn+ i−1

J

+α0
j l
ψ̄i

j) =min
α j l

H̃ (ūn+ i−1

J

+α j lψ̄
i
j),

endfor.

un+ i

J

= ūn+ i−1

J

= un+ i−1

J

+ ei
n, where ei

n =

ν1
∑

l=1

ni
∑

j=1

α0
j l
ψ̄i

j

endfor.

2. On the coarsest level, un+1←CoarseGridSolve(un+1).

3. n = n+1

4. Repeat the procedure 1 to 3 until some stopping criterion is met.

Parameters ν1,ν2 denote the number of Gauss-Seidel iterations (smoothings) used at

each level. Although it is enough to have ν1,2 = 1 in theory, larger values need to be used

in practice due to the numerical error in solving the nonlinear system. The values ν1,2 ≤ 3

usually suffice for the optimization to reach saturation. In the above description, no post-

smoothings are used to make the analysis more transparent. A complete V (ν1,ν2) cycle

with ν2 post-smoothings can be defined and analyzed in a similar fashion. The algorithm

uses a procedure CoarseGridSolve(Z), which, as the name indicates, refers to finding the

solution at the coarsest level. In our implementation, this procedure consists of applying

Lloyd method for a few steps or until saturation. In general, other efficient optimization

methods, as well as Newton’s method, can be used in order to quickly damp the error, since

the number of unknowns on the coarsest grid remains relatively small.

The algorithm essentially only depends on the proper space decompositions and its

relation to the set of generators, thus it is applicable in any dimension. Any particular

implementation depends on the choice of nodes {x i
k
}ni

k=1
in the sequence of meshes T1 ⊂

T2 ⊂ . . .TJ and of the nodal basis functions {ψi
j
}ni

j=1
. These are the two major ingredients

of a multilevel scheme that carry the most weight in defining its numerical properties.

In what follows we will propose one possible coarsening and interpolation strategy and

evaluate its numerical performance.
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3.3. Coarsening procedure

Let Wh be the vector space corresponding to the fine grid, and dim Wh = nh. We would

like to define WH with given dim WH = nH . Let us assume that we have in hand a full rank

operator P : RnH →Wh. Then a natural choice is WH = Range(P).

Such a P can be made by fixing the supports of the basis functions, and then chopping

these functions at the edges of the Voronoi diagram in order to get better properties of

WH . The definition of the supports is based on the block tri-diagonal form of the graph

Laplacian A. A variant of a breadth first search can be used to find a maximal independent

set in the graph defined by A.

We start by using the boundary conditions to form the block structure of A, and assume

that
∑n

j=1 ai j = 0 except for the nodes “close” to the Dirichlet boundary. The algorithm

then proceeds as follows:

Algorithm 3.2. Breadth First Search

1. Pick a set of starting nodes: L0 = {i|
∑n

j=1 ai j 6= 0}. Set k = 0.

2. (a) Define v ∈ Rn such that vi = 1, i ∈ L j , ; vi = 0, i /∈ L j, j ≤ k.

(b) Define Lk+1 = {i|vi = 0; (Av)i 6= 0}. Set k = k+ 1 and vi = vi + (Av)i.

3. Until Lk−1 = ;.

The set Li contain indices of the nodes that have no edges connecting them to the

points in Li−1. This procedure defines “concentric layers” of nodes defined by the graph

Laplacian of the matrix A. Such an implementation of the breadth first search algorithm

requires O (nJ + |E|) operations and is optimal if A is sparse.

The next step consists in defining the coarse grid degrees of freedom, which is done in

the way similar to the alternating construction used in 1d case. More precisely, we start

by finding block tridiagonal form of A. We then remove all odd-numbered blocks and find

block tridiagonal form of each connected component of each remaining even-numbered

block. We repeat this process until only 1×1 and 2×2 blocks remain. The remaining evenly

numbered “blocks” in the above procedure will be the coarse grid degrees of freedom.

This procedure picks coarse nodes from each of the layers Li in such a way that coarse

nodes are at least one node apart from each other in the graph defined by A, as demon-

strated by Fig. 2.

3.4. Interpolation procedure

To make the presentation of our multilevel scheme complete, we need to define the

interpolation operators that appeared in Algorithm 3.2. Namely, we need to discuss the

choice of the restriction and prolongation operators. To define an interpolatory connection

for each degree of freedom, which does not appear on the coarse grid, we have to uniquely

determine the points on coarse grid which will be used to interpolate the value of the fine

grid degree of freedom.
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In Section 3.1 we introduced the following space decomposition:

WJ =

J
∑

i=1

ni
∑

j=1

Wi, j =

J
⊕

i=1

W̄i,

where Wi, j = span{ψi
j
} for the canonical nodal basis {ψi

j
}ni

j=1
. Based on this basis, we can

define an interpolator the following way. At every level, define a triangulation based on

coarse grid nodes. Then for each fine grid point identify the unique triangle it belongs to

in this triangulation and set

λi, j =
�

barycentric coordinate of a fine node i with respect to coarse node j
	

.

Fig. 3 illustrates this definition.

(a) (b)Figure 4: (a) Support of the basis funtions on the oarse level; (b) Corresponding nodal basis.
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The interpolation matrix Q i = [ψ̄
i
1, · · · , ψ̄i

ni
]T ∈ Rni×k is constructed as follows:

q j,ic
= λ j,ic

. (3.3)

We further restrict the support of each basis function to the corresponding Voronoi cell

as shown in Fig. 4.

A simplified version of this procedure has been originally tested on parallelogram

shaped domains [1]. Here we presented the generalized version of this algorithm which

we are now ready to adapt to the context of binning.

4. Accelerated Multilevel CVT-based Adaptive Binning (MCVTBin)

According to Gersho’s conjecture [26], for bounded and strictly positive densities, the

size of the Voronoi intervals are inversely proportional to the one-third power of the un-

derlying density at the midpoints of the intervals. This conjecture can be used to partition

the domain into equal SNR regions. In a 2-dimensional problem, a CVT with a density

function ρ = (S/N)2, generates a tessellation with bins that asymptotically enclose a con-

stant mass (constant SNR). The obtained VT is strongly dependent on the discrete nature

of input data, which can pose problems with degenerate cells and pinned pixels. A way

out proposed in [5] is to use a special initial configuration of generators produced by the

so-called bin-accretion algorithm, which alleviates these issues as long as the underlying

density is additive, i.e.,

(S/N)21+2 = (S/N)
2
1+ (S/N)

2
2.

The latter is true for all intensity maps subject to Poisson-distributed noise levels, which

is the case under consideration. In order to adapt the multilevel scheme to the scope of

discrete problems of this type, we adhere to the same strategy of producing a suitable

starting configuration, as outlined below.

Bin accretion starts by choosing the highest S/N pixel in the image. We then find

centroid of the current bin and select the unbinned pixel closest to the centroid. We add

the candidate to a chosen bin if:

(a) the new pixel is adjacent to the current bin;

(b) the morphology of the bin would remain below some threshold;

(c) the S/N for this bin would get closer to (S/N)T .

The process is repeated until no new pixel can be added. Let ki denote the number of

pixels in Vi . If the bin’s S/N computed as

(S/N)Vi
=

∑ki

i=1
Si
Æ

∑ki

i=1
N2

i

,

is higher than some fraction of the target signal-to-noise ratio, e.g. 0.3(S/N)T , we mark

all the pixels in the bin as successfully binned, otherwise as unsuccessfully binned. We

find mass centroid of all pixels already binned and start a new bin from an unbinned pixel

closest to this centroid, then repeat until all pixels have been binned. Then we compute



Fast Multilevel Adaptive Binning Algorithm 205

centroid of each successful bin and reassign the unsuccessfully binned pixels to the closest

of these centroids. It remains to recompute centroids of each bin obtained above and use

them as input for the multilevel V (ν1, 0)-cycle defined in Algorithm 3.1. This strategy

serves as a first step of the main algorithm proposed in this study — Multilevel CVT-based

Binning (MCVTBin) algorithm — which is outlined below.

Algorithm 4.1. MCVTBin algorithm.

1. Run bin accretion to generate initial configuration Z= {zi}
k
i=1.

2. Perform a multilevel cycle V (ν1, 0) described in Algorithm 3.1:

For i = 1 : J

(a) Use Algorithm 3.2 to define the partition Ti and coarse degrees of freedom.

(b) Use formula (3.3) to compute nodal basis {ψi
j
}ni

j=1
.

(c) Carry out ν1 smoothings H̃ →min, find weights α jl and update the solution.

Use CoarseGridSolve to obtain nearly exact solution on the coarsest level.

3. Repeat Step 2 until one of the convergence criteria is met.

Convergence criterion adopted in this implementation of the method is a superposition

of the following conditions: (a) ||Zn − Zn−1|| < ε1, (b) ||H̃ (Zn)− H̃ex ||/H̃0 < ε2 and (c)

n > Ni ter , where Ni ter defines the maximum number of multilevel cycles. Exact numer-

ical values of the energy H̃ex are not available in practice, but are used here to assess

convergence and are obtained by running Lloyd iteration till saturation (a long time limit).

5. Numerical results

Below we analyze the performance of the MCVTBin algorithm using a set of two large-

scale two-dimensional binning examples. The first one is a sample Integral-Field Spec-

troscopy (IFS) image provided by M. Cappellari (Oxford, UK), from the public repository

at http://www-astro.physis.ox.a.uk/ mx/idl/#binning. The data comes in

a form of 3107 pixels, each with associated signal and noise values. Figs. 5(a,b) give a

visualization of the original image and the result of the bin-accretion stage. The colormap

is given by the SNR (signal-to-noise ratio), rescaled in the coarsened images to fit the range

of remaining intensities for enhanced grid shape visualization. In Figs. 5(c,d) we compare

the final binned image after 12 steps of the Lloyd algorithm (our implementation of the

method of [5]), when the stopping criterion (a) was met, with that after 4 MCVTBin it-

erations, at which point criterion (b) was satisfied. The differences between the last two

images are barely noticeable, which is to be expected due to the fact that both methods

reach the same energy level at this point. It is clear that it takes MCVTBin less iterations

than Lloyd to reach same accuracy level. The evolution of the energy and convergence

estimates are given in Figs. 6 and 7. Convergence factor after n multilevel cycles is com-

puted as ρ ≈ (||en||/||e0||)
1/n, with the error en = H̃ (Zn)− H̃ex computed with respect to

H̃ex estimate obtained as a limit of Lloyd iterations with the same number of generators.
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(d)Figure 5: (a) Original IFS image from SAURON data. (b) The image after bin aretion. () Result ofLloyd algorithm run until saturation. (d) Result of MCVTBin algorithm after 4 steps.
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Figure 6: (a) Convergene of energies for Lloyd algorithm (rosses) vs. MCVTBin (squares), for theIFS example. (b) Final Voronoi tessellation provided by the multilevel solution for the same data.
Here we use the fact that since Lloyd method is globally convergent in the weak energy

norm [1, 21], running Lloyd till stagnation yields a good approximation to the exact en-

ergy value. Reaching sufficiently low energy value is enough to ensure convergence of the

algorithm in many practical applications, including the binning context considered here.

MCVTBin does require more computational time per cycle, but this fact is offset by the

evidence of uniform convergence provided in Fig. 7. Computational savings are associ-
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Figure 7: Convergene of the MCVTBin sheme for the IFS image: (a) the number of iterations requiredto reah the auray of ε = 10−6 does not grow, (b) omputational time required to reah this auray,() onvergene fator, omputed per multilevel yle.
ated with the fact that convergence of MCVTBin does not slow down with the number of

generators in contrast with the deterioration of the Lloyd method’s convergence. Fig. 6(b)

shows the Voronoi tessellation obtained by the multilevel algorithm after 4 iterations.

Although the computational savings that we obtained in this example are not dramatic

due to the size limitations of the original dataset, by the nature of the algorithm the ad-

vantage of the MCVTBin method becomes much more visible as the size of the problem

increases. The next example provides some further evidence of this fact.

This time the set of tests comes from the analysis of the collective motions of mag-

netic moments within a slice of Cobalt. The data was obtained from the MAPS spectrom-

eter at The Rutherford Appleton Laboratory (UK), courtesy of I. Bustinduy. It contains

around 25k pixels with signal and noise values, given in the reciprocal space units, where

u1 = [0.5Qh, 0,0,0] and u2 = [0.5Qh,−Qk, 0,0]. Following standard notation, the indices

h, k, l specify different crystal planes within the anisotropic structure of a crystalline solid,

and the variables Qh,Qk,Q l are the corresponding changes of momentum in 3D space.

Fig. 8 gives the original image and the result after the bin-accretion stage of the algorithm.

Fig. 9 provides a visualization of the image at different coarsening levels of the multi-

level algorithm. The original colormap represents the intensity given as a SNR (neutron

counts), while The colormap in coarsened images has been rescaled to precisely match the

full spectrum of representative intensities.

The results of the benchmarking tests for this data are summarized in Fig. 10. As

before, convergence factor is measured as the energy error reduction per cycle. MCVTBin

produces same quality of binned image after a much smaller number of iterations (cf.

[7,9]) and, most importantly, preserves convergence factors when the number of pixels is

increased. This means that the computational savings will increase even more as the size

of the data grows.

From the above analysis we also conclude that computational time required by the

MCVTBin algorithm scales linearly with k (number of generators, specifying the size of the

problem) for both examples. The method maintains uniform convergence with respect to

the problem size similar to its 1-dimensional prototype developed in [1], which gives a



208 M. Emelianenko

−1 −0.8 −0.6 −0.4 −0.2 0
0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

u
1

u
2

−1 −0.8 −0.6 −0.4 −0.2 0
0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

u
1

u
2
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(c)Figure 9: Comparison of grids at di�erent oarse levels of the MCVTBin algorithm applied to theCobaltslie data from MAPS: (a) The mesh at the lowest level of the multilevel algorithm (29 oarsenodes of freedom), (b) The mesh at level 2 (122 degrees of freedom), () The mesh at level 1 (512degrees of freedom).

Figure 10: Convergene of the MCVTBin sheme for the Cobalt image: (a) the number of iterationsrequired to reah the auray of ε= 10−6 does not grow, (b) omputational time required to reah thisauray, () onvergene fator, omputed per multilevel yle. Sine the method onverges in 1 stepwhen k = 2136, there is no onvergene fator estimate available for this point in the rightmost graph.
significant advantage compared to other iterative methods. Calculations were carried out

on a 3GHz machine running a MATLAB implementation of the algorithm, which can be

made significantly faster when coded in higher level programming language.
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6. Conclusion and future work

We have shown that the performance of CVT-based binning algorithms can be success-

fully optimized by means of multilevel accelerators such as the MCVTBin scheme intro-

duced in this work. The extension of the multilevel quantization algorithm introduced

in [1] to the two-dimensional case was made possible through barycentric coordinate

based interpolation and maximal independent set coarsening procedures. Numerical evi-

dence has been presented confirming the conjectured uniform convergence of the proposed

scheme with respect to the problem size for two-dimensional examples with arbitrary den-

sities, guaranteeing a significant speedup comparing with traditional methods. Care must

be taken to produce an initial configuration allowing for guaranteed descent of the method

into the area of fast convergence, which for example can be done through the widely

known bin accretion technique. Note, however, that the bin accretion technique is impor-

tant only when there is a danger of having on average very few data points inside each bin.

This step can be completely avoided in case when the relative size of each Voronoi cell is

large (e.g. ≈ 100 pixels per cell), with no toll on the convergence of the MCVTBin algo-

rithm. The comprehensive analysis of convergence estimates for both regimes addressing

the needs of different applications is currently underway.

In addition, it might be possible to extend the method to non-Poissonian noise distribu-

tions and try choosing different interpolation and coarsening rules, which can potentially

have big impact on the algorithm performance. In particular, such modifications can have

a positive or negative effect on the size of the convergence region - a question that can be

rigorously investigated via employing ideas from the algebraic multigrid theory. Rigorous

convergence analysis and application of multilevel acceleration techniques to other image

and signal analysis problems is a focus of a separate study and will be discussed in details

in future publications.
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