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A B S T R A C T

We have used the following convention to highlight our changes in response to the referees’ comments: red text indicates
modification, blue text indicates addition, and margin parameters indicate responses to specific comment labeled as
RxCy (Reviewer #x Comment #y) and RxMCy (Reviewer #x Minor Comment #y) With more satellite and model
precipitation data becoming available, new analytical methods are needed that can take advantage of emerging
data patterns to make well informed predictions in many hydrological applications. We propose a new strategy
where we extract precipitation variability patterns and use correlation map to build the resulting density map
that serves as an input to centroidal Voronoi tessellation construction that optimizes placement of precipitation
gauges. We provide results of numerical experiments based on the data from the Alto-Adige region in Northern
Italy and Oklahoma and compare them against actual gauge locations. This method provides an automated way
for choosing new gauge locations and can be generalized to include physical constraints and to tackle other types
of resource allocation problems.

1. Introduction

Precipitation is a critical variable in the water cycle, as it provides
moisture for processes such as runoff, evapotranspiration, and
groundwater recharge. Knowledge of the precipitation characteristics
and patterns is therefore crucial for understanding land-climate inter-
actions, for extreme event monitoring, and for water resource man-
agement. However, accurate precipitation information at fine space and
time scales is difficult to obtain, as precipitation estimates from rain
gauges, ground-based radars, satellite sensors, and numerical models
are all affected by significant uncertainties, which can even be ampli-
fied when exposed to non-linear land surface model physics
(Gottschalck et al., 2005; Hazra et al., 2019).

Rain gauge (or pluviometer) networks are the only direct method to
measure precipitation and provide observations with high temporal
resolution. As such, they are widely accepted as the benchmark for
validating remotely-sensed precipitation products (e.g.,Maggioni et al.,
2016; Anagnostou et al., 2009). Point gauge measurements are often
interpolated to obtain a spatially distributed rainfall field, whose

quality highly depends on the interpolation method used. Common
interpolation methods include inverse-distance weighted averaging,
ordinary kriging, and correlation length (Grieser, 2015), and more re-
cent ones include co-kriging (Foehn et al., 2018) and methods that
combine meteorological observations with regional climate model si-
mulations (Wang et al., 2017).

However, obtaining a spatially representative precipitation field
from rain gauges may require collecting a large number of observations
at several locations to include different terrain, micro-climate, and
vegetation variability. This translates into placing numerous gauges,
which is costly in terms of maintenance and often not feasible because
of location inaccessibility. Since rain gauges cannot offer spatially
continuous information of precipitation (Kidd et al., 2012), it is desir-
able to place them in a strategic way, accounting for changes in spatio-
temporal patterns and having a methodology that is able to adapt to
climate instabilities as suggested in Emelianenko et al. (2019). This
work proposes an automated method to identify the optimal locations
of rain gauges in order to capture the spatial variability of precipitation
systems in the region and therefore provide a spatially representative
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rain field. In comparison with kriging-based approaches (Wadoux et al.,
2017; Pardo-Igúzquiza, 1998; Barca et al., 2008), our model enjoys a
simpler analytical and numerical formulation owing to the natural
minimization properties of the centroidal Voronoi tessellations (CVTs)
described below, allowing to readily apply it to relatively large regions
of interest.

Voronoi tessellations appear in many contexts and serve a variety of
purposes. They are referred to as quantizations in the electrical en-
gineering community (Agrell and Ericsson, 1998), as polygons of in-
fluence or Thiessen regions in geostatistics (Thiessen, 1911), as geo-
desic, icosahedral or hexagonal grids in climate system modeling
(Ringler et al., 2000). The corresponding energy functional can be
thought of as variation in statistical terminology, or as a cost functional
in economic terms. The basic idea of this construction is to represent a
large set of data by means of few representative points (i.e., generators).

While this general concept has been widely used in a variety of
contexts, the special case of CVTs, which is used to denote Voronoi
diagrams with the choice of generators that minimizes the energy
functional, is less known due to the difficulties associated with its
construction. This concept has been gaining popularity in the recent
decades in many applications areas, ranging from biology and physics
to finance, economics and social science (see Du et al., 2000; Chen and
Xu, 2004; Ringler et al., 2008 and references therein). It is particularly
well studied in the context of mesh generation, clustering, quantization,
imaging, reduced order modeling and partial differential equations
applications, where a number of theoretical results has been obtained
attesting for its superior qualities comparing to other competing
methodologies. To the best of our knowledge, applications of CVTs in
hydrology so far have been limited to mesh generation (Lu et al., 2017)
due to the flexibility provided by CVT for local mesh refinement.

The goal of this work is twofold. First, we want to introduce the
concept of CVTs for precipitation pattern analysis and point out some
recently developed numerical algorithms that help constructing CVTs in
continuous and discrete settings. Second, we are applying the idea of
CVTs in the context of optimal placement of rain gauges, similarly to
how it was previously applied in finding optimal placement of schools,
post offices, and other resources (Du et al., 1999). While other types of
generalizations of the Voronoi construction have been explored, for
instance, in the context of optimizing precipitation field using “simi-
larity” of rainfall data at grid locations (e.g. using the Radar Polygon
Method proposed in Cho et al. (2016)), this is the first application of the
CVT methodology to modeling rainfall data and specifically to the op-
timization of rain gauge placement.

The practical aim of this study is to develop an automated strategy
that would work for an arbitrary data in any geographical location. We
draw attention to several modeling assumptions that are part of the
algorithm presented herein and the implications of these assumptions
on the algorithm performance based on several selected datasets.

We utilize the truncated-Newton (TN) method (Nash, 2000), which
is a large-scale nonlinear optimization algorithm, to construct all CVT
solutions. This method allows to considerably speed up the calculation
comparing to techniques such as Lloyd method widely used in the en-
gineering community (Lloyd, 1982), and has advantages over pre-
viously introduced modified Lloyd formulations, as shown in Di et al.
(2012).

As in any CVT problem aimed at finding optimal placement of re-
sources, one needs to have a local density estimator. When trying to
optimize rain gauge placement, this density should be naturally related
to the measure of local precipitation variability. In this work, we have
used a variability estimator based on local covariance matrix computed
at the decorrelation distance.

Overall, our aim in this work is to develop an automated strategy to
optimally place rain gauge that could be employed in any geographical
location in the future. To achieve this goal, we propose a CVT method
that uses the local covariance matrix derived from local precipitation as
the density estimator. This method could be applied to any

precipitation dataset, whether in situ, remotely sensed, or based on
model simulations.

The article is organized as follows. Section 2 provides information
on the CVT methodology and formulates the problem of optimal gauge
placement, comparing to previously used approaches. Section 3 gives
information on the data we used in this work. The proposed algorithm
is presented in Section 4. We also demonstrate predictions given by this
model with existing gauge locations in Section 5.

2. Methods

2.1. Voronoi and centroidal Voronoi tessellations

The idea of tessellating the region, i.e. decomposing the region into
sub-regions, based on the locations of rain gauges has appeared in the
early works of Thiessen (Thiessen, 1911).

The construction is simple. Consider a certain geographic region
W 2. Voronoi regions =V{ }i i

k
1 are generated by a set of points

=x{ }i i
k

1
2 and are defined as follows:

= = …V W j k j ix x x x x x( ) { : || || || ||, 1, , ; },i i i j

where · is any distance metric. In this work, we choose it to be the
standard Euclidean norm. These regions cover the entire domain W and
can be formed by drawing perpendicular bisectors to the segments
joining consecutive generating points.

Given a certain desired “density” function x( ), one can compute
the tessellation error, i.e.

E ==
==
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2

i i
k i1 (2.1)

It can be shown (Burkardt et al., 2006) that this happens precisely
when =x xi i , where xi is the mass centroid of the corresponding
Voronoi region Vi . A tessellation satisfying this property is called a
“centroidal Voronoi tessellation”, or CVT for short. Notice that the
above formulation may be extended to other more general cases, i.e. by
considering other distance metrics f ( · ), other geometric constraints
and periodic extensions (Du et al., 1999; Zhang et al., 2012).

The density function may be used to represent a variety of physical
characteristics, such as local characteristic length-scale (Ringler et al.,
2008), signal intensity (Emelianenko, 2010), desired grid resolution
(Burkardt et al., 2006). In this work, we propose to use it for re-
presenting spatial rainfall variability, as described in Section 4. The
classical method for constructing CVTs is the algorithm developed by
Lloyd in the 1980s (Lloyd, 1982) which represents a fixed-point type
iterative mechanism. More efficient methods for calculating CVTs have
been developed in the past decades (Du and Emelianenko, 2006; Du and
Emelianenko, 2008; Di et al., 2012). For an overview of CVT related
numerical techniques we refer interested reader to (Du et al., 1999;
Chen and Holst, 2011). To achieve a robust construction of CVT, we
utilize TN to solve the resulting large-scale optimization problem due to
its relative simplicity and robust performance comparing to other ex-
isting methods in terms of both accuracy and convergence speed (see
the pseudocode given in Appendix B). We note that other methods
might deliver comparable or better performance, possibly at the cost of
an increase in numerical sophistication. Comparative study of numer-
ical solvers suitable for this problem is outside the scope of the current
work.

2.2. Problem formulation

There are several possible ways to formulate the problem of optimal
placement of rain gauges in a certain region.

One method has been proposed in Okabe et al. (1992) and later used
in Du et al. (1999). If k rain gauges locations in region W 2 are given
by …x x, , k1 and V Wi are the Voronoi region associated with the i-th
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gauge, one can minimize the expected squared approximation error for
the amount of rainfall z x( ) treated as a random variable

= +z mx x x( ) ( ) ( ) with mean m x( ) and deviation x( ). If the change in
the average trend m x( ) is small compared with the variance

= =Var Ex x( ) ( ( ) )2 , which is assumed to be constant, the expected
squared approximation error can be approximated as

E =
==

Corr dx x x x({ } ) min 2 [1 ( , )] ,i i
k
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x
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2

i i
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where

=Corr E Var Varx x x x x x( , ) [ ( ) ( )]/[ ( ) ( )]i i i (2.3)

is the (Pearson) linear correlation coefficient of the time series at lo-
cations x and xi. Details on this derivation are given in Appendix A.
Evaluation of (2.2) is computationally intensive, requiring calculation
of pairwise correlations for all points inside the domain.

Notice that under the additional assumption that Corr x x( , )i only
depends on the differences E =Vx x x|| ||, ({ , } )i i i i

k
1 can be thought of as a

generalization of the CVT energy (2.1) given by:

E ==
=

f dx x x x x({ } ) ( ) (|| ||)i i
k

i

k
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1 i (2.4)

with distance metric =f Corrx x x x(|| ||) 2 (1 ( , ))i i
2 and =x( ) 1.

The combination of conditions of constant mean and variance together
with =Corr Corrx x x x( , ) ( )i i is normally referred to as the weak
stationarity assumption that might or might not hold in practice, as
discussed for instance in Emelianenko et al. (2019). Effectively, in this
formulation the distance plays the most important role, placing a small
weight on highly correlated points and magnifying weakly correlated
regions. The maximum value of the variance can be rather small de-
pending on the data, which may possibly lead to slow convergence for
commonly used numerical algorithms (Du et al., 2006).

In contrast with the above approach, standard CVT formulation
(2.1) applied to the same problem allows achieving a similar effect by
fixing Euclidean density and instead selecting appropriate density
function . This method is grounded on the observation that for the
solutions to (2.1), the sizes of 2-dimensional Voronoi regions defined as

=h x y2max || ||V V iyi i satisfy (Du et al., 1999):

=
h
h
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This is the approach advocated for in this work. One may rescale the
density to achieve any desired ratio of cell sizes based on a certain
spatial distribution of interest, for instance, in Ringler et al. (2008), CVT
mesh was generated using a velocity field. In this work we choose our
density so that it satisfies the following conditions:

= = Rx xsup ( ) lim ( )W Corr Cx x( ) min and =xinf ( ) limW Corr Cx x( ) max
= rx( ) . Here R and r are scale parameters and Corr x( ) denotes

effective (average) correlation at spatial location x , with
C Corr C Wx x1 ( ) 1,min max . The method for computing

this quantity based on averaging correlations at a “decorrelation” dis-
tance is discussed in 4.1. There are many functional forms such a re-
lation can take. One choice is to consider power law relation of the type

= +r R C Corr
C C

x x( ) ( ) ,max

max min (2.6)

where > 0 denotes the power exponent. The choice of this density has
been motivated mainly by Ringler et al. (2008), but other choices might
be argued for and will be explored in subsequent research.

This approach results in the following alternative formulation of the
optimal rain gauge placement problem:

+
==

r R C Corr
C C

dx x x xmin ( ) .
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k

V
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max min
i

x{ } 1
2
2

i i
k i1 (2.7)

The choice of parameters r R, , is ultimately dependent on the
data, the choice of the numerical optimization algorithm and particular
application. Due to possible convergence issues, one needs to constrain
density away from zero, so that >r 0. The scale parameter R magnifies
the range of density values. Based on (2.5), the ratio R r/ can be in-
terpreted as an approximation for the ratio of largest and smallest
Voronoi regions: R

r
h
h

max
min

, and only affects Eqn. (2.7) linearly. We il-
lustrate the role of this ratio in Fig. 1 by fixing =r 1 and varying R
values. We defer to the values of =r 10 6 and =R 1 in this work to
provide the proof of concept. This choice gives a ratio of =R r/ 106 and
was optimized for the use of TN CVT construction algorithm.

Given desired region size ratio, parameter allows to enhance the
contrast between peaks and valleys of the function. It is expected that
higher values of will essentially penalize low correlation areas com-
pared to high correlation (low density) areas, exaggerating density
differences inside the given domain. The choice of the enhancement
parameter is described in details in Section 4.

3. Study regions and dataset

This work focused on two very different regions: Oklahoma in the
United States and Alto-Adige in Northern Italy. The reason we chose
these two domains is twofold. First, they are both covered by dense rain
gauge networks that can be used as reference to evaluate the proposed
algorithm. Second, they are characterized by different topography and
therefore different precipitation processes.

Oklahoma is characterized by relatively uniform terrain, with gentle
topography that rises from the southeastern corner to the tip of the
panhandle. The continental climate of the region presents cold winters
and hot summer seasons and a rainfall spatial pattern that exhibits a
west-to-east (dry-to-wet) gradient. The study domain is covered by a
dense network of meteorological stations, the Oklahoma Mesoscale

Fig. 1. Illustration of the effect of the ratio of R r/ on the sizes of Voronoi regions. r = 1 is fixed for both figures.
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Network (hereinafter Mesonet; Brock et al., 1995), as seen in Fig. 2 (top).
Although data collected at these stations were not used in this study,
their locations were compared to the output from our proposed algo-
rithm that optimizes gauge placement to fully capture the precipitation
variability in the region.

A similar analysis was performed in Alto-Adige, located in the eastern
Italian Alps. Unlike Oklahoma, this area is characterized by complex
topography, with elevation ranging from 65 to almost 4000 m a.s.l.

Precipitation climatology in the area exhibits strong spatial gradients,
with mean annual precipitation varying from ~500 mm in the
Northwestern region to ~1700 mm in the Southeastern part (Maggioni
et al., 2017; Nikolopoulos et al., 2015). A network of 192 rain gauges is
available in the region. The rain gauges are distributed quite uniformly
over the area (Fig. 2 (bottom)), providing a very dense gauge density
(~1/70 rain gauge/km2) for a mountainous area. For the regional studies
across Oklahoma and Alto-Adige, we adopted a high resolution (1hour/
0.04°) satellite precipitation product, the Precipitation Estimation from
Remotely Sensed Information using Artificial Neural Networks (PERSI-
ANN; Hsu et al., 1997; Sorooshian et al., 2000; Hsu et al., 2008), pro-
duced by the University of California, Irvine. The PERSIANN algorithm
extracts and combines information from different types of data including
Infra-Red (IR) brightness temperature images, rain gauges, and ground-
based radar. Specifically, in this study we used the PERSIANN-Cloud
Classification System (PERSIANN-CCS), which only applies information
from IR observations from geostationary satellites with high sampling
frequency (Hsu et al., 2010). The hourly PERSIANN-CCS was chosen
among all available products because of its high spatial resolution (0.04).
The PERSIANN-CCS algorithm follows four main steps: 1) separation of
cloud images into cloud patches; 2) extraction of cloud features, in-
cluding temperature, geometry, and texture; 3) clustering of cloud pat-
ches into organized subgroups; and 4) calibration of cloud-top brightness
temperature and rainfall relationships for the identified subgroups using
hourly gauge-corrected radar rainfall data (Hong et al., 2004). In the
numerical examples below, we used a crude conversion of ° =0.04 5 [km]
when presenting the results for both regions of interest. Improving this
approximation or changing it for other geographic locations will bear no
significant consequences in terms of the results.

4. Proposed algorithm

The main steps of the algorithm we are proposing are the following:

Step 1 Build CVT density function based on the information on spatio-
temporal correlations in a certain region using (2.6),

Step 2 Solve the CVT minimization problem (2.7) to obtain optimal
rain gauge locations for this region.

We are now going to discuss the details of Step 1, while an example
of a TN-based CVT solver is provided in Appendix B. Note that other
methods may be used in place of the TN method and might be equally
effective depending on the properties of the data.

4.1. Effective correlation computation

Effective local correlation Corr x( ) is a key ingredient of the CVT
density estimator used in our method. The approach we take is based on
the calculation of local correlation of the time series at each grid point.
The number of neighbors one should be taking into account in this
computation is related to the decorrelation distance (radius), which is
estimated using the exponential model with the so-called nugget effect
(Ciach and Krajewski, 1999; Ciach and Krajewski, 2006):

=d c d
d

( ) exp ,g

s

0
0

0

(4.8)

where d is the separation distance between two points, c0 is the nugget
parameter (which corresponds to the correlation value for the near-zero
distances; Cressie, 1993), d0 is the scale parameter (which corresponds
to the spatial decorrelation distance), and s0 is the correlogram shape
parameter, which controls the behavior of the model near the origin for
small separation distances. Note that c(1 )0 is the instant decorrela-
tion due to random errors in the rainfall observations (Ciach, 2003).

We estimate Corr x( ) as the average of correlation coefficients be-
tween given point x and locations on the circle

= =S d W dx y y x( , ) { : || || }2 of radius d:

= =Corr Corr
S d

Corrx x
x

x y( ) ( ) 1
| ( , )|

( , ),d
S dy x( , ) (4.9)

where Corr x y( , ) is the Pearson correlation coefficient given in (2.3).
Monte Carlo integration over the circle of radius d may be used to

speed up the calculation of this quantity. Using uniform sampling
…y y, , N1 over the region = +S d W d dx y y x( , ) { : 1 || || 1}2 ,

we define

=
Corr

N
Corrx x y( ) 1 ( , )N

i

N

i
1 (4.10)

This method gives an error of the order of O N(1/ ) (Caflisch,
1998). The value of =N 100 was used in the numerical experiments
described in Section 5. Importance sampling may be used to improve
the accuracy of the Monte Carlo approximation of the local correlation
map, but it was not explored in current work.

We define the separating distance d0 at which the correlation is e1/
the correlation length for the (assumed) exponential variogram model:

= <{ }d d Corr
e

xmin : ( ) 1
d0 (4.11)

Fig. 3 (left) demonstrates the calculation of the decorrelation dis-
tance for the case of the data collected over the Adige mountainous
region in Northern Italy. We expect to have relatively small decorr-
elation distance over mountains, which is indeed true based on this
data, from which a value of 9 grid points may be estimated, which
corresponds to 45 [km]. Similar calculation performed over the flat
region of Oklahoma shows decorrelation at 16 grid points, corre-
sponding to 80 [km], as seen in Fig. 3 (right).

Now that the correlation component of the density is defined, we
are ready to discuss a possible strategy for picking optimal value for
given expected number of rain gauges and a correlation threshold.

The choice of the density can be motivated by several factors,

Fig. 2. Topographic maps with existing gauge locations: (top) Oklahoma re-
gion; (bottom) Adige region.
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including availability of resources and desired accuracy.
Fig. 4 shows CVT densities for Adige region, computed using for-

mula (2.6) with Corr x( ) computed at the decorrelation distance as
discussed above. Two different values of parameter have been tested,
resulting in clear differences in densities.

4.2. Optimal and main algorithm

First, let us investigate the sensitivity of the density function given
in (2.6) to the choice of . We generate 50 densities based on different
evenly distributed between 0.5 and 25 (a subset of corresponding
densities is shown in Fig. 6). Two error metrics (Wang et al., 2004) are
used to quantify the differences between the two images (i.e., two
different densities in this case): the root mean squared error (RMSE)
and the structural similarity index (SSIM), which is used to resemble
human perception. The closer the value of SSIM is to 1, the greater the
similarity between two images. Fig. 5 shows the differences between
densities for different values and the first density, corresponding to

= 0.5. As we can see from the consistent trend provided by different
metrics, the change of density slows down dramatically as increases.
In view of these results, it is critical to carefully choose such parameter.

One may want to optimize the choice of parameter based, for
instance, on the desired number of rain gauges kg to be placed in the
regions with relative correlation below a certain threshold Ctol. Namely,
we can pick density in such a way that we get approximately kg loca-
tions with relative correlation below Ctol. We may choose an optimal
value as the smallest satisfying

= = <k C Corr C
C C

C kx x|{ | ( ) }|rel
min

max min
tol g

(4.12)

where |·| denotes the number of grid points in the set.
If = 1 immediately satisfies condition (4.12), we stop. Otherwise

we keep increasing until the desired resolution is obtained.
For instance, if the desired relative tolerance is =C 0.1tol , meaning

that locations with correlation below 10% are targeted, and if we are
planning to place =k 100g gauges in a certain area, we will need to pick

to satisfy

= <k Cx|{ | 0.1| 100rel

Fig. 6 gives a visualization of the optimal selection procedure in
the case of Adige data based on the above strategy, with the choice of

= =k C60, 0.1g tol and default values = =r R1, 1.
While the locations satisfying condition (4.12) are good candidates

for initial gauge placement, this choice is not optimal in terms of the
overall approximation of the precipitation in the region of interest. As
discussed above, optimal placement is attained by computing CVT that
minimizes the approximation error (2.1).

Finally, in Algorithm 1 we describe the main iterative algorithm for
determining optimal placement for rain gauges for a given region.

Algorithm1 Automatic selection of optimal gauge locations.

1: procedure GAUGEOPTIM

2: Define correlation threshold Ctol (default value =C 0.1tol ), desired num-
ber of gauges kg .

3: Form the ×N n observation matrix Y, where N and n denote the discrete
spatial and: temporal resolution, respectively.

4: Compute Corr y( )j at each location = …j Ny , 1,j using (4.10).
5: Compute decorrelation distance d using (4.11).
6: Interpolate the correlation map. Set = 0.
7: loop: Let = + 1.
8: Build the density map for the interpolated grid using (2.6).
9: if 4.12) is not satisfied then
10: goto loop.
11: else
12: Return optimal .
13: Starting with kg random points, find CVT-optimal generators

= …i kx , 1, ,i g using TN method given in Appendix B or any alternative
method with the density (2.6).

14: Calculate CVT energy (2.1).

Apart from the precipitation time series data, the only input para-
meters needed to run the code are the correlation threshold Ctol and the
number of gauges to be placed kg . The default value for Ctol is 0.1, while
the number of gauges can be arbitrary. If desired, the user may choose
to construct the CVT tessellation for any given number of generators kg
starting immediately at line 13 of Algorithm 1.

5. Numerical results and discussion

Figs. 7 and 8 provide the results of applying Algorithm 1 to both
regions and compare the optimal locations of rain gauges with existing
rain gauge locations. The default values of = =r R10 , 16 were chosen
in all calculations.

As shown in Fig. 7, more gauges would be required where

Fig. 3. Calculation of the decorrelation distance using e1/ -rule: (left) for the mountainous region in Northern Italy, with =d 45 [km]; (right) for the Oklahoma region,
with =d 80 [km].

Fig. 4. Density computation for the Italy region: (top left) Effective correlation
map based on the original data; (top right) interpolated map; (bottom left)
density map constructed using (2.6) with = 1; (bottom right) density map for

= 2.
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topography is the most complex, i.e., the northwestern region of Alto
Adige, characterized by altitudes close to 4000 m a.s.l. On the other
hand, in the valleys in the southeastern region, fewer gauges would be
needed to fully capture the variability of precipitation. Similarly, in
Oklahoma, where topography is more uniform than in Alto Adige, the
gauge placement is also more homogeneous, with limited areas char-
acterized by high density. This suggests that the proposed algorithm has
the potential to optimize gauge placement based on observed pre-
cipitation patterns and variability that are partly linked to the geo-
graphy of the region (e.g., orographic rainfall systems). In fact, eleva-
tion was shown in past literature to play a crucial role in rainfall
variability (e.g., Sanchez-Moreno et al., 2014; Gebregiorgis and
Hossain, 2012). Nevertheless, as topography is not the only variable
affecting precipitation (e.g., Johnson and Hanson, 1995), future work
should look at investigating gauge placement as a function of such in-
formation (e.g., climate, temperature, vegetation cover, etc.).

Since the output of the proposed framework is the optimal gauge
locations provided above, one could wonder how different they are
from the actual gauge locations in these regions. In other words, (1) can
we identify actual gauges that are close to the optimal location and
therefore fundamental to capture precipitation variability? and (2) can
we identify gauges that are less important and, even if undergoing
maintenance, would not be crucial to capture the full variability of the
precipitation field in the area? In order to answer these questions, we
look at Euclidean distance between a certain gauge and the closest
optimal location for its simplicity and practical application, others can
be considered, e.g., Ringler et al., 2008. We pick a measure of closeness
as a circle of a certain radius and count the number of gauges that fall
within that distance from any optimal location. Tables 1 and 2 give
direct counts of the gauges that are close and far from optimal loca-
tions, and Figs. 9 and 10 provide visual representation of these results.

Obviously, some locations may be inaccessible (especially in

Fig. 5. Sensitivity of density formulation (2.6) to parameter measured by RMS (left), and SSIM (right) error metrics in comparison to the density map with = 0.50 .

Fig. 6. Comparing density computation for dif-
ferent values: Adige region data. Points sa-
tisfying condition (4.12) are marked and their
number is denoted as k in the title to each sub-
figure.

Fig. 7. Optimized rain gauge locations compared with real gauge data for the Adige dataset.
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complex terrain) although optimal. The methodology introduced in this
work can be modified to account for physical constraints and other
resource allocation problems, but this is beyond the scope of this article
and recommended for future work.

We now demonstrate the use of CVT energy as a way of measuring
optimality of any given set of gauge locations and apply it to existing
gauges in both regions. As shown in Fig. 11, the approximation error is
significantly decreased by running the optimization routine. More
specifically, the error decreases from 259.56 to 15.02 for Adige data and
from 8.61·104 to 4.67·104 for Oklahoma, which are smaller than both
from the real gauge locations. Since the goal of this work is to provide a

proof-of-concept of our CVT-based methodology, a systematic and rig-
orous validation process will be developed in the future.

6. Summary

We developed an automated strategy that allows to find optimal
precipitation gauge locations in any given region based on the varia-
bility pattern in the precipitation over the region. The proposed algo-
rithm could potentially be applied to any precipitation dataset (in-
cluding re-analysis products) that is long enough to capture the
temporal variability of precipitation, regardless of any seasonality.
While variance was assumed to be stationary in this work, CVT fra-
mework allows to extend this approach to the non-stationary situation
by keeping additional terms in the cost functional (8.13) and adjusting
the corresponding density. We chose satellite-based observations be-
cause of their global (or quasi-global) coverage, making this method
applicable anywhere else in the world. This is particularly useful when
planning a field campaign to select sampling sites or when installing a
new gauge network to pick the optimal number of gauges and their
locations.
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Table 1
Adige region: number of gauges close to optimal locations for different close-
ness measures.

Radius (km) Gauges within radius r Gauges not within radius d

=r 2 8 130
=r 5 60 78
=r 10 132 6

Table 2
Oklahoma region: number of gauges close to optimal locations for different
closeness measures

Radius (km) Gauges within radius r Gauges not within radius d

=r 5 7 111
=r 10 18 100
=r 15 49 69
=r 15 86 32

Fig. 8. Optimized rain gauge locations compared with real gauge data for the Oklahoma dataset.

Fig. 9. Comparing existing locations with optimal placement for the Oklahoma region.
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Appendix A. Optimization problem formulation

Following (Okabe et al., 1992), let z x( ) be the random variable representing rainfall at location Wx . We can think of it as

= +z mx x x( ) ( ) ( )

with =E x( ( ))] 0, so that =m E zx x( ) ( ( )) represents the average trend of the process over the given region.
Consider k rain gauges (pluviometers) …x x, , k1 placed within the region W and let Vi be the Voronoi region associated with the i-th gauge. As

done by Thiessen back in 1911 (Thiessen, 1911), we can estimate the total precipitation in the region W as

= =
= =

Z z d z d V zx x x x x( ) ( ) | | ( )
S

i

k

V
i

n

i i
1 1i

This leads to the natural way to formulate the optimization problem for optimal gauge placement to minimize the expected squared approx-
imation error:

E … =

= +

+

=

=

E z z d

m m Var Var

Var Var Corr d

x x x x x

x x x x

x x x x x

( , , ) [ ( ( ) ( )) ]

[( ( ) ( ))] [ ( ) ( )]

2 ( ) ( )[1 ( , )] min

k
i

k

V i

i

k

V i i

i i

1
1

2

1

2 2

i

i

(8.13)

Fig. 10. Comparing existing locations with optimal placement for Adige region.

Fig. 11. Decay of the approximation error E (2.1) during TN iteration for Oklahoma region (left) and Adige (right). CVT-based location denoted as a red asterisk
gives a smaller error value comparing to the error computed for the real-gauge locations (shown as a blue asterisk).
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Here =Var Ex x( ) ( ( ) )2 and =Var Ex x( ) ( ( ) )i i
2 denote variances at points x and xi respectively and =Corr E Var Varx x x x x x( , ) [ ( ) ( )]/[ ( ) ( )]i i i

is the corresponding correlation of the time series at locations x and xi.
If the variance Var x( ) is small compared to the change in the average trend m x( ):

E …
=

m m dx x x x x( , , ) [( ( ) ( ))] mink
i

k

V i1
1

2
i

One can solve this approximated problem to obtain optimal gauge placement in this case.
If on the other hand the change in the average trend m x( ) is small compared with the variance Var x( ), which is considered to be constant

=Var x( ) , the following approximation is valid:

E …
=

Corr dx x x x x( , , ) 2 [1 ( , )] mink
i

k

V i1
1

2
i

Hence, if there is a relatively small change in the means, we can solve this approximated problem instead.
Notice that in this case E x( ) is a variant of the CVT energy (2.4) with =f Corrx x x x(|| ||) (1 ( , ))i i

2 and =x( ) 1.

Appendix B. Truncated-Newton Algorithm for CVT calculation

Here, we give a brief review of the truncated Newton algorithm. For more details we refer readers to (Nash, 2000). To optimize a problem of the
form

f xmin ( )
x

at the j-th TN iteration a search direction p is computed as an approximate solution to the Newton equations

=f p fx x( ) ( )j j2 ( ) ( )

where x j( ) is the current approximation to the solution of the optimization problem. The search direction p is computed using the linear conjugate-
gradient algorithm (CG). The necessary Hessian-vector products are estimated using finite differencing. The TN algorithm only requires that values
of f x( ) and f x( ) are computed. TN has low storage requirements, and has low computational costs per iteration, and hence is suitable for solving
large optimization problems (Nash and Nocedal, 1991).

The following are the steps necessary to compute discrete CVT using TN method using a pre-defined density function :

i.Given the discrete set of points = =y WY { }i i
m

1 ,
ii.Give the discrete energy function

G = y yx x( ) ( )
V j

j i j
2

i

where j is the index for those y included in the voronoi set Vi ,
iii.Compute its corresponding gradient value

G = y yx x( ) ( )2( ),i
j

j i j

iv.By Taylor series:

G G G+ = +v vx x x( ) ( ) ( )2

we can approximate the necessary component G vx( )2 of CG as G
G G= +vx( ) px x2 ( ) ( ) ,

vSubstitue the above information to CG described as following to compute the search direction p:
• Gr x( )0

• v r0 0

• k 0
• repeat

–
Gk

r r
v vx( )

k
T k

k
T k2

– ++p p vk k k k1
– G+r r vx( )k k k k1

2

– if +rk 1 is sufficiently small then exit loop, end if

– + +
k

r r
r r

k
T k

k
T k
1 1

– ++ +v r vk k k k1 1
– +k k 1
end repeat

viTest whether G <px( ) 0. If so, accept p as a descent direction, otherwise, take G=p x( ),
viiUse Armijo line search to determine the step size , then update x by = + px x ,
viiiGo back to step iii) until a stopping criterion is reached.

Z.W. Di, et al. Journal of Hydrology 584 (2020) 124651

9



The submitted manuscript has been created by UChicago Argonne, LLC, Operator of Argonne National Laboratory (“Argonne”). Argonne, a
U.S. Department of Energy Office of Science laboratory, is operated under Contract No. DE-AC02-06CH11357. The U.S. Government retains for
itself, and others acting on its behalf, a paid-up nonexclusive, irrevocable worldwide license in said article to reproduce, prepare derivative
works, distribute copies to the public, and perform publicly and display publicly, by or on behalf of the Government. The Department of Energy
will provide public access to these results of federally sponsored research in accordance with the DOE Public Access Plan. http://energy.gov/
downloads/doe-public-accessplan

References

Agrell, E., Ericsson, T., 1998. Optimization of lattices for quantization. IEEE Trans. Inf.
Theory 44 (5), 1814–1828.

Anagnostou, E., Maggioni, V., Nikolopoulos, E., Meskele, T., Hossain, F., Papadopoulos,
A., 2009. Benchmarking high-resolution global satellite rainfall products to radar and
rain-gauge rainfall estimates. IEEE Trans. Geosci. Remote Sens. 48 (4), 1667–1683.

Barca, E., Passarella, G., Uricchio, V., 2008. Optimal extension of the rain gauge mon-
itoring network of the Apulian Regional Consortium for Crop Protection. Environ.
Monitor. Assess. 145 (1–3), 375–386.

Brock, F., Crawford, K., Elliott, R., Cuperus, G., Stadler, S., Johnson, H., Eilts, M., 1995.
The Oklahoma Mesonet: a technical overview. J. Atmos. Oceanic Technol. 12 (1),
5–19.

Burkardt, J., Gunzburger, M., Lee, H.-C., 2006. Centroidal Voronoi tessellation-based
reduced order modeling of complex systems. SIAM J. Sci. Comput. 28 (2), 459–484.

Caflisch, R.E., 1998. Monte Carlo and quasi-Monte Carlo methods. Acta Numer. 7, 1–49.
https://doi.org/10.1017/S0962492900002804.

Chen, L., Holst, M., 2011. Efficient mesh optimization schemes based on optimal
Delaunay triangulations. Comp. Methods Appl. Mech. Eng. 200, 967–984.

Chen, L., Xu, J., 2004. Optimal Delaunay triangulations. J. Comp. Math. 22, 299–308.
Cho, W., Lee, J., Park, J., Kim, D., 2016. Radar polygon method: an areal rainfall esti-

mation based on radar rainfall imageries. Stoch. Env. Res. Risk Assess. 31, 275–289.
Ciach, G., 2003. Local random errors in tipping-bucket rain gauge measurements. J.

Atmos. Oceanic Technol. 20 (5), 752–759.
Ciach, G., Krajewski, W., 1999. On the estimation of radar rainfall error variance. Adv.

Water Resour. 22 (6), 585–595.
Ciach, G., Krajewski, W., 2006. Analysis and modeling of spatial correlation structure in

small-scale rainfall in Central Oklahoma. Adv. Water Resour. 29 (10), 1450–1463.
Cressie, N., 1993. Statistics for Spatial Data. John Wiley and Sons.
Di, Z., Emelianenko, M., Nash, S., 2012. Truncated Newton-based multigrid algorithm for

centroidal Voronoi calculation. Numer. Math. Theor. Meth. Appl. 5 (1), 242–259.
Du, Q., Emelianenko, M., 2006. Acceleration schemes for computing the centroidal

Voronoi tessellations. Numer. Linear Algebra Appl. 13, 173–192.
Du, Q., Emelianenko, M., 2008. Uniform convergence of a nonlinear energy-based mul-

tilevel quantization scheme via centroidal Voronoi tessellations. SIAM J. Numer.
Anal. 46, 1483–1502.

Du, Q., Faber, V., Gunzburger, M., 1999. Centroidal Voronoi tessellations: applications
and algorithms. SIAM Rev. 41, 637–676.

Du, Q., Gunzburger, M., Ju, L., 2000. Advances in studies and applications of centroidal
Voronoi tessellations. Numer. Math. Theor. Meth. Appl. 3 (2), 119–142.

Du, Q., Emelianenko, M., Ju, L., 2006. Convergence properties of the lloyd algorithm for
computing the centroidal Voronoi tessellations. SIAM J. Numer. Anal. 44, 102–119.

Emelianenko, M., 2010. Fast multilevel CVT-based adaptive data visualization algorithm.
Numer. Math. Theor. Meth. Appl. 3 (2), 195–211.

Emelianenko, M., Maggioni, V., 2019. Mathematical challenges in measuring variability
patterns for precipitation analysis. In: Kaper, H., Roberts, F. (Eds.), Mathematics of
Planet Earth. Springer, pp. 49–61.

Foehn, A., Hernández, J.G., Schaefli, B., De Cesare, G., 2018. Spatial interpolation of
precipitation from multiple rain gauge networks and weather radar data for opera-
tional applications in Alpine catchments. J. Hydrol. 563, 1092–1110.

Gebregiorgis, A.S., Hossain, F., 2012. Understanding the dependence of satellite rainfall
uncertainty on topography and climate for hydrologic model simulation. IEEE Trans.
Geosci. Remote Sens. 51 (1), 704–718.

Gottschalck, J., Meng, J., Rodell, M., Houser, P., 2005. Analysis of multiple precipitation
products and preliminary assessment of their impact on global land data assimilation
system land surface states. J. Hydrometeorol. 6, 573–598.

Grieser, J., 2015. Interpolation of global monthly rain gauge observations for climate
change analysis. J. Appl. Meteorol. Climatol. 54 (7), 1449–1464.

Hazra, A., Maggioni, V., Houser, P., Antil, H., Noonan, M., 2019. A Monte Carlo-based
multi-objective optimization approach to merge different precipitation estimates for
land surface modeling. J. Hydrol. 570, 454–462.

Hong, Y., Hsu, K.-L., Sorooshian, S., Gao, X., 2004. Precipitation estimation from remotely
sensed imagery using an artificial neural network cloud classification system. J. Appl.

Meteorol. 43 (12), 1834–1853.
Hsu, K.-L., Sorooshian, S., 2008. Satellite-based precipitation measurement using

PERSIANN system. In: Hydrol. Model. Water Cycle. Springer-Verlag, Berlin,
Germany, pp. 27–48.

Hsu, K.-L., Gao, X., Sorooshian, S., Gupta, H.V., 1997. Precipitation estimation from re-
motely sensed information using artificial neural networks. J. Appl. Meteorol. 36 (9),
1176–1190.

Hsu, K.-L., Behrangi, A., Iman, B., Sorooshian, S., 2010. Extreme precipitation estimation
using satellite-based PERSIANN-CCS algorithm. In: Gebremichael, M., Hossain, F.
(Eds.), Satellite Rainfall Applications for Surface Hydrology. Springer, pp. 49–67.

Johnson, G., Hanson, C., 1995. Topographic and atmospheric influences on precipitation
variability over a mountainous watershed. J. Appl. Meteorol. 34 (1), 68–87.

Kidd, C., Bauer, P., Turk, J., Huffman, G., Joyce, R., Hsu, K., Braithwaite, D., 2012.
Intercomparison of high-resolution precipitation products over northwest Europe. J.
Hydrometeor. 13 (6783).

Lloyd, S., 1982. Least square quantization in PCM. IEEE Trans. Inf. Theory 28, 129–137.
Lu, J., Sakaguchi, K., Yang, Q., Leung, L.R., Chen, G., Zhao, C., Swenson, E., Hou, Z.J.,

2017. Examining the hydrological variations in an aquaplanet world using wave
activity transformation. J. Clim. 30 (7), 2559–2576.

Maggioni, V., Meyers, P., Robinson, M., 2016. A review of merged high-resolution sa-
tellite precipitation product accuracy during the tropical rainfall measuring mission
(TRMM) era. J. Hydrometeorol. 17 (4), 1101–1117.

Maggioni, V., Nikolopoulos, E., Anagnostou, E., Borga, M., 2017. Modeling satellite
precipitation errors over mountainous terrain: the influence of gauge density, sea-
sonality, and temporal resolution. IEEE Trans. Geosci. Remote Sens. 55 (7),
4130–4140.

Nash, S.G., 2000. A survey of truncated-Newton methods. J. Comput. Appl. Math. 124 (1),
45–59.

Nash, S.G., Nocedal, J., 1991. A numerical study of the limited memory BFGS method and
the truncated-Newton method for large scale optimization. SIOPT 1, 358–372.

Nikolopoulos, E.I., Borga, M., Marra, F., Crema, S., Marchi, L., 2015. Debris flows in the
eastern Italian Alps: seasonality and atmospheric circulation patterns. Natural
Hazards Earth Syst. Sci. 15 (3), 647–656.

Okabe, A., Boots, B., Sugihara, K., 1992. Spatial Tessellations; Concepts and Applications
of Voronoi Diagrams. Wiley, Chichester.

Pardo-Igúzquiza, E., 1998. Optimal selection of number and location of rainfall gauges for
areal rainfall estimation using geostatistics and simulated annealing. J. Hydrol. 210
(1–4), 206–220.

Ringler, T., Heikes, R., Randall, D., 2000. Modeling the atmospheric general circulation
using a spherical geodesic grid: a new class of dynamical cores. Mon. Weather Rev.
128, 2471–2490.

Ringler, T., Ju, L., Gunzburger, M., 2008. A multiresolution method for climate system
modeling: application of spherical centroidal Voronoi tessellations. Ocean Dyn. 58,
475–498.

Sanchez-Moreno, J., Mannaerts, C., Jetten, V., 2014. Influence of topography on rainfall
variability in santiago island, cape verde. Intl. J. Climatol. 34 (4), 1081–1097.

Sorooshian, S., Hsu, K.-L., Gao, X., Gupta, H.V., Imam, B., Braithwaite, D., 2000.
Evaluation of PERSIANN system satellite–based estimates of tropical rainfall. Bull.
Am. Meteorol. Soc. 81, 2035–2046.

Thiessen, A., 1911. Precipitation averages for large areas. Mon. Weather Rev. 39,
1081–1084.

Wadoux, A.-C., Brus, D., Rico-Ramirez, M., Heuvelink, G., 2017. Sampling design opti-
misation for rainfall prediction using a non-stationary geostatistical model. Adv.
Water Resour. 107, 126–138.

Wang, Z., Bovik, A.C., Sheikh, H.R., Simoncelli, E.P., et al., 2004. Image quality assess-
ment: from error visibility to structural similarity. IEEE Trans. Image Process. 13 (4),
600–612.

Wang, Y., Yang, H., Yang, D., Qin, Y., Gao, B., Cong, Z., 2017. Spatial interpolation of
daily precipitation in a high mountainous watershed based on gauge observations
and a regional climate model simulation. J. Hydrometeorol. 18 (3), 845–862.

Zhang, J., Emelianenko, M., Du, Q., 2012. Periodic centroidal Voronoi tessellations. Int. J.
Numer. Anal. Model. 9, 950–969.

Z.W. Di, et al. Journal of Hydrology 584 (2020) 124651

10

http://refhub.elsevier.com/S0022-1694(20)30111-6/h0005
http://refhub.elsevier.com/S0022-1694(20)30111-6/h0005
http://refhub.elsevier.com/S0022-1694(20)30111-6/h0010
http://refhub.elsevier.com/S0022-1694(20)30111-6/h0010
http://refhub.elsevier.com/S0022-1694(20)30111-6/h0010
http://refhub.elsevier.com/S0022-1694(20)30111-6/h0015
http://refhub.elsevier.com/S0022-1694(20)30111-6/h0015
http://refhub.elsevier.com/S0022-1694(20)30111-6/h0015
http://refhub.elsevier.com/S0022-1694(20)30111-6/h0020
http://refhub.elsevier.com/S0022-1694(20)30111-6/h0020
http://refhub.elsevier.com/S0022-1694(20)30111-6/h0020
http://refhub.elsevier.com/S0022-1694(20)30111-6/h0025
http://refhub.elsevier.com/S0022-1694(20)30111-6/h0025
https://doi.org/10.1017/S0962492900002804
http://refhub.elsevier.com/S0022-1694(20)30111-6/h0035
http://refhub.elsevier.com/S0022-1694(20)30111-6/h0035
http://refhub.elsevier.com/S0022-1694(20)30111-6/h0040
http://refhub.elsevier.com/S0022-1694(20)30111-6/h0045
http://refhub.elsevier.com/S0022-1694(20)30111-6/h0045
http://refhub.elsevier.com/S0022-1694(20)30111-6/h0050
http://refhub.elsevier.com/S0022-1694(20)30111-6/h0050
http://refhub.elsevier.com/S0022-1694(20)30111-6/h0055
http://refhub.elsevier.com/S0022-1694(20)30111-6/h0055
http://refhub.elsevier.com/S0022-1694(20)30111-6/h0060
http://refhub.elsevier.com/S0022-1694(20)30111-6/h0060
http://refhub.elsevier.com/S0022-1694(20)30111-6/h0065
http://refhub.elsevier.com/S0022-1694(20)30111-6/h0070
http://refhub.elsevier.com/S0022-1694(20)30111-6/h0070
http://refhub.elsevier.com/S0022-1694(20)30111-6/h0075
http://refhub.elsevier.com/S0022-1694(20)30111-6/h0075
http://refhub.elsevier.com/S0022-1694(20)30111-6/h0080
http://refhub.elsevier.com/S0022-1694(20)30111-6/h0080
http://refhub.elsevier.com/S0022-1694(20)30111-6/h0080
http://refhub.elsevier.com/S0022-1694(20)30111-6/h0085
http://refhub.elsevier.com/S0022-1694(20)30111-6/h0085
http://refhub.elsevier.com/S0022-1694(20)30111-6/h0090
http://refhub.elsevier.com/S0022-1694(20)30111-6/h0090
http://refhub.elsevier.com/S0022-1694(20)30111-6/h0095
http://refhub.elsevier.com/S0022-1694(20)30111-6/h0095
http://refhub.elsevier.com/S0022-1694(20)30111-6/h0100
http://refhub.elsevier.com/S0022-1694(20)30111-6/h0100
http://refhub.elsevier.com/S0022-1694(20)30111-6/h0105
http://refhub.elsevier.com/S0022-1694(20)30111-6/h0105
http://refhub.elsevier.com/S0022-1694(20)30111-6/h0105
http://refhub.elsevier.com/S0022-1694(20)30111-6/h0110
http://refhub.elsevier.com/S0022-1694(20)30111-6/h0110
http://refhub.elsevier.com/S0022-1694(20)30111-6/h0110
http://refhub.elsevier.com/S0022-1694(20)30111-6/h0115
http://refhub.elsevier.com/S0022-1694(20)30111-6/h0115
http://refhub.elsevier.com/S0022-1694(20)30111-6/h0115
http://refhub.elsevier.com/S0022-1694(20)30111-6/h0120
http://refhub.elsevier.com/S0022-1694(20)30111-6/h0120
http://refhub.elsevier.com/S0022-1694(20)30111-6/h0120
http://refhub.elsevier.com/S0022-1694(20)30111-6/h0125
http://refhub.elsevier.com/S0022-1694(20)30111-6/h0125
http://refhub.elsevier.com/S0022-1694(20)30111-6/h0130
http://refhub.elsevier.com/S0022-1694(20)30111-6/h0130
http://refhub.elsevier.com/S0022-1694(20)30111-6/h0130
http://refhub.elsevier.com/S0022-1694(20)30111-6/h0135
http://refhub.elsevier.com/S0022-1694(20)30111-6/h0135
http://refhub.elsevier.com/S0022-1694(20)30111-6/h0135
http://refhub.elsevier.com/S0022-1694(20)30111-6/h0140
http://refhub.elsevier.com/S0022-1694(20)30111-6/h0140
http://refhub.elsevier.com/S0022-1694(20)30111-6/h0140
http://refhub.elsevier.com/S0022-1694(20)30111-6/h0145
http://refhub.elsevier.com/S0022-1694(20)30111-6/h0145
http://refhub.elsevier.com/S0022-1694(20)30111-6/h0145
http://refhub.elsevier.com/S0022-1694(20)30111-6/h0150
http://refhub.elsevier.com/S0022-1694(20)30111-6/h0150
http://refhub.elsevier.com/S0022-1694(20)30111-6/h0150
http://refhub.elsevier.com/S0022-1694(20)30111-6/h0155
http://refhub.elsevier.com/S0022-1694(20)30111-6/h0155
http://refhub.elsevier.com/S0022-1694(20)30111-6/h0160
http://refhub.elsevier.com/S0022-1694(20)30111-6/h0160
http://refhub.elsevier.com/S0022-1694(20)30111-6/h0160
http://refhub.elsevier.com/S0022-1694(20)30111-6/h0165
http://refhub.elsevier.com/S0022-1694(20)30111-6/h0170
http://refhub.elsevier.com/S0022-1694(20)30111-6/h0170
http://refhub.elsevier.com/S0022-1694(20)30111-6/h0170
http://refhub.elsevier.com/S0022-1694(20)30111-6/h0175
http://refhub.elsevier.com/S0022-1694(20)30111-6/h0175
http://refhub.elsevier.com/S0022-1694(20)30111-6/h0175
http://refhub.elsevier.com/S0022-1694(20)30111-6/h0180
http://refhub.elsevier.com/S0022-1694(20)30111-6/h0180
http://refhub.elsevier.com/S0022-1694(20)30111-6/h0180
http://refhub.elsevier.com/S0022-1694(20)30111-6/h0180
http://refhub.elsevier.com/S0022-1694(20)30111-6/h0185
http://refhub.elsevier.com/S0022-1694(20)30111-6/h0185
http://refhub.elsevier.com/S0022-1694(20)30111-6/h0190
http://refhub.elsevier.com/S0022-1694(20)30111-6/h0190
http://refhub.elsevier.com/S0022-1694(20)30111-6/h0195
http://refhub.elsevier.com/S0022-1694(20)30111-6/h0195
http://refhub.elsevier.com/S0022-1694(20)30111-6/h0195
http://refhub.elsevier.com/S0022-1694(20)30111-6/h0200
http://refhub.elsevier.com/S0022-1694(20)30111-6/h0200
http://refhub.elsevier.com/S0022-1694(20)30111-6/h0205
http://refhub.elsevier.com/S0022-1694(20)30111-6/h0205
http://refhub.elsevier.com/S0022-1694(20)30111-6/h0205
http://refhub.elsevier.com/S0022-1694(20)30111-6/h0210
http://refhub.elsevier.com/S0022-1694(20)30111-6/h0210
http://refhub.elsevier.com/S0022-1694(20)30111-6/h0210
http://refhub.elsevier.com/S0022-1694(20)30111-6/h0215
http://refhub.elsevier.com/S0022-1694(20)30111-6/h0215
http://refhub.elsevier.com/S0022-1694(20)30111-6/h0215
http://refhub.elsevier.com/S0022-1694(20)30111-6/h0220
http://refhub.elsevier.com/S0022-1694(20)30111-6/h0220
http://refhub.elsevier.com/S0022-1694(20)30111-6/h0225
http://refhub.elsevier.com/S0022-1694(20)30111-6/h0225
http://refhub.elsevier.com/S0022-1694(20)30111-6/h0225
http://refhub.elsevier.com/S0022-1694(20)30111-6/h0230
http://refhub.elsevier.com/S0022-1694(20)30111-6/h0230
http://refhub.elsevier.com/S0022-1694(20)30111-6/h0235
http://refhub.elsevier.com/S0022-1694(20)30111-6/h0235
http://refhub.elsevier.com/S0022-1694(20)30111-6/h0235
http://refhub.elsevier.com/S0022-1694(20)30111-6/h0240
http://refhub.elsevier.com/S0022-1694(20)30111-6/h0240
http://refhub.elsevier.com/S0022-1694(20)30111-6/h0240
http://refhub.elsevier.com/S0022-1694(20)30111-6/h0245
http://refhub.elsevier.com/S0022-1694(20)30111-6/h0245
http://refhub.elsevier.com/S0022-1694(20)30111-6/h0245
http://refhub.elsevier.com/S0022-1694(20)30111-6/h0250
http://refhub.elsevier.com/S0022-1694(20)30111-6/h0250

	Centroidal Voronoi tessellation based methods for optimal rain gauge location prediction
	Introduction
	Methods
	Voronoi and centroidal Voronoi tessellations
	Problem formulation

	Study regions and dataset
	Proposed algorithm
	Effective correlation computation
	Optimal α and main algorithm

	Numerical results and discussion
	Summary
	CRediT authorship contribution statement
	mk:H1_12
	Acknowledgements
	Optimization problem formulation
	Truncated-Newton Algorithm for CVT calculation
	References




