
Contents lists available at ScienceDirect

Computational Materials Science

journal homepage: www.elsevier.com/locate/commatsci

Evolution of two-dimensional grain boundary networks implemented in
GPU
Alejandro H.J. Sazoa, Pablo Ibarra S.a, Ariel Sanhueza R.a, Francisco J.A. Casasa,
Claudio E. Torresa,b,⁎, Maria Emelianenkoc, Dmitry Golovatyd

a Departamento de Informática, Universidad Técnica Federico Santa María, Chile
b Centro Científico Tecnológico de Valparaíso, Chile
cGeorge Mason University, VA, United States
dUniversity of Akron, OH, United States

A R T I C L E I N F O

Keywords:
Polycrystalline materials
Grain growth
Numerical simulation
Spectral methods

A B S T R A C T

We consider a variational model for two-dimensional grain growth that allows for finite mobilities of boundaries
and boundary junctions. We use a collocation method to describe the grain boundaries and posit evolution
equations that ensure energy dissipation. The resulting algorithm is amenable to parallelization and a GPU
implementation described in this work leads to significant reduction in computational time. We benchmark our
code against known numerical and analytical solutions in some special cases. We also conduct an extensive
analysis of statistics that develop for various parameter regimes.

1. Introduction

Polycrystalline materials consist of grains separated by boundaries.
The corresponding configuration of grains defines the macroscopic
physical characteristics of polycrystals, such as structural strength,
electric conductivity, durability, among other. The material properties
of a sample can therefore be modified by manipulating its grains
structure. This is typically done via a combination of heating and de-
formation. For example, during annealing, polycrystalline materials
undergo a process known as coarsening, when some grains grow at the
expense of others [1–4]. The goal of modeling considered in the present
paper is to predict evolution of the grain boundary structure that de-
velops as the result of coarsening.

There is a number of numerical approaches available in the litera-
ture to study grain growth by means of computational simulations.
Among them are Monte Carlo Potts models [5–12], molecular dynamics
[13], and front-tracking methods. The latter can be further sub-divided
into the phase field models [14–20], diffusion generated motion
[21–23], grain boundary discretization with curvature-driven motion
[24–28] and vertex-driven motion [29–33]. For example, within the
phase field approach, Lobkovsky et al. [14] study two-dimensional
dynamics of crystalline grains using gradient flow, including rotation of
grains. In [15], the “Voronoi Implicit Interface Method” is analyzed for

tracking multiple interacting and evolving phases. The authors report
that they can handle triple and quadruple junctions in both two and
three dimensions. Vondrous et al. [16] couple a phase-field method
with a finite element approach to simulate recrystallization. They de-
velop a multidimensional decomposition to efficiently parallelize the
computation and study the isotropic and the Read-Shockley grain
boundary energy functions.

In [18], the authors use the phase field crystal model for grain
growth, the model minimize the surface energy until a single grain
prevails. A multiphase-field theory is discussed in [19] where mathe-
matical and physical consistency is ensured by construction of an ap-
propriate free energy functional. In [20], the authors propose a 2D
theoretical framework that couples a Cahn-Hillard model with a phase
field crystal model to explore the effects of coarse-grained lattice
symmetry and distortions on a phase transition process. In the case of
diffusion generated motion, Elsey et al. [21] propose an efficient al-
gorithm for simulating curvature flow for large networks of curves in
two and three dimensions. This is achieved using a level set method and
allowing a single signed distance function to represent a large subset of
spatially separated grains. In [22], they use a distance function to
generate diffusion based motion and produce an efficient numerical
algorithm. The interfaces are represented implicitly, allow automatic
topological transitions and arbitrarily large time-steps. A mean

https://doi.org/10.1016/j.commatsci.2019.01.022
Received 22 October 2018; Received in revised form 12 January 2019; Accepted 12 January 2019

⁎ Corresponding author.
E-mail addresses: alejandro.sazo@usm.cl (A.H.J. Sazo), pablo.ibarras@alumnos.usm.cl (P. Ibarra S.), ariel.sanhuezar@usm.cl (A. Sanhueza R.),

francisco.casas.13@sansano.usm.cl (F.J.A. Casas), ctorres@inf.utfsm.cl (C.E. Torres), memelian@gmu.edu (M. Emelianenko), dmitry@uakron.edu (D. Golovaty).

Computational Materials Science 160 (2019) 315–333

0927-0256/ © 2019 Elsevier B.V. All rights reserved.

T

http://www.sciencedirect.com/science/journal/09270256
https://www.elsevier.com/locate/commatsci
https://doi.org/10.1016/j.commatsci.2019.01.022
https://doi.org/10.1016/j.commatsci.2019.01.022
mailto:alejandro.sazo@usm.cl
mailto:pablo.ibarras@alumnos.usm.cl
mailto:ariel.sanhuezar@usm.cl
mailto:francisco.casas.13@sansano.usm.cl
mailto:ctorres@inf.utfsm.cl
mailto:memelian@gmu.edu
mailto:dmitry@uakron.edu
https://doi.org/10.1016/j.commatsci.2019.01.022
http://crossmark.crossref.org/dialog/?doi=10.1016/j.commatsci.2019.01.022&domain=pdf

curvature motion and surface diffusion is considered in [23,24] The
effect of triple-junction drag was considered by the number of authors
[9,34–38,10], usually within front-tracking models. These models
principally describe two-dimensional systems of grains, but some three-
dimensional results are also available [6,12,29,39,40]. PDE-based me-
soscale models focused on the role of the critical events during evolu-
tion have also recently been investigated, e.g. in [41,42]. A recent re-
view of unresolved issues in grain growth is presented in [43].

In this paper, we focus on a variational model for two-dimensional
grain growth that allows for finite mobilities of boundaries and
boundary junctions. We take advantage of Graphics Processing Unit
(GPU) computations with CUDA [44] for the management of large
numerical simulations [19,45], which calls for new algorithms. The
principal reason to explore this computer architecture is the need to
obtain appropriate statistics that requires simulations of very large
systems of grains [33,46–48].

The algorithm proposed preserves the continuous description of
grain boundaries by taking advantage of a collocation method [49].
Using this approach allows us to obtain an integral description of the
grain boundaries configuration when considering finite mobilities for
grain boundaries and grain boundary junctions.

The paper is organized as follows. We set up the problem in Section
2, then introduce the boundary representation in Section 3. The evo-
lution equations for the triple junctions and the normal component of
the velocity for the interior points are outlined in Section 4, followed by
the computation of the tangential component of the velocity of the
interior points in Section 5. The numerical algorithms developed and
the numerical experiments performed are presented in Sections 6 and 7,
respectively. Finally, the conclusions and future work are given in
Section 8.

2. Problem setup

We begin by setting up the problem, mostly following the formalism
developed in [50]. Suppose that the network of grains occupies a square
domain [0, 1]2 2, subject to periodic boundary conditions. The grain
structure consists of a set of disjoint grains covering the entire domain
[0, 1]2. We denote the set of grains by

t N N t() { , , , }, ().N(1) (2) ()= = … =

Each grain boundary is defined as,

t K K t() { , , , }, (),K(1) (2) ()= = … =

and each boundary is parameterized as follows:

t s t s k K() { (,), 0 1}, .k k() ()=

These boundaries meet at triple junctions. The triple junctions are
the start or the end point of exactly three boundaries. Let k k k K, ,1 2 3
be the indices of three different boundaries. For s {0, 1}ki , the triple
junctions can be represented as,

s t s t s t(,) (,) (,).k
k

k
k

k
k

() () ()1
1

2
2

3
3= =

The total energy is given by the following expression:

E t s t dsl() , ,
k

K

k k
k

1
0

1 ()=
= (1)

where s t s tl (,) ((,))k
s

k() ()= , k is the grain boundary energy of
boundary is the misorientation between the grains that meet at
boundary k() and · is the l2-norm. We will omit, except when needed,
the spatial and temporal dependence. This energy is equal to the re-
quired amount of work to create an infinitesimal grain boundary [50].
The evolution equations of the system are obtained by finding the de-
rivative with respect to time of the total energy and making it negative,
so the system is dissipative. Computing the derivative of (1) with re-
spect to t we get:

d
dt

E t
t

ds
s

dsl T v() () · () ,
k

K

k
k

k

K

k
k k

1
0

1 ()

1
0

1 () ()= =
= = (2)

where T k l
l

() k
k

()
()= . Note that (2) is valid as long as K t() 0= within

t t[,]1 2 , i.e. there are no topological changes. Integrating by parts (2), we
finally get,

d
dt

E t
s

dsT v v T() ()· · .
k

K

k
k k

m

M

m
l

m l
m l

1
0

1 () ()

1 1

3

,
(,)= +

= = = (3)

3. Interpolation of the boundaries

We propose a representation of the grain boundaries based on a
Lagrange interpolation on s as follows:

s t t sx, () (),k

i

n

i
k

i
()

1

()=
= (4)

where s()i
l s
l s

()
()

i
i i

= , l s k
k i

s s() 1i n k= = and the sk will be defined in

Section 6.1. The points x k
1
() and xn

k() are the triple junctions. The rest of
the collocation points tx ()p

k() , with p n{2, , 1}, are called interior
points and initially placed equispaced along a straight line connecting
x k

1
() and xn

k(). The different initial configuration of interior points is also
possible but not discussed in this paper. Notice that if we parameterize
the grain boundary with only two points, this approach becomes a
vertex-based model [32].

On the other hand, curvature based evolution requires that the ve-
locity of the grain boundary moves in the normal direction and pro-
portional to its curvature. This means that:

s t s t s tv N(,) (,) (,).= (5)

In our case, we need to ensure this is actually happening. This be-
havior can be built from the definition of the curvature, which is the
derivative of the unitary tangent vector with respect to the arc length
():

s t s t s t

s t s t s t

s t s t s t

T N

T N

T N

((,)) , ,

((,)) , ,

((,)) , , ,

s
d s
d

s s tl
1

(,)

=

=

=
(6)

where d s
d

was obtained from the definition of arc length

s s t dsl() (,)s
0= . This means that if we want curvature-based

grain growth, we can compute s t s tN(,) (,) by means of
s tT((,))s t sl

1
(,) , which is the derivative of a unitary vector scaled by
s tl(,) 1.

4. Derivation of triple junction evolution and the normal
component of the velocity of the interior points

For the sake of simplicity of notation, we will omit the scaling k
from Tk

k(), but it will be re-introduced at the end.
Let us consider Eq. (3) and plug the parameterization (4) in it:

d
dt

E t
s

t s dsT x v T() ()· () () .
k

K
k

i

n

i
k

i
m

M

m
l

m l

1
0

1 ()

1

()

1 1

3
(,)= +

= = = =

Reordering the terms we obtain:

A.H.J. Sazo et al. Computational Materials Science 160 (2019) 315–333

316

d
dt

E t t
s

s dsx T

v T

() ()· () ()

.

k

K

i

n
i
k k

i

a

m

M
m l

m l

b

1 1
()

0

1 ()

()

1 1

3 (,)

()

=

+

= =

= =

As indicated previously, the triple junctions of a boundary are the
collocation points t(0,)k() and t(1,)k() , and are associated to the
Lagrange polynomials s()1 and s()n , respectively. This allows us to
split the equation in two parts, a() and b(). If we extract the terms re-
lated to triple junctions in a() and add them to b() we obtain:

d
dt

E t
s

s ds

s
s ds

s
s ds

x T v T

x T x T

() · () () ·

· () () · () () .

k

K

i

n

i
k k

i
m

M

m
l

m l

k
K k k

n
k k

n

c

1 2

1
()

0

1 ()

1 1

3
(,)

1 1
()

0

1 ()
1

()
0

1 ()

()

= +

+

= = = =

=

(7)

The terms we extracted are now explicitly indicated in c(), in Eq.
(7). For simplicity, consider Fig. 1a, where the set of boundaries and (3)

share a triple junction t x x x x(0,)k()
1 1

(1)
1
(2)

1
(3)= = = = , that is, their

parameterization starts at that triple junction. Expression c() in Eq. (7)
for this example becomes:

s
s ds

s
s ds

s
s ds

x T x T

x T

· () () · () ()

· () () .

k

k

k

K
k k

k

K

n
k k

n

1

3

1
(1)

0

1 ()
1

1

3

1
()

0

1 ()
1

1

()
0

1 ()

+

+

= =

=

The velocity of the shared triple junction remains the same, no
matter which boundary is considered for its computation. Therefore we
can factorize by x1

(1), resulting in:

s
s ds

s
s ds

s
s ds

x T x T

x T

· () () · () ()

· () () .

k

k

k

K
k k

k

K

n
k k

n

1
(1)

1

3

0

1 ()
1

1

3

1
()

0

1 ()
1

1

()
0

1 ()

+

+

= =

=

Let us call the triple junction x1
(1) as xm and its velocity xm, where

the sub-index m indicates that we are re-indexing triple junctions. We
can rewrite c() as:

s
s dsx T· () ()

m

M

m
l

m l
m

1 1

3

0

1 (,)
1,

= =

Replacing it in (7) we obtain:

d
dt

E t t
s

s ds

s
s ds

x T

x T v T

() ()· () ()

· () () · .

k

K

i

n

i
k k

i

m

M

m
l

m l
m

m

M

m
l

m l

1 2

1
()

0

1 ()

1 1

3

0

1 (,)
1,

1 1

3
(,)

=

+

= =

= = = =

Notice that v xm m= . Thus, Eq. (3) becomes:

d
dt

E t t
s

s ds

s
s ds

x T

x T T

() ()· () ()

() () .

k

K

i

n

i
k k

i

m

M

m
l

m l m l
m

1 2

1
()

0

1 ()

1 1

3
(,)

0

1 (,)
1,

=

+

= =

= =

From here on, we can obtain the expressions for the average normal
component of the velocity for interior points and the velocity for the
triple junctions that ensures the system effectively decreases its energy.
Including the grain boundary energy m l, , the velocity for a triple
junction xm is,

t
s

s dsx T T() () () ,m
l

m l
m l m l

m
1

3

,
(,)

0

1 (,)
1,= +

= (8)

where is the mobility coefficient for the triple junctions. Similarly, the
average normal component of the velocity for an interior point xi

k() is:

t t
µ
s t s

s ds i nN
l

T() ()
(,)

() () , 1, ,i
k

i
k k

i

k
i

() ()

0

1 ()=
(9)

where µ is the mobility coefficient for the interior points, k is the grain
boundary energy, tN ()i

k() is the unitary average normal vector obtained
from the integration of the normal components T()s

k() together with
the basis function s()i . Notice that for Eq. (9), we used the identity
from (6). However, here it becomes an approximation since we are
integrating first T()s

k() and then scaling it by s tl(,)i
1. We also as-

sumed that for computing (8) the parameterization started at that triple
junction, where in general this may not be case, see Fig. 1. However, we
can easily obtain that by making a change of variable s s1= and the
assumption holds.

Finally, we have been able to build a the evolution equations for
triple junctions and the average normal component of velocity of the
interior points with finite mobilities, which are energy decreasing by
construction.

Fig. 1. Two different sets of boundaries sharing a triple junction. Arrows indicates direction of parameterization.

A.H.J. Sazo et al. Computational Materials Science 160 (2019) 315–333

317

5. Tangential component of the velocity for interior points

In Eq. (9), the average normal component of the velocity of the
interior points was defined. This was obtained to ensure the evolution
of the boundary is energy decreasing. Specifically, the evolution is
chosen such that it is parallel to the s dsT() ()s

k
i0

1 () vector. Thus, we
are free to add a tangential component Ti to the velocity as long as it is
orthogonal to the s dsT() ()s

k
i0

1 () vector. This means that the total
velocity of an interior point will be defined as:

t t t t tx N T() () () () ().i i i i i= + (10)

We have omitted the grain boundary dependence k() and will omit
the time dependence for the sake of clear notation. We have introduced
the hat notation (∧) to indicate the average normal and tangential
components. Notice that the average normal Ni is not necessarily equal
to the normal sN N()i i= , unless the grain boundary is a straight line,
but it is required that tN T· () 0i i = . The main reason to add the tan-
gential component to the velocity is numerical, in order to avoid the
coalescence of collocation points and making the computation unstable.
Fortunately, this problem has already been extensively studied [51–53].
We will follow the same procedure here. Specifically, this means sa-
tisfying the following equations at the interior points:

d
dt

t
t

i nl ()
()

0, 2, 3, , 2i = …

where t s t tl l l() (,), ()i i i= denotes the local arc length at the colloca-
tion point i and t() is the arc length of the grain boundary under
analysis. Computing the derivative with respect to time, we obtain the
following equation:

t t t t

t t t t

l l

l l

0,

(()) () (()) () 0,

(()) () (()) () ,

t t t t

t
d
dt i

d
dt i

d
dt i

d
dt i

l l(()) () (()) ()

()

d
dt i

d
dt i

2 =

=

= (11)

where t t tl T l(()) ()· (())d
dt i i

d
dt i= and t s t s t dsT l(()) (,)· ((,))d

dt t0
1= .

Eq. (11) needs to be applied to each interior point, but before we do
that we need to build each of its elements. Finally, we will obtain a
linear system of equations for the is. For simplicity, we will list here all
the components we will use:

s t t s

s t s t t s t s

x

l x y

, () (),

, , () () () (),

i

n

i i

s
i

n

i i
i

n

i i

1

1 1

=

= = =

=

= =

where the computation of the ty ()i vector is discussed next in Section
6.2. Here, we compute the derivative with respect to time of s tl(,) and
we obtain,

s t t s

t t

l y

l y

, () (),

(()) ().

t
i

n

i i

d
dt i i

1
=

=
=

Thus, plugging in each component to (11) we obtain,

t t t t

t t t s t s t ds t

t t t s t t s ds t

t t t t s t s ds t

l l

T l T l l

T y T y l

T y y T l

(()) () (()) ()

()· (()) () (,)· ((,)) ()

()· () () , · () () ()

()· () () ()· , () () ,

d
dt i

d
dt i

i
d
dt i t i

i i
k

n

k k i

i i
k

n

k k i

0
1

0
1

1

1
0
1

=

=

=

=

=

=

moving tl ()i to the left-hand-side, we obtain,

t t t
t

t s t s ds i nT y
l

y T()· () ()
()

()· , () , 2, , 1.i i
i k

n

k k

tw
1

0

1

()k

= …
=

(12)

Now, it is time to use the orthogonal decomposition (10) to obtain
the t()i , which is achieved by the following linear transformation with
the differentiation matrix D (See Section 6.2 for more details),

t
t

t

t
t

D

t
t t t t

t t t t

t t t t
t

y
y

y

y
y

x
N T

N T

N T
x

()
()

()

()
()

()
() () () ()

() () () ()

() () () ()
()

i

n

n

i i i i

n n n n

n

1

2

1

1

2 2 2 2

1 1 1 1

=

+

+

+
(13)

where the vectors t t ty N T(), (), ()i i i , tx ()1 and tx ()n are considered row-
vectors, the tx ()1 and tx ()n are the triple junction velocities of the
boundary. So,

t D t D t t t t D ty x N T x() () (() () () ()) ().i i
j

n

i j j j j j i n n,1 1
2

1

, ,= + + +
=

Moreover, if we define t D tm x() ()i i,1 1= +
D t t D tN x() () ()j

n
i j j j i n n2

1
, ,+= , this allows us to define

t t D t ty m T() () () ()i i j
n

i j j j2
1

,= + = . Now we first compute the unknown
part and the known part of the left-hand-side of (13), and we omit for
now the coefficient t

tl
()
()i

,

t t t t D t t

t t t D t t

T y T m T

T m T T

()· () ()· () () ()

()· () ()· () ()

i i i i
j

n

i j j j

i i i
j

n

i j j j

2

1

,

2

1

,

= +

= +

=

=

Similarly for the right-hand-side of (12), we obtain the following for
the k-th element of the sum,

t t t t D t t

t t t D t t

w y w m T

w m w T

()· () ()· () () ()

()· () ()· () ()

k k k k
j

n

k j j j

k k k
j

n

k j j j

2

1

,

2

1

,

= +

= +

=

=

Thus, collecting the unknown terms on the left-hand-side and the
known terms on the right-hand-side of (12), we finally obtain the linear
system of equations that we need to solve in order to obtain the t()i ,

t
t

t t D t t

t D t t t

l
T m T

m T w

()
()

()· () · () ()

() () () · ().

i
i i

j

n

i j j j

k

n

k
j

n

k j j j k

2

1

,

1 2

1

,

+

= +

=

= =

Collecting the coefficient that multiplies t()i , and rearranging the
right-hand-side we obtain,

D t
t

t D t t t t
t

t t

t t

l
T w T

l
m T

m w

()
()

() () · () () ()
()

()· ()

()· ().

j

n

i j
i

i
k

n

k j k j j
i

i i

k

n

k k

2

1

,
1

,

1

=

+

= =

=

Therefore, we have shown that to obtain the t()i coefficient we
need to solve a linear system of equation of the size of the number of

A.H.J. Sazo et al. Computational Materials Science 160 (2019) 315–333

318

interior points for each grain boundary. Every time step for the interior
points needs to be explicitly computed, as do quantities that depend on
the velocity of the interior points such as the extension time of the grain
boundary. Fortunately, this can be handle in parallel in the GPU.

6. Algorithms for numerical implementation of the model

Before we introduce the main algorithm for the evolution of the
grain structure, we need to analyze and solve a series of numerical
challenges. We first propose a convenient way to parameterize the grain
boundaries and triple junctions. Afterwards we study and propose a
novel way to compute: the derivative of a unitary vector, the collision
time of grain boundaries and the velocity for interior points and triple
junctions. We finally present the main algorithm of the model proposed.

6.1. Numerical boundary parameterization

We will use the Chebyshev points sc of the second kind for the
parameterization variable s, see [49,54]. This allows us to include the
end points as collocations points. The grain boundary k() is para-
meterized by s t s(,), 0 1k() , with n interpolation points. The grain
boundary is initially generated by placing n 2 equispaced interior
points s t p nx (,), 2, , 1p

k
p

() = … along the straight line defined by
t(0,)k() and t(1,)k() . Energy minimization makes the interior points

and triple junctions move, so s t(,)k() may no longer be a straight line.
It could remain as a straight line if only 2 collocations points are
chosen, and in this case the model will become a vertex model [32].

6.2. Numerical evaluation of the unit interpolator and its constrained
derivative

In order to obtain the velocities for the interior points and triple
junctions, it is necessary to obtain the following expressions:

s t s tl (,) ((,))k
s

k() ()= , l()s
k() and ()T()s

k
s

l
l

() k
k

()
()= . We can obtain

l k() algebraically from the parametric definition of the grain boundary
in (4) as:

s t
s

s t t d
ds

sl x, ((,)) () (()).k k

i

n

i
k

i
() ()

1

()= =
=

This is just taking the derivative of the parameterization of the grain
boundary with respect to s. Unfortunately this approach is too cum-
bersome and it does not take advantage of interpolation at the Che-
byshev point, see Appendix A for an extended analysis.

Two algorithms that take advantage of the interpolation at the
Chebyshev points are proposed. They approximate ()s

l
l

k
k

()
() . The naive

approach takes the derivative directly at the Chebyshev points of the
unitary vector s t

s t
l
l

(,)
(,)

k c
k c

()

() , see Algorithm 1. Unfortunately, this approach
only ensures that the unitary vector is unitary at the collocation points.

Algorithm 1. Naive spectral derivation for unit vector

1: Compute s t D s tl (,) 2 (,)k c n k c() 1 ()=

2: Generate
k sc t
k sc t

l
l

() (,)
() (,)

by dividing each vector in its norm.

3: Compute D2s
k sc t
k sc t

n
k sc t
k sc t

l
l

l
l

() (,)
() (,)

1
() (,)
() (,)

= .

Algorithm 1 adds a significant error in the computation of the de-
rivative of its interpolation in the domain. Thus, to correct this beha-
vior, we propose Algorithm 2.

Algorithm 2. Spectral derivation of interpolation of unit vector

1: Compute s t D s tl (,) 2 (,)k c n k c() 1 ()=

2: Compute s t D s tl((,)) 4 ,s
k c n

k c()
1

2 ()=

3: Compute each component of s t s tl l(,), (,)s
k s t
k s t s x

k
s y

kl
l

() (,)
() (,)

() ()
= as:

s t s t

s t s t

l l

l l

(,) , ·

(,) , ·

s x
k

y
k

y
k s t

s x
k s t x

k s t
s y

k s t

x
k s t y

k s t

s y
k

x
k

y
k s t

s x
k s t x

k s t
s y

k s t

x
k s t y

k s t

l l l l

l l

l l l l

l l

() ()

() , · (() ,) () , · (() ,)

(()2
, ()2 ,)3/2

() ()

() , · (() ,) () , · (() ,)

(()2
, ()2 ,)3/2

=

=

+

+

This new algorithm proposed allows us to get the derivative of the
unit vector at Chebyshev points where it is assured that the interpolation
is unitary on the whole domain. See Section 7.1 for the a numerical
comparison of Algorithms 1 and 2.

6.3. Topological changes and collision times

Topological changes in 2D grain growth have been extensively
documented and analyzed, see [50,32] to name a few. Thus, we will not
discuss them here. However, what will be discussed here is when they
need to be applied.

Following the definition of extinction time text of [32], which is the
time when a boundary k() shrinks until it has arc length equal to 0. We
compute the arc length of the k-grain boundary at time t as follows,

t
s

ds ds dsl l l() () .k
k k x

k
y
k

0

1 ()
0

1 ()
0

1 ()2 ()2= = = +
(14)

Thus, the arc length at time t t+ can be approximated as an in-
finitesimal amount of length being added-to/removed-from t()k ,

t t t t d
dt

t() ().k k
k+ +

(15)

To determine if a grain boundary is shrinking or not we need to
compute t()d

dt
k . If t() 0d

dt
k < , it shrinks; otherwise, it does not. Then,

taking the derivative of Eq. (14) with respect to time t we obtain:

d
dt

t
t

ds
t s

dsl T() () · () .k k k k
0

1 ()
0

1 () ()= =

Interchanging the spatial with the temporal derivative,

s t
ds

s
dsT T v· () · () ,k k k k

0

1 () ()
0

1 () ()= =
(16)

So, if we consider that the grain boundary collapses within t t t[,]+ ,
i.e. t t() 0k ext+ = , we can estimate the extinction time as follows:

t t d
dt

0 () .k
k

ext+

Thus, text turns out to be:

t t d
dt

()/ .k
k

ext (17)

Therefore, the algorithm to check when a boundary is shrinking and
collapsing is the one described in Algorithm 3.

A.H.J. Sazo et al. Computational Materials Science 160 (2019) 315–333

319

Algorithm 3. Criteria to determine if grain boundary will collapse
within time t t t[,]+

1: Compute t k t
d k

dt

ext
()=

2: if t text < then
3: Grain boundary will collapse within t t t[,]+
4: else
5: Grain boundary will NOT collapse within t t t[,]+
6: end if

A critical step for the management of topological transitions in a
GPU is the parallel management of them. They become critical due to
the fact that we expect to update the data structure in parallel and this
could cause race conditions. A race condition occurs when two GPU-
threads try to modify the same component of the data structure. For
instance, if two different threads try to apply a flipping next to the same
triple junction, the data structure could become corrupted. This is
avoided by using a polling system. We first decide for each triple
junction which neighboring grain boundary has the smallest positive
extinction time. This implies that each triple junction will select a grain
boundary. Then, we look at each grain boundary’s two triple junctions
and check if they were selected or not. If a grain boundary receives two
votes, it is a candidate for flipping and blocks its neighboring grain
boundaries preventing them from flipping. Notice that these neigh-
boring grain boundaries could have received at most 1 vote. The pro-
cess repeats but without considering boundaries that have been selected
as candidate grain boundaries for flipping, or grain boundaries that
have been blocked. After a few iterations, the algorithm converges to a
fixed point. This fixed point contains the list of candidates grain
boundaries selected for safe flipping. Now, the flipping could be per-
formed in parallel and no risk of damaging the data structure is taken.
Notice that this is not an issue when one implements topological
transitions in a sequential fashion, since there is no risk of damaging the
data structure when only one process is updating the data structure at a
time. See [55] for more details.

6.4. Numerical integration

Eqs. (8), (9), (16) and tw ()k from Eq. (12) must be computed every
time step during the numerical simulation. In general, to compute the
velocities for interior points and triple junctions given by Eqs. (8), (9)
and (12) we require the computation of the following integrals:

s
s t s dsT((,)) () ,k

i0

1 ()
(18)

and

s t s dsT , ()k
i0

1 ()

(19)

where k is the index of the k-th grain boundary, and i is the index of the
i-th collocation point in the grain boundary k. Notice that i could be
either an interior point or a triple junction.

All integrals can be computed using the Gaussian quadrature
[54,49] with Q points. The quadrature weights wq, as well as the
quadrature nodes xq, are pre-computed at the beginning of the nu-
merical simulation. Thus, (18) and (19) are numerically approximated
as:

s t ds w s t s

s t ds w s t s

T T

T T

((,)) · ((,))· () ,

, · (,)· ()| ,

s
k

i
q

Q

q s
k

i s x

k
i

q

Q

q
k

i s x

0
1 ()

0

()

0
1 ()

0

()

q

q

=
=

=
=

where s tT((,))s
k() is computed using Algorithm 2 and s tT (,)k() using

Algorithm 6.

6.5. Main algorithm

The main algorithm is shown in Algorithm 4.

Algorithm 4. Main Algorithm

1: CurrIter 0=
2: G (0) Initial grain structure.
3: µ(,) Set values.
4: while End criteria not satisfied do

5: s s s sl l T(), (), (()), (())k k
s

k
s

k() () () () Compute these terms using Algorithm 2

at the collocation points and at the quadrature points.
6: Compute average normal component of velocity for interior points.
7: Compute triple junction velocities.
8: Compute tangential component of velocity of interior points.
9: Compute total velocity for interior points.

10: Compute extinction time of each grain boundary with the total velocities.
11: Flip-list Select grain boundaries to be flipped using the Polling System [55].
12: G Flip grain boundaries in “Flip-list” and/or remove grains if a 3-sided grain

needs to flip any of its grain boundaries.
13: G t t()+ Evolve grain structure G to next time step with a predictor-corr-

ector scheme [55].
14: if CurrIter rmod 0= = then
15: Reparameterize boundaries.
16: end if
17: CurrIter CurrIter 1+
18: end while

Algorithm 4 initially required the following parameters for the nu-
merical simulation: the number of interior points n t, ,int 0 , and µ. We
also apply a reparameterization every r. It is also necessary to pre-
compute D D,n n1 1

2 and nodes and weights of the Gaussian quadrature.
We define µ/= for the study of the effects of the relationship be-
tween y µ. For the cases when we expect to have a large value of we
instead consider a small value for µ in order to still capture the effect of
the grain boundary energy.

7. Numerical experiments

We performed two types of experiments based on the development
of the model. The first set of experiments are related to the analysis of
computations that involves the unitary vector T k l

l
() k

k
()
()= and a vali-

dation test for a circular grain. The second set of experiments are re-
lated to numerical simulations of grain growth varying parameters such
as the µ/= ratio and grain boundary energy parameter .

7.1. Analysis of unit vector interpolation algorithms

The performance of the algorithms for interpolating unitary para-
metric curves is analyzed for a test boundary:

s s s s s s() (, exp()cos()sin(5) , [0, 1]=

Results of interpolation of the unit vector l
l

k
k

()
() are shown in the first

two rows of Fig. 3. The naive Algorithm 5 needs many interpolation
points to achieve the behavior of a unitary vector, while Algorithm 6
with a few points achieves great accuracy.

Fig. 3 shows that with n 10= interpolation points, Algorithm 6
proposed makes a much better approximation than the naive algorithm.
Even with n 50= interpolation points, the naive algorithm is incapable
of achieving a good approximation for an unit vector.

The convergence analysis confirms the observations previously
mentioned, see Fig. 2. In the case of l

l

k
k

()
() the approximation shows a

precision accurate to ten digits with n 20= interpolation points for

A.H.J. Sazo et al. Computational Materials Science 160 (2019) 315–333

320

Algorithm 6. On the other hand, the naive algorithm cannot decrease
the error below of 10 1.

7.2. Analysis of the algorithms computing derivatives of unit vectors

Like we discussed in the previous section, we obtain the same results
for the approximation of the derivative of the unit vector. Fig. 2 shows
the convergence analysis study of the approximation of l

l

k
k

()
() and

T()s
k() . The first row of Fig. 2 shows that Algorithm 6 (blue curve) does

a much better job than Algorithm 5 (red curve). In the second row of
Fig. 2 we observe a similar behavior but for Algorithm 2 (blue curve)
and Algorithm 1. It shows that Algorithm 2 handles with great accuracy
the derivative of the unit vector with a precision of 10 digits of accuracy
with n 22= interpolation points in both components. The error for the
naive Algorithm 1 cannot decrease significantly even using n 50=
points.

Fig. 3 shows a visual comparison of Algorithms 1, 2, 5, and 6. We
observe that even with n 10= interpolation points (middle columns),
Algorithms 6 and 2 make again a much better approximation than the
naive Algorithms 5 and 1. With n 50= interpolation points the naive
algorithm is incapable of achieving an stable approximation.

7.3. Evolving circle - code validation

In this section we discuss the classical test used to validate curva-
ture-based grain growth—the evolution of a circular boundary. In this
case the evolution of the boundary is described by a simple initial value

problem for the radius R t() of the circle

R t

R R

() ,

(0) .

d
dt

µ
R t()

0

=

=

Here µ denotes the grain boundary mobility coefficient. The analytical
solution of this problem is readily available and is given by
R t R µ t() 20

2= . To mimic evolution of the circle within the current
implementation of the code, we constructed the initial grain boundary
network as shown in Fig. 4a. The grain boundary network in Fig. 4a
satisfy the periodic boundary conditions on [0, 1]2. At the center of the
domain, we placed a circular grain with 10 sides, where each side has 2
inner points, respectively. To ensure that the circle shrinks by curva-
ture, we defined the grain boundary energy so that the grain boundaries
colored in red have finite grain boundary energy that is bounded away
from zero. At the same time, we assume that the energy of the re-
maining boundaries is infinitesimally small. In order to achieve this
effect, we assumed that the red grain has orientation 0 while all other
grains have the same orientation 1 0. Thus misorientation is only
present for the grain boundaries colored in red. In practice, this means
that we define the grain boundary energy for the light blue boundaries
as 10 6 and for the red boundaries as 1 10 6+ . The triple junction
mobility is set equal to 1 (green dots) and the grain boundary mobility
µ equal to 10 4 (gray dots), so that µ/ 104= = , see Fig. 4b.

Fig. 4c compares the analytical solution R t R µ t() 20
2= (shown

in blue) with the numerically computed radius (shown in red). The
comparison was made after the initial transition from the initial poly-
gonal 10-sided shape already took place. We also computed the µ from

Fig. 2. Convergence analysis for l l/k k() () (first row) and l l(/)s
k k() () (last row).

A.H.J. Sazo et al. Computational Materials Science 160 (2019) 315–333

321

the data since in the code we used the finite mobilities 1= and
µ 10 4= . The curves obtained are on top of each other. We conclude
that the analytical solution matches the results of the numerical simu-
lation.

7.4. Numerical simulations of the grain boundary network

As discussed before, we aim at large numerical simulation due to the
need for significant statistics [46,47,33,48]. To achieve this, we have
chosen the use of a GPU hardware architecture. This brings a great
computational power but requires to adapt the numerical algorithms.
The GPU is used through the CUDA library. The main difference

between a GPU implementation and a CPU implementation is the
parallel management of operations. In a CPU, without considering the
use of multi-threading, only one operation is computed at a time, where
in a GPU several operations can be computed in parallel. This shows a
clear advantage of doing to whole computation in less time. However, a
critical care must be take into account to avoid corrupting the data
structure. The issue comes, for instance, when naive implementations
allow different thread to modify the same data at the same time, and
race-condition may appear. This unfortunately, in our case, may cor-
rupt the grain boundary network. Particularly when topological tran-
sitions occurs. On the other hand, we can take full advantage of the
GPU when a large and independent computations are performed. For

Fig. 3. Behavior for l l/k k() () (first two rows) and T()s
k() (last two rows) using, from left to right, n 5, 10= and 50 interpolation points, respectively.

A.H.J. Sazo et al. Computational Materials Science 160 (2019) 315–333

322

instance, when we compute the velocities of the interior points and
triple junctions, or when we compute the tangential components of the
inner points. All of these tasks can be computed massively in a GPU,
thus the GPU framework suits well for the numerical implementation of
this proposed model, see [56].

We performed several numerical simulations of grain growth with
initially 100, 000 grains with a Multi-Step Predictor-Corrector Euler
method [55]. The Predictor-Corrector algorithm was used due to nu-
merical instabilities right before and after a flipping where the grain
boundary is expected to be a straight line. Its used avoided the in-
troduction of any threshold in the code to manage these cases.

We used n 2= interior points per boundary, that is, four collocation
points in total. We used the grain boundary energy function

() 1 (1 cos (4))2
3= + . We computed experiments with the

combination of the following parameters: {1, 10, 000} and
{0, 0.02, 0.2}. More experiments were performed but we only show

the limiting cases for for sake of clarity. The parameter changes the
kinetics of the whole system [57]; thus, it is worth studying it and
understanding it. This can be seen as having finite mobilities [9]. In the
plots shown below we use a continuous line with square () for the case
when 10, 000= and transparent continuous lines with diamond
markers () for 1= . Fig. 5 shows the grain structures for the two ’s
used. Like in Fig. 2, in [28,27], grain boundaries may allow non-convex
shapes.

Fig. 6a shows the relative area distributions in logarithmic an linear

scales (compare to Fig. 6a from [58] for 2D data). In this case, the
square markers were omitted for 10, 000= for clarity. We clearly
observe that the numerical experiment with 10, 000= has fewer
grains with small areas compared to 1= . The different values for the
grain boundary energy does not seem to affect the distribution of re-
latives areas since for both ’s used, the histograms for all the look
very similar.

Fig. 6b shows the dihedral angle distributions. Markers for
10, 000= were omitted as well. We see again that the wider dis-

tributions belong to the numerical experiment with 1= , whilst the
numerical experiment with 10, 000= tends to accumulate about 2 /3.
An interesting feature observed is the case for 10, 000= and 0.2= ,
which shows a slightly wider distribution compared to the other

10, 000= numerical experiments.
Fig. 6c shows the average area over time. We observe again a

clustering based on . 10, 000= shows a linear tendency over time
after an initial transient stage.

Fig. 6d shows the distribution of the number of sides of grains. The
numerical experiments for 10, 000= have fewer 3-sided grains and
the mode is 6-sided grains, where for 1= the mode of the distribution
decreases to 5-sided grains and the number of 3-sided grains increases.

Fig. 6e shows the average number of sides of neighbors per grain
class. As we increase the values of , the average number of sides of
neighbors decreases and we do not see a clear dependence on the grain
boundary energy.

Fig. 4. Circular boundary numerical experiment.

Fig. 5. Grain structures under different parameters from 1000 initial grains.

A.H.J. Sazo et al. Computational Materials Science 160 (2019) 315–333

323

Figs. 7 and 8 show the mean and median of the rate of change of
area per class scaled by µ 1, respectively. This scaling is applied to
observe the concordance with the Von Neumann-Mullins n 6 relation
[59], i.e. µ() (ns() 6)dA

dt , where ns() is the number of sides of
grain . The plots on the left resembles a vertex code for 1= and the
plot on the right resembles and curvature-based code for 10, 000= ;
thus, the linear relation is observed. We plot them independently since
their range of scales differs considerably. This results is similar to the
one shown in Fig. 14 of [12].

Fig. 9 shows the Grain Boundary Character Distributions (GBCD),

see [60], for 0.02= and 0.2= , respectively. In these cases, the
parameters do not seem to have an effect, so we only show the GBCD
for 10, 000= . It is clear that the GBCD shows the expected behaviour
in relation to the grain boundary energy function used, i.e. arc lengths
are accumulated for misorientations near 0.

Fig. 10 shows the Misorientation Distribution Function (MDF) for
0.02= (first row) and 0.2= (second row). Similarly to the case of the

GBCD, the MDF shows a more prominent behavior as we increase and
does not seem to have and effect. Thus, only the output for 10, 000=

is shown.

Fig. 6. Statistics for 1= (diamonds ♦ over solid line) and 10, 000= (squares over lighter solid line).

A.H.J. Sazo et al. Computational Materials Science 160 (2019) 315–333

324

Fig. 7. Rate of change of area per grain class. (Left) Mean of dA dt/ for 1= . (Right) Mean dA dt/ for 10, 000= . This was computed by removing less than 10% of
extreme values per class.

Fig. 8. Rate of change of area per grain class. (Left) Median of dA dt/ for 1= . (Right) Median dA dt/ for 10, 000= .

Fig. 9. The Grain Boundary Character Distributions (GBCD) for 0.02= (first row) and for 0.2= (second row). The right column accumulates the misorientations
for symmetry on [0, /4].

A.H.J. Sazo et al. Computational Materials Science 160 (2019) 315–333

325

A visual analysis of the relationship between Fig. 6a and d may lead
to the conclusion that grains with small areas will be 3 and 4-sided
grains for 1= . To answer this question, we constructed Fig. 11. We
show each class with a different color, for instance, from the x-axis to
the red curve we have the proportion of 3-sided grains for each of the
covered bins. From the red curve to the blue curve, we observe the
proportion of 4-sided grains, and so on. This is the same for all the six
experiments. Thus, for 1= , we can conclude that the long tail to the
left belongs to 3-sided grains and many 4-sided grains. On the other

side, we see that few 4-sided grains exist for 10, 000= and very few 3-
sided grains. On the contrary, more 5-sided grains and 6-sided grains
can be observed.

Fig. 12 shows the relative area distribution over time. The colorbar
shows the percentage of grain removed for each color, which means
that the blue curves were obtained when 20% of the grains were re-
moved. They clearly show the stationary evolution for all experiments
after 50% of the grains were removed. Fig. 13 shows the evolution of the
relative area over time as a heatmap in a logarithmic scale, where

Fig. 10. The Misorientation Distribution Function (MDF) for 0.02= (first row) and for 0.2= (second row). The right column accumulates the misorientations for
symmetry on [0, /4].

Fig. 11. Relative grain area distributions showing each class independently. The figure on the left corresponds to the numerical experiment performed with 1= and
the figure on the right corresponds to 10, 000= . In both cases we used 0.2= for the grain boundary energy. For the cases with 0= and 0.02= the figures look
alike so they were not included.

A.H.J. Sazo et al. Computational Materials Science 160 (2019) 315–333

326

Fig. 13. Evolution over time of relative grain area distribution. The figure on the left corresponds to the numerical experiment performed with 1= and the figure on
the right corresponds to 10, 000= . In both cases we used 0.2= for the grain boundary energy. For the cases with 0= and 0.02= the figures look alike so they
were not included.

Fig. 12. Evolution over time of relative grain area distribution. The figure on the left corresponds to the numerical experiment performed with 1= and the figure on
the right corresponds to 10, 000= . In both cases we used 0.2= for the grain boundary energy. For the cases with 0= and 0.02= the figures look alike so they
were not included. The colorbar represents the percentage of grains removed.

Fig. 14. Grain boundary network for 1= (left) and 10, 000= (right) for Read-Shockley with 0.5= . The colorbar show the corresponding value of the grain
boundary energy for each boundary.

A.H.J. Sazo et al. Computational Materials Science 160 (2019) 315–333

327

darker bins show a higher population. This was constructed every time
1% of the population was removed. The evolution over time is shown on
the y-axis, and for the bins we used the range [2.17, 1] for visualization
purposes. Again, after 50% of the grains have been removed, we observe
the stationary evolution.

7.5. Numerical simulation with Read-Shockley type grain boundary energy
function

Another type of the grain boundary energy function is the Read-
Shockley energy (see Eq. (34) in [42] and references therein). Here we

Fig. 15. Statistics for the scaled Read-Shockley grain boundary energy with 0.5= . Light-blue lines correspond to 1= and blue lines correspond to 1000= .

Fig. 16. Rate of change of area per grain class. (Left) Mean of dA dt/ for 1= . (Right) Mean dA dt/ for 1000= . This was computed by removing less than 10% of
extreme values per class. This uses the Read-Shockley grain boundary energy.

A.H.J. Sazo et al. Computational Materials Science 160 (2019) 315–333

328

use a scaled Read-Shockley in order to avoid large discrepancies of
grain boundary energies that may lead to singular behavior of the
network. We have the following expression for Read-Shockley energy

()()1 1 log , if ,

1, otherwise,
= +

where 16= and 0.5= . This function has its minimum at 0= . In
Fig. 14 we show two grain boundary networks obtained for the Read-
Shockley grain boundary energy function when 1= and 10, 000= ,
respectively. The colorbar shows the grain boundary energy value for
each boundary.

We present the same numerical experiments for the Read-Shockley
as those described in Section 7.4, light-blue lines correspond to 1=
and blue lines correspond to 1000= . We omit the description of the

Fig. 17. Rate of change of area per grain class. (Left) Median of dA dt/ for 1= . (Right) Median dA dt/ for 1000= . This uses the Read-Shockley grain boundary
energy.

Fig. 18. The Grain Boundary Character Distributions (GBCD) for the Read-Shockley grain boundary energy. The right column accumulates the misorientations for
symmetry on [0, /4]. Light-blue lines correspond to 1= and blue lines correspond to 1000= .

Fig. 19. The Misorientation Distribution Function (MDF) for the Read-Shockley grain boundary energy. The right column accumulates the misorientations for
symmetry on [0, /4]. Light-blue lines correspond to 1= and blue lines correspond to 1000= .

A.H.J. Sazo et al. Computational Materials Science 160 (2019) 315–333

329

plots Figs. 15–19 as they are the same as in Section 7.4.

8. Conclusions

In this paper we have derived and implemented in CUDA a new
model for grain growth in 2D, which reproduces a vertex-based model
and curvature-based model statistics depending on the parameters
used. The main reason to implement it in CUDA is due to the integral
formulation of the evolution equations.

We proposed a novel way to compute the derivative of a unitary
vector from discrete data points. This is done through the use of a
spectral method with Chebyshev points in a coupled fashion. We
showed that taking the derivative without considering the constraint of
being a unitary vector produces poor results. The proposed coupled
algorithms successfully solve this numerical challenge. This was needed
to build a numerical implementation of the coupled model.

A numerical simulation was run when 80% of initial grains were
removed and we validated that the stationary relative area distribution
is obtained after 50% of the grains are removed. We were able to re-
produce similar statistics one can get from a vertex-based model when

1= , and approach the statistics of a curvature-based model as we
increase the value of until 10,000. We confirmed that vertex-based
models have a long tail due to the presence of 3-sided and 4-sided
grains, compared to curvature-based models. We were also able to
successfully obtain the GBCD and reproduce well-known results in re-
lation to the inverse correlation with the grain boundary energy ().
Similar statistics were also obtained for the scaled Read-Shockley grain
boundary energy function.

Future work may include adding a stored energy term to study the
effect of recrystallization within the framework considered in this work.

Data availability

The raw/processed data required to reproduce these findings cannot
be shared at this time due to technical or time limitations.

CRediT authorship contribution statement

Alejandro H.J. Sazo: Conceptualization, Methodology, Software,
Validation, Formal analysis, Investigation, Data curation, Writing -
original draft, Writing - review & editing, Visualization. Pablo Ibarra
S.: Software, Validation, Formal analysis, Investigation, Data curation,
Writing - review & editing, Visualization. Ariel Sanhueza R.: Software,
Validation, Formal analysis, Investigation, Data curation, Writing -
review & editing, Visualization. Francisco J.A. Casas: Software,
Validation, Formal analysis, Investigation, Writing - review & editing,
Visualization. Claudio E. Torres: Conceptualization, Methodology,
Software, Validation, Formal analysis, Investigation, Resources,
Writing - original draft, Writing - review & editing, Supervision,
Project administration, Funding acquisition. Maria Emelianenko:
Conceptualization, Formal analysis, Investigation, Resources, Writing
- review & editing, Supervision. Dmitry Golovaty: Conceptualization,
Formal analysis, Investigation, Resources, Writing - review & editing,
Supervision.

Acknowledgements

This work has been partially funded by - CCTVal, CONICYT PIA/
Basal FB0821, and FONDECYT 11160744. ME acknowledges support
provided by the US National Science Foundation CAREER grant DMS-
1056821.

Appendix A. Computation of the constrained derivative

We briefly discuss in Section 6.2 Algorithms 1 and 2, for the computation of the constrained derivative. As mentioned before, to obtain l k() we can
explicitly compute the derivative with respect to s of the parametric definition of the grain boundary, see (4), as:

s t
s

s t t d
ds

sl x, ((,)) () (()).k k

i

n

i
k

i
() ()

1

()= =
=

Notice that the Lagrange polynomial s()i is decoupled from the boundary data tx ()i
k() . The derivative of s()i is obtained as follows,

d
ds

s
l s

d
ds

l s(()) 1
()

(()),i
i i

i=
(A.1)

which implies that the derivative of l s()i must be obtained:

d
ds

l s d
ds k

k i

s s
k
k i

j
j i
j k

s s(())
1 1 1

.i

n

k

n n

j=
=

=
= =

Replacing in (A.1) we obtain:

d
ds

s
l s k

k i
j
j i
j k

s s(()) 1
() 1 1

.i
i i

n n

j=
= =

(A.2)

This shows that evaluating (A.2) requires n()2 floating point operations and thus, the overall computational cost of computing l k() requires n()3

floating point operations for each s.
We also need to compute l()s

k() , taking the derivative with respect to s of (4) twice we obtain:

s
s t t d

ds
sl x((,)) () (()).k

i

n

i
k

i
()

0

()
2

2=
=

A.H.J. Sazo et al. Computational Materials Science 160 (2019) 315–333

330

Now the second derivative of s()i is needed, which can be computed by taking the derivative with respect to s of (A.2),

d
ds

l s
k
k i

j
j i
j k

l s
s s s s

(())
1 1

()
()()

.i

n n
i

k j

2

2 =
= =

Thus,

d
ds

s s
k
k i

j
j i
j k

s s s s
(()) ()

1 1

1
()()i i

n n

k j

2

2 =
= =

A new sum appeared while taking the derivative. The floating point operations needed to evaluate l()s
k() are n()3 . This analysis shows that it is

desirable to avoid the evaluation of these polynomials. An alternative approach is to take advantage of having the data at Chebyshev points. This
means we can use Spectral Methods [49] to approximate the derivative numerically. The derivative of s t(,)k() at the Chebyshev points is obtained
by computing the product between the differentiation matrix Dn 1 and the vector tx ()k() , where the data points are evaluated at the Chebyshev
points. Notice that this matrix is multiplied by 2 since the domain is mapped from [1, 1] to [0, 1]. The second derivative is computed by multiplying
the same data by Dn 1

2 , where both differentiation matrices can be pre-computed. This change of approach produces an algorithm n()2 , since it is
just a matrix-vector multiplication and the data is needed at the collocation points. The only n()3 component is the pre-computation of Dn 1

2 , but
since it is done once we disregard its cost. Therefore l k() and l()s

k() are now computed as:

s t D s t
s t D s t

l
l
(,) (,)

((,)) (,)

k
c n

k
c

s
k

c n
k

c

()
1

()

()
1

2 ()

=
=

We still need to compute the constrained derivative T()s
k() . This means we need to compute the derivative of the unit vector l

l

k
k

()
() .

Two algorithms are proposed to compute ()s
l
l

k
k

()
() . The naive approach takes the derivative directly at the Chebyshev points of the unitary vector

s t
s t

l
l

(,)
(,)

k c
k c

()

() , see Algorithm 1. Unfortunately, this approach only ensures that the unitary vector is unitary at the collocation points.

Algorithm 1. Naive spectral derivation for unit vector (uncoupled)

1: Compute s t D s tl (,) 2 (,)k c n k c() 1 ()=

2: Generate
k sc t
k sc t

l
l

() (,)
() (,)

by dividing each vector in its norm.

3: Compute D2s
k sc t
k sc t

n
k sc t
k sc t

l
l

l
l

() (,)
() (,)

1
() (,)
() (,)

= .

This adds a large error in the computation of the derivative of its interpolation. Thus, to correct this behavior, we propose Algorithm 2.

Algorithm 2. Spectral derivation with coupled interpolation of unit vector

1: Compute s t D s tl (,) 2 (,)k c n k c() 1 ()=

2: Compute s t D s tl((,)) 4 ,s
k c n

k c()
1

2 ()=

3: Compute each component of s
k s t
k s t

l
l

() (,)
() (,)

as:

s t s t

s t s t

l l

l l

(,) , ·

(,) , ·

s x
k

y
k

y
k s t

s x
k s t x

k s t
s y

k s t

x
k s t y

k s t

s y
k

x
k

y
k s t

s x
k s t x

k s t
s y

k s t

x
k s t y

k s t

l l l l

l l

l l l l

l l

() ()

() , · (() ,) () , · (() ,)

(()2
, ()2 ,)3/2

() ()

() , · (() ,) () , · (() ,)

(()2
, ()2 ,)3/2

=

=

+

+

This new algorithm proposed allows us to get the derivative of the unit vector at Chebyshev points where it is assured that the interpolation is
unitary on the whole domain. See Section 7.1 for a numerical comparison of Algorithms 1 and 2.

Another important algorithm needed is the interpolation of the unitary vector valued function T k l
l

() k
k

()
()= . Again, we present 2 cases, the naive

version and the coupled version. The naive version is presented in Algorithm 5 and the coupled version is presented in Algorithm 6.

A.H.J. Sazo et al. Computational Materials Science 160 (2019) 315–333

331

Algorithm 5. Naive (uncoupled) interpolation of T k()

1: Compute s t D s tl (,) 2 (,)k c n k c() 1 ()=

2: s tT ,x
k() Interpolate s t s tl l(,)/ (,)x

k k() ()

3: s tT ,y
k() Interpolate s t s tl l(,)/ (,)y

k k() ()

4: Compute s t s t s tT T T, , , ,k
x
k

y
k() () ()=

Algorithm 6. Spectral (coupled) interpolation of T k()

1: Compute s t D s tl (,) 2 (,)k c n k c() 1 ()=

2: s tl ,k() Interpolate s tl (,)k()

3: Compute s tT ,k
k s t

k s t

l

l

()
() ,

() ,
=

Therefore, we have all the components we need to implement the coupled model.

Appendix B. Supplementary material

Supplementary data associated with this article can be found, in the online version, at https://doi.org/10.1016/j.commatsci.2019.01.022.

References

[1] K. Barmak, E. Eggeling, D. Kinderlehrer, R. Sharp, S. Ta’asan, A.D. Rollett,
K.R. Coffey, Grain growth and the puzzle of its stagnation in thin films: the curious
tale of a tail and an ear, Prog. Mater Sci. 58 (2013) 987–1055.

[2] J.E. Darnbrough, P.E.J. Flewitt, Growth of abnormal planar faceted grains in na-
nocrystalline nickel containing impurity sulphur, Acta Mater. 79 (2014) 421–433.

[3] J.S. Shin, S.H. Ko, K.T. Kim, Development and characterization of low-silicon cast
aluminum alloys for thermal dissipation, J. Alloy. Compd. 644 (2015) 673–686.

[4] J.E. Darnbrough, F. Christien, P.E.J. Flewitt, Kinetics and dynamics of planar ab-
normal grain growth in nanocrystalline nickel, Acta Mater. 141 (2017) 67–74.

[5] D. Zöllner, A Potts model for junction limited grain growth, Comput. Mater. Sci. 50
(2011) 2712–2719.

[6] D. Zöllner, Grain microstructural evolution in 2D and 3D polycrystals under triple
junction energy and mobility control, Comput. Mater. Sci. 118 (2016) 325–337.

[7] K. Ito, Two-dimensional simulation of the effect of the migration of triple junctions
on crystallographic texture evolution through grain coarsening, Comput. Mater. Sci.
62 (2012) 117–125.

[8] P. Streitenberger, D. Zöllner, Evolution equations and size distributions in nano-
crystalline grain growth, Acta Mater. 59 (2011) 4235–4243.

[9] P. Streitenberger, D. Zöllner, Triple junction controlled grain growth in two-di-
mensional polycrystals and thin films: self-similar growth laws and grain size dis-
tributions, Acta Mater. 78 (2014) 114–124.

[10] D. Zöllner, A phenomenological approach to investigate nanocrystalline grain
growth, Comput. Mater. Sci. 92 (2014) 114–119.

[11] D. Zöllner, P. Streitenberger, Studying the influence of triple junction energy and
mobility on annealing processes, IOP Conf. Ser.: Mater. Sci. Eng. 89 (2015) 012061.

[12] D. Zöllner, Treating grain growth in thin films in three dimensions: a simulation
study, Comput. Mater. Sci. 125 (2016) 51–60.

[13] A.J. Haslam, S.R. Phillpot, D. Wolf, Mechanisms of grain growth in nanocrystalline
fcc metals by molecular-dynamics simulation, Mater. Sci. Eng. 318 (2001) 293–312.

[14] A.E. Lobkovsky, J.A. Warren, Sharp interface limit of a phase-field model of crystal
grains, Phys. Rev. E 63 (2001) 051605.

[15] R.I. Saye, J.A. Sethian, Analysis and applications of the Voronoi Implicit Interface
Method, J. Comput. Phys. 231 (2012) 6051–6085.

[16] A. Vondrous, Grain Growth Behavior and Efficient Large Scale Simulations of
Recrystallization with the Phase-field Method, KIT Scientific Publishing, 2013.

[17] R. Backofen, K. Barmak, K.E. Elder, A. Voigt, Capturing the complex physics behind
universal grain size distributions in thin metallic films, Acta Mater. 64 (2014)
72–77.

[18] J.M. Tarp, J. Mathiesen, Rotation-limited growth of three-dimensional body-cen-
tered-cubic crystals, Phys. Rev. E, Stat., Nonlinear, Soft Matter Phys. 92 (2015)
12409.

[19] G.I. Tóth, T. Pusztai, L. Gránásy, Consistent multiphase-field theory for interface
driven multidomain dynamics, Phys. Rev. B - Condens. Matter Mater. Phys. 92
(2015) 1–19.

[20] A.R. Balakrishna, W.C. Carter, Combining phase-field crystal methods with a Cahn-

Hilliard model for binary alloys, Phys. Rev. E 97 (2018) 043304.
[21] M. Elsey, S. Esedoglu, P. Smereka, Diffusion generated motion for grain growth in

two and three dimensions, J. Comput. Phys. (2009) 1–24.
[22] M. Elsey, S. Esedoglu, P. Smereka, Large-scale simulations and parameter study for

a simple recrystallization model, Phil. Mag. 91 (2011) 1607–1642.
[23] V. Derkach, J. McCuan, A. Novick-Cohen, A. Vilenkin, Geometric interfacial mo-

tion: coupling surface diffusion and mean curvature motion, in: Y. Maekawa,
S. Jimbo (Eds.), Mathematics for Nonlinear Phenomena — Analysis and
Computation, Springer Proceedings in Mathematics & Statistics, vol. 215, Springer
International Publishing, Cham, 2017, pp. 23–46.

[24] H.J. Frost, C.V. Thompson, D.T. Walton, Simulation of thin film grain structures—i.
Grain growth stagnation, Acta Metall. Mater. 38 (1990) 1455–1462.

[25] S. Ta’asan, P. Yu, I. Livshits, D. Kinderlehrer, J. Lee, Multiscale modeling and si-
mulation of grain boundary evolution, in: Proc. 44th AIAA/ASME/ASCE/AHS
Structures, Structural Dynamics, and Materials Conference 7-10 April 2003,
Norfolk, Virginia, 2003.

[26] D. Kinderlehrer, I. Livshits, S. Ta’asan, A variational approach to modeling and
simulation of grain growth, SIAM J. Scientif. Comput. 28 (2006) 1694–1715.

[27] S. Esedoglu, Grain size distribution under simultaneous grain boundary migration
and grain rotation in two dimensions, Comput. Mater. Sci. 121 (2016) 209–216.

[28] E. Miyoshi, T. Takaki, Y. Shibuta, M. Ohno, Bridging molecular dynamics and
phase-field methods for grain growth prediction, Comput. Mater. Sci. 152 (2018)
118–124.

[29] D. Weygand, Y. Brechet, J. Lepinoux, A vertex simulation of grain growth in 2D and
3D, Adv. Eng. Mater. 3 (2001) 67–71.

[30] R. Henseler, B. Niethammer, F. Otto, A reduced model for simulating grain growth,
in: P. Colli, C. Verdi, A. Visintin (Eds.), Free Boundary Problems, Birkhäuser Basel,
Basel, 2004, pp. 177–187.

[31] L.A.B. Mora, 2D vertex modeling for the simulation of grain growth and related
phenomena, Math. Comput. Simul. 49 (2010) 1–23.

[32] C.E. Torres, M. Emelianenko, D. Golovaty, D. Kinderlehrer, S. Ta’asan, Numerical
analysis of the vertex models for simulating grain boundary networks, SIAM J.
Appl. Math. 75 (2015) 762–786.

[33] Y. Mellbin, H. Hallberg, M. Ristinmaa, An extended vertex and crystal plasticity
framework for efficient multiscale modeling of polycrystalline materials, Int. J.
Solids Struct. 125 (2017) 150–160.

[34] G. Gottstein, a. H King, L. Shvindlerman, The effect of triple-junction drag on grain
growth, Acta Mater. 48 (2000) 397–403.

[35] G. Gottstein, L. Shvindlerman, Triple junction drag and grain growth in 2D poly-
crystals, Acta Mater. 50 (2002) 703–713.

[36] V.Y. Novikov, On the influence of triple junctions on grain growth kinetics and
microstructure evolution in 2D polycrystals, Scr. Mater. 52 (2005) 857–861.

[37] E.A. Holm, S.M. Foiles, How grain growth stops: a mechanism for grain-growth
stagnation in pure materials, Science 328 (2010) 1138–1141.

[38] K. Barmak, E. Eggeling, R. Sharp, S. Roberts, T. Shyu, T. Sun, B. Yao, S. Ta’asan,
D. Kinderlehrer, A.D. Rollett, K. Coffey, Grain growth and the puzzle of its stag-
nation in thin films a detailed comparison of experiments and simulations, Mater.
Sci. Forum 715–716 (2012) 473–479.

A.H.J. Sazo et al. Computational Materials Science 160 (2019) 315–333

332

https://doi.org/10.1016/j.commatsci.2019.01.022
http://refhub.elsevier.com/S0927-0256(19)30016-3/h0005
http://refhub.elsevier.com/S0927-0256(19)30016-3/h0005
http://refhub.elsevier.com/S0927-0256(19)30016-3/h0005
http://refhub.elsevier.com/S0927-0256(19)30016-3/h0010
http://refhub.elsevier.com/S0927-0256(19)30016-3/h0010
http://refhub.elsevier.com/S0927-0256(19)30016-3/h0015
http://refhub.elsevier.com/S0927-0256(19)30016-3/h0015
http://refhub.elsevier.com/S0927-0256(19)30016-3/h0020
http://refhub.elsevier.com/S0927-0256(19)30016-3/h0020
http://refhub.elsevier.com/S0927-0256(19)30016-3/h0025
http://refhub.elsevier.com/S0927-0256(19)30016-3/h0025
http://refhub.elsevier.com/S0927-0256(19)30016-3/h0030
http://refhub.elsevier.com/S0927-0256(19)30016-3/h0030
http://refhub.elsevier.com/S0927-0256(19)30016-3/h0035
http://refhub.elsevier.com/S0927-0256(19)30016-3/h0035
http://refhub.elsevier.com/S0927-0256(19)30016-3/h0035
http://refhub.elsevier.com/S0927-0256(19)30016-3/h0040
http://refhub.elsevier.com/S0927-0256(19)30016-3/h0040
http://refhub.elsevier.com/S0927-0256(19)30016-3/h0045
http://refhub.elsevier.com/S0927-0256(19)30016-3/h0045
http://refhub.elsevier.com/S0927-0256(19)30016-3/h0045
http://refhub.elsevier.com/S0927-0256(19)30016-3/h0050
http://refhub.elsevier.com/S0927-0256(19)30016-3/h0050
http://refhub.elsevier.com/S0927-0256(19)30016-3/h0055
http://refhub.elsevier.com/S0927-0256(19)30016-3/h0055
http://refhub.elsevier.com/S0927-0256(19)30016-3/h0060
http://refhub.elsevier.com/S0927-0256(19)30016-3/h0060
http://refhub.elsevier.com/S0927-0256(19)30016-3/h0065
http://refhub.elsevier.com/S0927-0256(19)30016-3/h0065
http://refhub.elsevier.com/S0927-0256(19)30016-3/h0070
http://refhub.elsevier.com/S0927-0256(19)30016-3/h0070
http://refhub.elsevier.com/S0927-0256(19)30016-3/h0075
http://refhub.elsevier.com/S0927-0256(19)30016-3/h0075
http://refhub.elsevier.com/S0927-0256(19)30016-3/h0080
http://refhub.elsevier.com/S0927-0256(19)30016-3/h0080
http://refhub.elsevier.com/S0927-0256(19)30016-3/h0085
http://refhub.elsevier.com/S0927-0256(19)30016-3/h0085
http://refhub.elsevier.com/S0927-0256(19)30016-3/h0085
http://refhub.elsevier.com/S0927-0256(19)30016-3/h0090
http://refhub.elsevier.com/S0927-0256(19)30016-3/h0090
http://refhub.elsevier.com/S0927-0256(19)30016-3/h0090
http://refhub.elsevier.com/S0927-0256(19)30016-3/h0095
http://refhub.elsevier.com/S0927-0256(19)30016-3/h0095
http://refhub.elsevier.com/S0927-0256(19)30016-3/h0095
http://refhub.elsevier.com/S0927-0256(19)30016-3/h0100
http://refhub.elsevier.com/S0927-0256(19)30016-3/h0100
http://refhub.elsevier.com/S0927-0256(19)30016-3/h0105
http://refhub.elsevier.com/S0927-0256(19)30016-3/h0105
http://refhub.elsevier.com/S0927-0256(19)30016-3/h0110
http://refhub.elsevier.com/S0927-0256(19)30016-3/h0110
http://refhub.elsevier.com/S0927-0256(19)30016-3/h0115
http://refhub.elsevier.com/S0927-0256(19)30016-3/h0115
http://refhub.elsevier.com/S0927-0256(19)30016-3/h0115
http://refhub.elsevier.com/S0927-0256(19)30016-3/h0115
http://refhub.elsevier.com/S0927-0256(19)30016-3/h0115
http://refhub.elsevier.com/S0927-0256(19)30016-3/h0120
http://refhub.elsevier.com/S0927-0256(19)30016-3/h0120
http://refhub.elsevier.com/S0927-0256(19)30016-3/h0130
http://refhub.elsevier.com/S0927-0256(19)30016-3/h0130
http://refhub.elsevier.com/S0927-0256(19)30016-3/h0135
http://refhub.elsevier.com/S0927-0256(19)30016-3/h0135
http://refhub.elsevier.com/S0927-0256(19)30016-3/h0140
http://refhub.elsevier.com/S0927-0256(19)30016-3/h0140
http://refhub.elsevier.com/S0927-0256(19)30016-3/h0140
http://refhub.elsevier.com/S0927-0256(19)30016-3/h0145
http://refhub.elsevier.com/S0927-0256(19)30016-3/h0145
http://refhub.elsevier.com/S0927-0256(19)30016-3/h0150
http://refhub.elsevier.com/S0927-0256(19)30016-3/h0150
http://refhub.elsevier.com/S0927-0256(19)30016-3/h0150
http://refhub.elsevier.com/S0927-0256(19)30016-3/h0155
http://refhub.elsevier.com/S0927-0256(19)30016-3/h0155
http://refhub.elsevier.com/S0927-0256(19)30016-3/h0160
http://refhub.elsevier.com/S0927-0256(19)30016-3/h0160
http://refhub.elsevier.com/S0927-0256(19)30016-3/h0160
http://refhub.elsevier.com/S0927-0256(19)30016-3/h0165
http://refhub.elsevier.com/S0927-0256(19)30016-3/h0165
http://refhub.elsevier.com/S0927-0256(19)30016-3/h0165
http://refhub.elsevier.com/S0927-0256(19)30016-3/h0170
http://refhub.elsevier.com/S0927-0256(19)30016-3/h0170
http://refhub.elsevier.com/S0927-0256(19)30016-3/h0175
http://refhub.elsevier.com/S0927-0256(19)30016-3/h0175
http://refhub.elsevier.com/S0927-0256(19)30016-3/h0180
http://refhub.elsevier.com/S0927-0256(19)30016-3/h0180
http://refhub.elsevier.com/S0927-0256(19)30016-3/h0185
http://refhub.elsevier.com/S0927-0256(19)30016-3/h0185
http://refhub.elsevier.com/S0927-0256(19)30016-3/h0190
http://refhub.elsevier.com/S0927-0256(19)30016-3/h0190
http://refhub.elsevier.com/S0927-0256(19)30016-3/h0190
http://refhub.elsevier.com/S0927-0256(19)30016-3/h0190

[39] P. Thamburaja, M. Jamshidian, A multiscale Taylor model-based constitutive
theory describing grain growth in polycrystalline cubic metals, J. Mech. Phys.
Solids 63 (2014) 1–28.

[40] A.H.J. Sazo, C.E. Torres, An implicit-transition model for numerical simulation of
3D grain growth, 2017 36th International Conference of the Chilean Computer
Science Society (SCCC), IEEE, 2017, pp. 1–6.

[41] K. Barmak, M. Emelianenko, D. Golovaty, D. Kinderlehrer, S. Ta’asan, A new per-
spective on texture evolution, Int. J. Numer. Anal. Model. 5 (2008) 93–108.

[42] I. Yegorov, C.E. Torres, M. Emelianenko, A Boltzmann-type kinetic model for mis-
orientation distribution functions in two-dimensional fiber-texture polycrystalline
grain growth, Acta Mater. 109 (2016) 230–247.

[43] P.R. Rios, D. Zöllner, Critical assessment 30: grain growth – unresolved issues,
Mater. Sci. Technol. 34 (2018) 629–638.

[44] J. Nickolls, I. Buck, M. Garland, K. Skadron, Scalable parallel programming with
CUDA, Queue 6 (2008) 40–53.

[45] Y. Mellbin, H. Hallberg, M. Ristinmaa, Accelerating crystal plasticity simulations
using GPU multiprocessors, Int. J. Numer. Meth. Eng. 100 (2014) 111–135.

[46] K. Piękoś, J. Tarasiuk, K. Wierzbanowski, B. Bacroix, Generalized vertex model of
recrystallization–application to polycrystalline copper, Comput. Mater. Sci. 42
(2008) 584–594.

[47] M. Bernacki, R. Logé, T. Coupez, Level set framework for the finite-element mod-
elling of recrystallization and grain growth in polycrystalline materials, Scr. Mater.
64 (2011) 525–528.

[48] B. Korbuly, T. Pusztai, H. Henry, M. Plapp, M. Apel, L. Gránásy, Grain coarsening in
two-dimensional phase-field models with an orientation field, Phys. Rev. E 95
(2017) 1–12.

[49] L.N. Trefethen, Spectral Methods in MATLAB, Software, Environments, and Tools,
Society for Industrial and Applied Mathematics, SIAM, 3600 Market Street, Floor 6,

Philadelphia, PA 19104, 2000.
[50] D. Kinderlehrer, I. Livshits, S. Ta’Asan, A variational approach to modeling and

simulation of grain growth, SIAM J. Scientif. Comput. 28 (2006) 1694–1715.
[51] K. Mikula, D. Sevcovic, Evolution of plane curves driven by a nonlinear function of

curvature and anisotropy, SIAM J. Appl. Math. 61 (2001) 1473–1501.
[52] J.W. Barrett, H. Garcke, R. Nürnberg, A parametric finite element method for fourth

order geometric evolution equations, J. Comput. Phys. 222 (2007) 441–467.
[53] J.W. Barrett, H. Garcke, R. Nurnberg, Numerical approximation of gradient flows

for closed curves in Rd, IMA J. Numer. Anal. 30 (2010) 4–60.
[54] T. Sauer, Numerical Analysis, second ed., Addison-Wesley Publishing Company,

USA, 2011.
[55] A.H.J. Sazo Gómez, Analysis of 2D and 3D Grain Growth Models in Polycrystalline

Materials, Master thesis Universidad Técnica Federico Santa María, 2018.
[56] Alejandro H.J. Sazo, S. Pablo Ibarra, R. Ariel Sanhueza, Francisco J.A. Casas,

Claudio E. Torres, Maria Emelianenko, Dmitry Golovaty, Evolution of two-dimen-
sional grain boundary networks implemented in GPU, 2018. https://github.com/
tclaudioe/coupled-model-grain-growth-GPU (accessed: 2018-12-27).

[57] P.R. Rios, M.E. Glicksman, Grain boundary, triple junction and quadruple point
mobility controlled normal grain growth, Phil. Mag. 95 (2015) 2092–2127.

[58] J.K. Mason, E.A. Lazar, R.D. MacPherson, D.J. Srolovitz, Geometric and topological
properties of the canonical grain-growth microstructure, Phys. Rev. E 92 (2015)
063308.

[59] W.W. Mullins, Two-dimensional motion of idealized grain boundaries, J. Appl.
Phys. 27 (1956) 900–904.

[60] P. Bardsley, K. Barmak, E. Eggeling, Y. Epshteyn, D. Kinderlehrer, S. Ta’asan,
Towards a gradient flow for microstructure, Atti della Accademia Nazionale dei
Lincei, Classe di Scienze Fisiche, Matematiche e Naturali, Rendiconti Lincei
Matematica e Applicazioni 28 (2017) 777–805.

A.H.J. Sazo et al. Computational Materials Science 160 (2019) 315–333

333

http://refhub.elsevier.com/S0927-0256(19)30016-3/h0195
http://refhub.elsevier.com/S0927-0256(19)30016-3/h0195
http://refhub.elsevier.com/S0927-0256(19)30016-3/h0195
http://refhub.elsevier.com/S0927-0256(19)30016-3/h0200
http://refhub.elsevier.com/S0927-0256(19)30016-3/h0200
http://refhub.elsevier.com/S0927-0256(19)30016-3/h0200
http://refhub.elsevier.com/S0927-0256(19)30016-3/h0205
http://refhub.elsevier.com/S0927-0256(19)30016-3/h0205
http://refhub.elsevier.com/S0927-0256(19)30016-3/h0210
http://refhub.elsevier.com/S0927-0256(19)30016-3/h0210
http://refhub.elsevier.com/S0927-0256(19)30016-3/h0210
http://refhub.elsevier.com/S0927-0256(19)30016-3/h0215
http://refhub.elsevier.com/S0927-0256(19)30016-3/h0215
http://refhub.elsevier.com/S0927-0256(19)30016-3/h0220
http://refhub.elsevier.com/S0927-0256(19)30016-3/h0220
http://refhub.elsevier.com/S0927-0256(19)30016-3/h0225
http://refhub.elsevier.com/S0927-0256(19)30016-3/h0225
http://refhub.elsevier.com/S0927-0256(19)30016-3/h0230
http://refhub.elsevier.com/S0927-0256(19)30016-3/h0230
http://refhub.elsevier.com/S0927-0256(19)30016-3/h0230
http://refhub.elsevier.com/S0927-0256(19)30016-3/h0235
http://refhub.elsevier.com/S0927-0256(19)30016-3/h0235
http://refhub.elsevier.com/S0927-0256(19)30016-3/h0235
http://refhub.elsevier.com/S0927-0256(19)30016-3/h0240
http://refhub.elsevier.com/S0927-0256(19)30016-3/h0240
http://refhub.elsevier.com/S0927-0256(19)30016-3/h0240
http://refhub.elsevier.com/S0927-0256(19)30016-3/h0245
http://refhub.elsevier.com/S0927-0256(19)30016-3/h0245
http://refhub.elsevier.com/S0927-0256(19)30016-3/h0245
http://refhub.elsevier.com/S0927-0256(19)30016-3/h0250
http://refhub.elsevier.com/S0927-0256(19)30016-3/h0250
http://refhub.elsevier.com/S0927-0256(19)30016-3/h0255
http://refhub.elsevier.com/S0927-0256(19)30016-3/h0255
http://refhub.elsevier.com/S0927-0256(19)30016-3/h0260
http://refhub.elsevier.com/S0927-0256(19)30016-3/h0260
http://refhub.elsevier.com/S0927-0256(19)30016-3/h0265
http://refhub.elsevier.com/S0927-0256(19)30016-3/h0265
http://refhub.elsevier.com/S0927-0256(19)30016-3/h0270
http://refhub.elsevier.com/S0927-0256(19)30016-3/h0270
http://refhub.elsevier.com/S0927-0256(19)30016-3/h0275
http://refhub.elsevier.com/S0927-0256(19)30016-3/h0275
https://github.com/tclaudioe/coupled-model-grain-growth-GPU
https://github.com/tclaudioe/coupled-model-grain-growth-GPU
http://refhub.elsevier.com/S0927-0256(19)30016-3/h0285
http://refhub.elsevier.com/S0927-0256(19)30016-3/h0285
http://refhub.elsevier.com/S0927-0256(19)30016-3/h0290
http://refhub.elsevier.com/S0927-0256(19)30016-3/h0290
http://refhub.elsevier.com/S0927-0256(19)30016-3/h0290
http://refhub.elsevier.com/S0927-0256(19)30016-3/h0295
http://refhub.elsevier.com/S0927-0256(19)30016-3/h0295
http://refhub.elsevier.com/S0927-0256(19)30016-3/h0300
http://refhub.elsevier.com/S0927-0256(19)30016-3/h0300
http://refhub.elsevier.com/S0927-0256(19)30016-3/h0300
http://refhub.elsevier.com/S0927-0256(19)30016-3/h0300

	Evolution of two-dimensional grain boundary networks implemented in GPU
	Introduction
	Problem setup
	Interpolation of the boundaries
	Derivation of triple junction evolution and the normal component of the velocity of the interior points
	Tangential component of the velocity for interior points
	Algorithms for numerical implementation of the model
	Numerical boundary parameterization
	Numerical evaluation of the unit interpolator and its constrained derivative
	Topological changes and collision times
	Numerical integration
	Main algorithm

	Numerical experiments
	Analysis of unit vector interpolation algorithms
	Analysis of the algorithms computing derivatives of unit vectors
	Evolving circle - code validation
	Numerical simulations of the grain boundary network
	Numerical simulation with Read-Shockley type grain boundary energy function

	Conclusions
	Data availability
	mk:H1_20
	Acknowledgements
	Computation of the constrained derivative
	Supplementary material
	References

