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Abstract. In a variety of modern applications there arises a need to tessellate the do-
main into representative regions, called Voronoi cells. A particular type of such tes-
sellations, called centroidal Voronoi tessellations or CVTs, are in big demand due to
their optimality properties important for many applications. The availability of fast and
reliable algorithms for their construction is crucial for their successful use in practical
settings. This paper introduces a new multigrid algorithm for constructing CVTs that is
based on the MG/Opt algorithm that was originally designed to solve large nonlinear
optimization problems. Uniform convergence of the new method and its speedup com-
paring to existing techniques are demonstrated for linear and nonlinear densities for
several 1d and 2d problems, and O(k) complexity estimation is provided for a problem
with k generators.
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1. Introduction

A Voronoi diagram can be thought of as a map from the set of N-dimensional vectors
in the domain Q C RY into a finite set of vectors {zi}f.‘zl called generators. It associates
with each z; a nearest neighbor region that is called a Voronoi region {Vi}i.‘:l. That is,
for each i, V; consists of all points in the domain 2 that are closer to z; than to all the
other generating points, and a Voronoi tessellation refers to the tessellation of a given
domain into the Voronoi regions {Vi}f 1 associated with a set of given generating points
{zi}le C Q [1,35]. With a suitably defined distortion measure, an optimal tessellation
is given by a centroidal Voronoi tessellation, which is constructed as follows. For a given
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density function p defined on 2, we may define the centroids, or mass centers, of regions

{V;}*_ by
z; = (f yp(y)dy) (J p(y)dy)_l-
Vi g

; V;

L

A centroidal Voronoi tessellation (CVT) is then a tessellation for which the generators of the
Voronoi diagram coincide with the centroids of their respective Voronoi regions, in other
words, z; = z; for all i.

Given a set of points {zi}f:1 and a tessellation {V,-}f.‘: of the domain, we may define
the energy functional or the distortion value for the pair ({zi}le, {Vl-}f:l) by

k
7 (13, Y, ) = ZJ p(Yly — zi[* dy.
i=1Jv,
If the Voronoi tessellation {Vi}f:l is determined from {zi}f:1 then we write

({23, ) =7 (12, 3. (1)

The minimizer of ¢ necessarily forms a CVT which illustrates the optimization property of
the CVT [7]. This functional appears in many engineering applications and the relation of
its minimizers with CVTs is studied, for instance, in [18,19,38]. For instance, it provides
optimal least-squares vector quantizer design in electrical engineering applications. The
CVT concept also has applications in diverse areas such as astronomy, biology, image and
data analysis, resource optimization, sensor networks, geometric design, and numerical
partial differential equations [2,7-10,12,13,21,22,30,40,42]. In [7,11], extensive reviews
of the modern mathematical theory and diverse applications of CVTs are provided, and this
list is constantly growing.

The most widely used method for computing CVTs is the algorithm developed by Lloyd
in the 1960s [28]. Lloyd’s algorithm represents a fixed-point type iterative algorithm con-
sisting of the following simple steps: starting from an initial configuration (a Voronoi tes-
sellation corresponding to an old set of generators), a new set of generators is defined by
the mass centers of the Voronoi regions. The domain is re-tessellated and a new set of
centroids is taken as generators. This process is continued until some stopping criterion
is met. For other types of algorithms for computing CVTs we refer to [1,11,14,17]. It
was shown that Lloyd’s algorithm decreases the energy functional %({zi}le) at every it-
eration, which gives strong indications of its practical convergence. Despite its simplicity,
proving convergence of Lloyd’s algorithm is not a trivial task. Some recent work [6,16]
has substantiated earlier claims about global convergence of Lloyd’s algorithm, although
single-point convergence for a general density function p is still not rigorously justified.

For modern applications of the CVT concept in large scale scientific and engineering
problems such as data communication, vector quantization and mesh generation, it is cru-
cial to have fast and memory-efficient algorithms for computing the CVTs. Variants of
Lloyd’s algorithm have been recently proposed and studied in many contexts for different
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applications [9,19,27,37]. A particular extension using parallel and probabilistic sampling
was given in [22] which allows efficient and mesh free implementation of Lloyd’s algo-
rithm. However, the issue of finding a better alternative remains critical for many appli-
cations, since Lloyd’s algorithm and its variants are at best linearly convergent. Moreover,
the standard Lloyd algorithm slows down as the number of generators gets large, which
renders many practical calculations prohibitively expensive. Several alternatives have been
proposed, including Newton-based methods [3,25] and GPU extensions [36,41].

Multilevel algorithms present a desirable framework in the context of large-scale appli-
cations, since they do not suffer from the deterioration of convergence as the problem size
grows—a typical pitfall of most iterative methods. The idea of multigrid and multilevel
implementation of Lloyd’s algorithm (referred to later as “Multilevel-Lloyd method”) has
been recently introduced in [4], where multigrid method was used as an “outer" scheme,
with Lloyd’s algorithm playing the role of a relaxation at each level. The method was rigor-
ously shown to be uniformly convergent for all smooth perturbations of a constant density
in [5] and was extended to the 2-dimensional setting in [15], where it was successfully ap-
plied to a physical data binning application problems. Despite its uniform convergence, the
method has a rather big computational cost for medium-sized problems and the construc-
tion of the interpolation operators is far from straightforward. An alternative approach
was introduced by Yavneh et al. in [24] that used a FAS (full approximation scheme) im-
plementation of the Lloyd-Max scheme method based on minimizing the residual between
generators and centroids. We refer to this algorithm as “Multigrid Lloyd-Max method”
later in the text. Although successful in the 1-dimensional setting, this approach was not
generalizable to higher dimensions [23].

Here we propose a new multilevel formulation for constructing CVTs in the 1-
dimensional and 2-dimensional cases that is based on a different type of FAS scheme. Our
approach is distinctive because the algorithm uses a fine-tuned version of the“off the shelf”
techniques instead of special purpose approaches. A distinctive feature of the new method
is its close relationship with optimization problems. This is accomplished by formulating
Lloyd’s algorithm as a minimization problem in terms of the energy functional ‘ﬁ({zi}i.‘:l).
We then apply a multilevel optimization framework called MG/Opt to this functional.

MG/Opt is a general framework for optimization when a hierarchy of approximate
models is available. MG/Opt was originally developed in the context of optimal control
problems with PDE constraints, but is applicable to a broader class of problems. By choos-
ing appropriate interpolation operators, we design a new scheme which enjoys uniform
convergence with respect to the problem size similar to the aforementioned algorithms.
The advantage comparing to the Multilevel-Lloyd method comes in a form of significant
reduction of computational costs, while lower convergence factors and generalizability to
higher dimensions favorably distinguishes it from the Multigrid Lloyd-Max method.

Although MG/Opt is inspired by FAS, it is not equivalent to FAS. In the simplest case,
i.e., when MG/Opt is applied to an unconstrained problem, the update to the variables is
the same as if FAS were applied to the first-order optimality conditions. However MG/Opt
includes a line search which guarantees convergence in the sense that ilirgo VY| = 0.

Even if a line search is added to FAS, then FAS is only guaranteed to find a local minimizer
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of || V¥ ||, which is not guaranteed to be zero. Thus MG/Opt has stronger convergence
properties than FAS. In addition, MG/Opt (but not FAS) can be applied to optimization
problems with constraints, such as bounds on the variables or more complicated constraints
[33]. We expect this to be an important factor when applying MG/Opt to two- and higher-
dimensional problems. Additional reasons for preferring MG/Opt to FAS are discussed
in [26].

The rest of the paper is organized as follows. In section 2, we discuss the MG/Opt
algorithm which forms the basis for the new CVT construction method. Its connection
with the CVT formulation is the subject of Section 3, where we also introduce the new
FAS implementation and define the corresponding operators. The results of numerical
experiments and comparison with other methods are presented in Section 4, and final
conclusions and discussion are found in Section 5.

2. The Multilevel Optimization Algorithm

We are applying a multilevel optimization algorithm called MG/Opt to the CVT prob-
lem. MG/Opt was originally developed to solve unconstrained optimization problems [32],
with an emphasis on discretized optimization models. It has been extended to constrained
problems [33] and the approach can be applied to problems not based on discretization.

MG/Opt is designed to accelerate a traditional optimization algorithm applied to a
high-fidelity problem by exploiting a hierarchy of coarser models. In its raw form it is an
optimization framework, not an algorithm, since it depends on an underlying (traditional)
optimization algorithm, here labeled “OPT”. There is considerable flexibility in selecting
the underlying optimization algorithm. Of course, the performance of MG/Opt will depend
on the choice of OPT. MG/Opt is based on the ideas of the full approximation scheme (see,
e.g., [29]) but is not equivalent to the full approximation scheme.

Before giving a description of MG/Opt, it is necessary to say more about the underlying
optimization algorithm OPT. It is assumed that OPT is a convergent optimization algorithm
in the sense that, if appropriate assumptions on the objective function ¥ are satisfied then

lim || V¥(z))|| =0
Jj—oo
where {zj} are the iterates computed by OPT. (See, for example, [20].) We will write
OPT as a function of the form
Z+ — Opt((g()’ v, Za k)
which applies k iterations of the convergent optimization algorithm to the problem

min %(z) — vtrz

with initial guess Z to obtain z*. If the parameter k is omitted, the optimization algorithm
continues to run until its termination criteria are satisfied. If OPT is applied by itself to
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the high-fidelity model, then v = 0. In the context of the multilevel algorithm MG/Opt,
non-zero choices of v will be used.

To describe an iteration of MG/Opt we make reference to a high-fidelity model %, and
a low-fidelity model %;;. The letters h and H are used repeatedly to identify the high-
and low-fidelity information. Also required are a downdate operator If and an update
operator [ ;} that map sets of generators z from one level to another. Unlike the algorithm
in [33], the version of MG/Opt here uses a separate downdate operator I }If to map values
of V¥ from the fine level to the coarse level.

Here is a description of MG/Opt: Given an initial estimate of the solution zg on the
fine level, set v;, = 0. Select non-negative integers k; and k, satisfying k; + k, > 0. Then
forj=0,1,..., set 4 _

z,"! — MG/Opt(%("), Vi, 7,)

where the function MG/Opt is defined as follows:
e Coarse-level solve: If on the coarsest level, then solve the optimization problem:
z)" — Opt(%,(-), Vi, 2))-
Otherwise,

® Pre-smoothing: .
Zh «— Opt((gh(L Vh, Z;l: kl)

e Recursion:

Compute

zy = I'z,
v = I+ V9(zy) - IV Y (Z)

<
I

Apply MG/Opt recursively to the surrogate model:

z}; < MG/Opt(9y(-), ¥, )

Compute the search directions ey = Z;_I —Zyande, =1 ZeH.

Use a line search to determine z,” = z;, + ae, satisfying %,(z,) < 9,(z5).

e Post-smoothing:
z;1+1 — Opt((gh()ﬂ Vi, Z}T; kZ)

Because the integers k; and k, satisfy k; +k, > 0, each iteration of MG/Opt includes at
least one iteration of the convergent optimization algorithm OPT. This fact, in combination
with the line search to determine z;{, makes it possible to prove that MG/Opt is guaranteed
to converge in the same sense as OPT [33].
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In this paper, we have chosen OPT to be the truncated-Newton algorithm TN [31].
When applied to an optimization problem of the form

min f (z),

at the j-th iteration a search direction p is computed as an approximate solution to the
Newton equations

V2f(z))p = ~Vf(z)

where z; is the current approximation to the solution of the optimization problem. The
search direction p is computed using the linear conjugate-gradient algorithm. The nec-
essary Hessian-vector products are estimated using finite differencing. The TN algorithm
only requires that values of f(z) and Vf(z) are computed. TN has low storage require-
ments, and has low computational costs per iteration, and hence is suitable for solving
large optimization problems [34].

3. Applying MG/Opt to the CVT Formulation

To make sure we are dealing with the same underlying problem on different levels, we
scaled the objective function value by k? so that the optimal energy value would be same
on every level for the uniform density. This is also approximately true for other density
functions. The coarser grids were obtained by standard coarsening, i.e. doubling grid size
at every level: Ny = %Nh, where N;, and Ny are the numbers of grid points at the finer and
coarser grids, respectively.

To define our algorithm for solving the CVT problem, we need to adapt the formula-
tion above to the CVT context and specify the appropriate choices of the operators and
algorithm parameters.

3.1. MG/Opt setup

It turns out that in 1-dimensional case the following choice of the transfer operators
works best in the CVT MG/Opt context. Transfer of the solution from finer to coarser grid
(error restriction) is done via simple injection, i.e. given a vector vy on the fine level, the
downdate operator [ f samples vj, at the even indices:

[vah]i = v,%i, i=1,2,...,k/2.

The corresponding downdate operator If for the gradient (gradient restriction) that maps
values of V¥ from the fine level to the coarse level is given by

- 1. 1.
[I}II_IVh]l:EV}%I_1+V}%1+§V£H_1, l:1,2,,k/2

This form corresponds to the a standard choice of a full weighting (FW) restriction operator
scaled by a factor of 2, which comes from scaling the objective function at each level.
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The update (interpolation) operator I I}} is then given by a standard bilinear interpolation
operator, which satisfies T 1}} = 2(FW)tr (see p.61 of [39] for example), as is the case when
solving an optimization problem based on a discretized PDE in one dimension. For our
choice of the gradient restriction we obtain the relationship I I’} =(I f )tr, that we rely on in
our implementation.

Similarly to the 1D, transfer of the solution from finer to coarser grid in 2D can be com-
puted by injection. However, the other transfer operators have to be chosen differently due
to the differences in the CVT geometry. For the gradient downdate operator the following
choice has been shown to work:

*H . H i
[Tl = vy,

J

where ai: =1and o = % for any j s.t. z; is a fine node sharing an edge with z; in the
fine level triangulation. In the calculations provided in Section 4, we fix these weights
according to the equilibrium configuration. Although this setup is specific to the situation
when the exact solution has a hierarchical structure with a nested set of grids (like in
the case of triangular domain with p = 1), it can be generalized to arbitrary domains
via recomputing the connectivity matrix at each step and re-assigning the interpolation
weights accordingly. The exact procedure will be provided in a forthcoming publication.
The corresponding update operator for the error can be provided by the formula analogous
to the 1-D case: I;l[ = 4(f}?)tr.

In both dimensions, for a V; ; cycle implemetation, one pre-smoothing and one post-
smoothing relaxations were used (k; = ky = 1), which corresponds to applying one iter-
ation of OPT in each of these steps. We have tested several convergence criteria. As we
demonstrate in Section 4, the best convergence was achieved when both OPT and MG/Opt
were terminated due to saturation of the energy gradient |¥4(z) — ¥(z*)| < 1078, where
z" is the solution to the CVT problem. In 1-dimensional nonlinear density case, the es-
timation of the exact solution z* was obtained by running OPT with a tight convergence
tolerance. Exact solution was computed analytically for the case of constant density in
both dimensions.

It is also worth mentioning that we reordered the generators at each energy eval-
uation, since the order is not necessarily preserved by the optimization procedure
described above. The symmetry of the CVT energy ¢ with respect to re-orderings of

the points {zi}f.‘ , assures that the objective function is not suffering from this modification.

4. Numerical Experiments

All numerical experiments have been performed on 2-core Intel Duo CPU E8400
3.00GHz platform with 3.25 GB of RAM and the running times might differ for other
configurations.
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We did not use any preprocessing to generate the starting configuration zg for our al-
gorithm, which was simply obtained from a random sampling in the interval [0,1]. In
Matlab, we reset the random generator seed each time and supplied the initial generators
by means of the commands rand(’state’,0),v0 = sort(rand(k, 1)) to eliminate the ef-
fect of initial configuration when benchmarking algorithm performance. The coarse grid
consisted of no more than 2-3 generators in all numerical tests presented below.

4.1. 1-dimensional examples

All 1-dimensional examples have been computed on the [0,1] domain. In the 1-
dimensional case, the objective function (1.1) and its gradient can be integrated analyt-
ically in the case of p = 1 and require numerical approximation for more complicated
cases. For the types of nonlinear densities chosen in our numerical experiments we have
tested several quadratures, including Simpson’s and 15-point Gauss-Kronrod rules, with
no significant change in algorithm performance.

In the numerical experiments below we compare the multilevel algorithm MG/Opt with
the single level counterpart (OPT) given by the Truncated Newton (TN) method. Since the
TN algorithm is minimizing the energy ¢ at every step, the approach is comparable to
the Lloyd algorithm (see [6]), which is the usual benchmark used for CVT algorithms.
We measure the computational cost of OPT by counting the number of fine-level gradient
evaluations of ¢, which estimates the dominant cost of using OPT. For MG/Opt we count
the number of equivalent fine-level gradient evaluations. That is, we determine (for each
level) the relative cost of a gradient evaluation compared to an evaluation on the fine level.

Our first test uses the uniform density p(y) = 1 with 512 variables. This is an easy
problem. MG/Opt converges at a fast linear rate, about 12 times as fast as OPT (see Figure
1a). Next we use the density p(y) = 6y2e™2 *. The results are in Figure 1b. In this case
the performance of MG/Opt is almost the same, but OPT converges more slowly. Again we
are able to achieve fast linear convergence using the multilevel method. The convergence
factor here is computed as follows:

¢ - (D gy

4.1
9D - 9@) -1

where ¥(z") is the approximation of the exact solution precomputed by running OPT until
saturation.

In Figure 2 we analyze the performance of MG/Opt and OPT as the size of the problem
increases. In these tests we used the uniform density p(y) = 1 and averaged the results
over 6 independent runs with random initial guesses. In the left plot we display the num-
ber of iterations needed for MG/Opt and OPT to compute the objective function value to
a specified accuracy. In the middle figure we display the time needed to do this. Both
MG/Opt and TN are expected to converge at a linear rate, and the rate constant (“conver-
gence factor”) can be estimated from the results of each test. The right plot displays the
rate constants for both algorithms for different problem sizes. As can be seen, for MG/Opt
the rate constant is insensitive to the problem size, whereas for OPT the rate constant
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Figure 1: Comparison of MG/Opt versus OPT: (a) for density p(y) = 1, (b) density p(y) =
3
6y2e~2Y". Circle: MG/Opt; Star: OPT; Dot: Lloyd.

deteriorates as the problem size increases. Exact numerical values for both number of cy-
cles, convergence factor and elapsed time are given in Table 1. Both MG/Opt and OPT
algorithms have been stopped when the residual reaches a tolerance threshold of 1078.
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Figure 2: Solving problems of increasing size, MG/Opt versus OPT (p(y) = 1). Blue-
Square: MG/Opt, Red-Circle: OPT; Cycle numbers and Time elapsed are log scaled

Since the CVT algorithms in general show sensitivity to the choice of the initial config-
uration, we ran several tests with an intentionally “bad” choice of the initial guess, with
all generators clustered near the origin in the [0, 1] region. As Figure 3 demonstrates, no
significant difference in performance has been noted.

Figure 4 shows the performance of MG/Opt when different stopping criteria are used.
Again we use the uniform density p(y) = 1. From the plot, we can see that the common
stopping criterion based on the improvement in the residual V¥ (which is related to the
difference between the positions of generators in the approximated and exact solution)
is not the ideal choice here since it leads to a slight increase in the iteration count as
the problem size increases. For the other two criteria based on the energy function ¥,
both the number of cycles and the convergence factors in MG/Opt are not sensitive to
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convergence factor | number of cycles time(sec)
k MG/0pt | OPT MG/0pt | OPT MG/0pt | OPT
16 0.0234 | 0.1803 18 2.63 1.08
32 0.0440 | 0.2094 20 6.02 4.44
64 0.0952 | 0.2897 26 12.06 14.11
128 0.0604 | 0.4839 43 20.59 67.31

256 0.1174 | 0.6474
512 0.0932 | 0.8129
1024 || 0.0796 | 0.9076
2048 || 0.0728 | 0.9403
4096 || 0.0757 | 0.9679

69 44.30 256.67
150 91.73 1120.31
330 178.44 | 4831.66
500 398.56 | 14568.47
970 820.28 | 55370.94

| OO O U1 OV U1 B

Table 1: Comparing performance of MG/Opt with 1-level optimization for p =1
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Figure 3: Performance of MG/Opt with different initial configurations. Red-Circle: OPT;
Green-Star: MG/Opt with “bad” initial condition; Blue-Square: MG/Opt with random
initial condition. Number of cycles and elapsed time axes are log-scaled.

problem size. The other reason to prefer the criterion basen on energy values rather than
positions is the abundance of local minima in the large-scale CVT problems, which makes
it impossible to pinpoint the exact solution the method converges to. The energy value
provides a reasonable measure for the closeness to a particular exact solution. However,
as demonstrated by Figure 4, both criteria are acceptable and performance differences are
minor. It is also worth noting that based on the time complexity shown here the algorithm
is linearly scalable — a desirable feature of the multigrid formulation that allows for an
efficient parallelization for modern large-scale computing applications.

Figure 5 demonstrates the performance of MG/Opt when applied to problems with
different density functions. In particular we consider p;(y) = 1+ 0.1y and p,(y) =
6y2e 2 *. In the left plot, we can see that the iteration count for p; stays constant with
the increase of the problem size, and increases only slightly for p,. For both densities
the convergence factor exhibits insensitivity to the problem size, although the convergence
factor is slightly larger for p,, while remaining bounded from above by 0.2.
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Figure 5: Performancesof MG/Opt with different density functions. Circle: p(y) =1+0.1y.
Star: p(y) =6y2%e %

Figure 6 compares the performance of MG/Opt to that of the multilevel optimization
based method introduced in [5]. Although the latter was also based on the idea of formu-
lating an optimization problem based on the CVT energy (1.1), it has significant differences
with the MG/Opt approach. Essentially, the previous scheme represented a successive cor-
rection algorithm with a suitably defined domain decomposition, with the Lloyd iteration
used as a relaxation on each level — hence the name Multilevel-Lloyd we use to refer
to it in this work. Comparison of performance of both methods for constant and linear
densities shows that MG/Opt yields slightly lower convergence factors, while showing sig-
nificant advantage in terms of the time complexity.

Table 2 compares the performance of MG/Opt with that of the OPT algorithm and
the Multigrid Lloyd-Max (MLM) algorithm introduced in [24], which is based on a FAS
formulation of the Lloyd-Max iterative process. The same form of the nonlinear density
y= 6x2e 2% as the one tested in [24] has been chosen for fair comparison. The column
MG [24] shows the convergence factors reported in [24], where the convergence factors
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Figure 6: Convergence factors for MG/Opt vs. Multilevel-Lloyd [5] for (top) uniform
density p(y) = 1; (bottom) linear density p(y) = 1+ 0.1y. Notations: Dot:MG/Opt;
Star:Multilevel /Lloyd

were computed using
19— 9(2)
|9(ZF) - 9(z)]

The column MG/Opt' lists the convergence factors for our algorithm MG/Opt computed
the save way. The column MG/ Opt2 lists the convergence factors for MG/Opt computed
according to the formula (4.1), as we did in our earlier discussion. This latter formula is
not as sensitive to the performance of the algorithm at the final iteration. It is also the
formula used in our other numerical experiments when computing the convergence factor.
Notice that the convergence factors for MG/Opt are significantly better than for MLM [24].
The fact that convergence factors stay very small even for much larger problems suggests
that the new method has the potential to outperform earlier formulations, even for highly
nonlinear densities.

(4.2)

4.2. 2-dimensional examples

Below are some preliminary results that have been obtained in the 2-dimensional case
for the triangular domain. The choice of the domain is motivated by the availability of eas-
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convergence factor number of cycles
k MG/Opt® | MG/Opt' | MLM [24] | OPT | MG/Opt® | OPT
16 0.0350 0.0023 0.1725 | 0.8060 4 108
32 0.0314 0.0177 0.1782 | 0.9024 5 228
64 0.0673 0.0551 0.1847 | 0.9381 5 354
128 0.1120 0.0673 0.1962 | 0.9736 7 846
256 0.0980 0.0983 0.9877 7 1818
512 0.1230 0.1927 — | 0.9943 7 4276
1024 | 0.1105 0.1504 — | 0.9971 7 8388
2048 | 0.1253 0.2890 — | 0.9983 7 14297

Table 2: Comparing performance of MG/Opt with 1-level optimization (OPT) and the
Multilevel Lloyd-Max (MLM) method of [24] for a nonlinear density: y = 6x2e 2",
MG/ [th1 denotes the MG/Opt algorithm with the convergence factor computed accord-
ing to (4.2), MG/ Opt2 uses the geometric mean convergence factor (4.1); MLM [24] is the
result from [24] with the same convergence factor formula as MG/ Opt1 , ‘— refers to
data not provided in [24]

convergence factor number of cycles
k MG/Opt | OPT Lloyd | MG/Opt | OPT | Lloyd
10 0.0127 | 0.0871 | 0.8323 2 6 54
55 0.0231 | 0.1378 | 0.9554 4 10 244
253 0.0121 | 0.1957 | 0.9891 4 14 | 1143
1081 | 0.0092 | 0.4055 | 0.9973 4 28 | 5265

Table 3: Comparing performance of 2-dimensional MG/Opt with 1-level optimization
(OPT) and Lloyd method for constant density in triangular domain.

ily computable exact solution and the absence of boundary effects inherent to rectangular
shaped regions.

In Figure 7, we provide convergence results for MG/Opt and its competitors when the
initial guess is taken to be relatively close to the local minimizer. It is clear that MG/Opt
maintains its superiority over 1-level methods. Moreover, MG/Opt has a significantly lower
convergence factors independent of the problem size, similar to the behavior observed in
1-dimensional case.

Table 3 provides numerical data for the performance of MG/Opt, OPT and Lloys meth-
ods for the case of initial guess taken further away from the minimizer. Again, there is a
clear advantage in using MG/Opt in this case. It has also been noted that the tendency to
move points outside of the domain typical for the regular 1-level OPT method is signifi-
cantly reduced in the 2-dimensional MG/Opt implementation.

Overall, while the above estimates are only a first step in a comprehensive analysis of
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Figure 7: Comparison of performance of MG/Opt and OPT for the case of a triangular 2-d
region with p = 1. Red-Circle: OPT, Blue-Square: MG/Opt.

the 2-dimensional version of the algorithm, and more work needs to be done to make the
method work efficiently for general 2-d domains and density functions, they give a reason
to believe MG/Opt will be competitive to other methods. Analysis of the performance of
the 2-d method for different choices of transfer operators, and the creation of a robust and
versatile general-purpose solver are the focus of current investigations.

5. Complexity of MG/OPT for 1-d CVT problem

In this section, we analyze the computational complexity of a V; ; cycle of the MG/Opt
algorithm for CVT, i.e. k; = k, = 1. At each level, MG/Opt consists of Pre-smoothing and
Post-smoothing which amount to two iterations of the Truncated Newton (TN) method,
plus the cost of transferring the solution from one grid to another (downdate and update)
and line search. Leaving the TN part aside, let us first compute the work required for all
other parts of the algorithm, similar to the analysis performed in [34]. Notice that: (a)
downdating the variables is carried out by means of simple injection, so no additional com-
putational cost is involved; (b) the update operator is applied to half of the points in the
grid during the refinement process; (c) the process of downdating and finding local search
directions is only applied to half of the points in the coarsening process; (d) these steps are
performed in the beginning and at the end of each cycle. The setup is performed once per
outer iteration. With these observations in mind, we obtain the estimate of computational
cost for all of these operations to be less than 9k for the problem of size k, as outlined in
Table 4.

To estimate the complexity of the TN part, notice that if we only do one iteration of TN
in pre-smoothing and post-smoothing, respectively, the following computations are to be
performed:

¢ 1 infinity-norm calculation, 1 vector addition and 2 function-gradient evaluations

e Conjugate-gradient (CG) iteration with cost per iteration given by:
1 function-gradient evaluation,
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Operations per coordinate | on the fine level
Downdate(variable) 0 0
Downdate (residual) 3 3k/2
Search Direction 1 k/2
Update 3 3k/2

Line search 1 k

Table 4: The complexity of various parts of MG/Opt measured in floating point operations.

4 inner product and
5 “vector + constant-vector" operations.

On average, we do 5 CG iterations per TN iteration. Based on the above estimate, one
TN iteration requires 1 infinity norm, 20 inner product, 25 “vector + constant-vector", 1
vector add calculations and 7 function/gradient evaluations. If the cost of infinity norm
calculation is estimated to be no more that k flops (floating-point operations, which include
additions, subtractions, products and divisions), with k being the number of grid points at
the finest level, and the cost of each the inner product and “vector + constant-vector"
calculations is taken to be 2k flops, the overall cost of one TN iteration amounts to k(1 +
20+ 25+ 1) = 47k flops, plus 7 function-gradient evaluations. Since in each V; ; cycle we
do 2 TN iterations at each level and the contribution from coarser grids is estimated from
above as Zi.ozgok 271 < 2, we multiply this estimate by a factor of 4, and add the additional
costs as specified above. We conclude that the typical cost of a MG/Opt V-cycle is (4-47 +
9)k = 197k, plus 28k function-gradient evaluations. This proves the fact that the above
algorithm has O(k) complexity. This bound can be lowered by performing less safeguarding
as part of the TN algorithm at each step, however, we feel these steps are needed in order
to obtain the most robust implementation.

6. Comments and Conclusions

In conclusion, we have introduced a novel way of computing CVTs by means of an O(k)
complexity algorithm based on the MG/Opt strategy originally used only for large-scale
nonlinear optimization problems. The main advantage of the new method is its superior
convergence speed when compared to other existing approaches. Even though the com-
putational complexity of each cycle is not the lowest, the fact that the convergence factors
are on average much lower than those of its counterparts makes this formulation attractive
when it comes to solving large CVT problems. The simplicity of its design and the re-
sults of preliminary tests presented here suggest that the method is not only generalizable
to higher dimensions but retains its superior convergence properties with the appropriate
modification of parameters. The comprehensive study of the algorithm’s performance for
arbitrary 2-dimensional domains and arbitrary density functions, as well as the design of
optimal transfer operators are the subject of current investigations. Rigorous convergence
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theory development for this type of a method is nontrivial but possible, and will be ad-
dressed in a future publication. Future work also includes application of this technique to
various scientific and engineering problems, including image analysis and grid generation.
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