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ABSTRACT: One of the most challenging aspects of the microstructwaliéon
in polycrystalline materials is to understand the role gfalogical reconfigurations
during coarsening. In this paper, we study these criticahtyin a one-dimensional
grain-boundary system and a stochastic framework for nmglééxture evolution.
The model is based on a master equation derived from nuriigrieiermined statis-
tical properties of the system.

Keywords:  Grain boundary character, Coarsening, Texture, Contisitioue ran-
dom walk.

1 INTRODUCTION

Most technologically useful materials arise as polyciisia microstructures, com-
posed of a myriad of small crystallites, termed grains, sdpd by interfaces, called
grain boundaries. The energetics and connectivity of theer& of boundaries are
implicated in many properties across wide scales, for exanfynctional properties,

like conductivity in microprocessors, and lifetime projpes, like fracture toughness
in structures.

A central problem is to engineer a microstructure to attaifesired set of material
characteristics. It likewise presents many challengemfmthematical modeling, sim-
ulation, and analysis. Historical emphasis here has beghegeometry, or more
exactly, on statistics of simple geometric features of expental and simulated poly-
crystalline networks, like grain area. We are now turning atiention to texture,

the mesoscopic description of arrangement and propeftibs metwork described in
terms of both crystallography and geometry.

In recent years, we have witnessed a changing paradigm im#terials laboratory

with the introduction of automated data acquisition te¢bgie@s. This has permitted
the collection of statistics on a vast scale and its use tionige aspects of material
behavior. There are situations, for example, where it isiptesto quantify the amount
of alignment or misalignment sufficient to produce a cowngiesistant microstruc-
ture [1]. To rise beyond this level of anecdotal observatibe thermodynamics of
the material system must be related to texture and textlateceproperties. Said in
a different way, are there any texture related distribugtihich are material proper-
ties? Some geometric features of the configuration, likatikel area statistics have
these properties in the sense that they are robust but teayoaistrongly related to
energetics. Recent work has provided us with a new statiseagrain boundary char-
acter distribution, which has enormous promise in thisatiog. The grain boundary
character distribution is a measure of relative amountaihgooundaries with a given
net misorientation. Owing to our new ability to simulate thelution of large scale

systems, we have been able to show that this statistic isst@nd, in elementary



cases, easily correlated to the grain boundary energy [Z]—[4

However, the mechanisms by which the robust distributicmselbp from an initial
population are not yet understood. As a polycrystallindfigoination coarsens, facets
are interchanged, some grains grow larger, and other gdidappear. We refer to
these topological rearrangements as critical events. &umtal events contribute to
the evolution of both the relative area and the grain boundharacter distribution
via the motion of the triple junctions, with low energy boanigs sweeping out those
with higher energy. Further, when triple junctions collidew boundaries are created.
The regular evolution of the network of grain boundarieswn timensions is gov-
erned by the Mullins equations of curvature-driven growtipplemented by the Her-
ring condition of force balance at triple junctions—a systeihparabolic equations
with natural boundary conditions [5]-[9]. (For the highéménsional formulation of
capillary driven growth, see [10].) A main feature, first ebg&d in [9] is that the non-
linear system and boundary conditions satisfy complemgraonditions [8]. When
applied to a single evolving—sided grain with constant grain boundary energy, this
mechanism leads to a Mullins-von Neumamnn- 6 rule [11]—the rate of change of
the area of the grain is proportionalto- 6, i.e.,

d:;” = v(n — 6) whereA,, is the area of an-sided grain, Q)

and~ > 0 is some material constant (MacPherson and Srolovitz [6§ lyixen, very
recently, higher dimensional generalizations of the 6 rule). In particular, grains
with 3,4 or 5 sides decrease in area. When averaged over a populationin$,gra
equation (1) results in

dA,
dt

Inspection of Fig. 1 shows that, contrary to (2), the aveexga of five-sided grains in

a columnar aluminum structure increases several fold tsecourse of an annealing
experiment. The: — 6-rule does not fail for the continuous changes of boundary po
sitions, but most of the five-sided grains we observe at time2 hours had, 7, 8, ...
sides at some earlier timie< 2 hours. Thus in the network setting, the critical events
grain deletion and side interchange play a major role.

A significant difficulty in developing a theory of the grainduary character dis-
tribution lies in the lack of understanding of these stotihas/ents associated with
coarsening. As a motivation for such theory consider thieiohg, highly oversim-
plified example. Let; be a stochastic process in which low energy “boundaries”
grow at the expense of those with higher energy and new bowesdare created and
disappear at random

= v(n — 6) whereA,, is the average area ofsided grains. (2

do = —v/(a)dt + ed By . 3)

Herea represents the difference of “orientations” on either sitihe grain boundary,
~(a) represents the “energy” of the boundary, ansl related to the rate at which the
new grain boundaries enter the system. The stationanyliistn for « is given by
the Boltzmann-like expression

1 _2v(
—_ 2
pla) = —e ;
that can be found by solving the stationary Fokker-Planaladgn for (3). Note that
the maxima of this distribution function correspond to thi@ima of the energy—this
is an essential feature of a grain boundary character hlision [2]-[4].
There are several stochastic approaches one might adoptétog a more realistic
model of the grain boundary character distribution. A frarokk based on statistical
mechanics is adopted in [12], where we constructed a Bolimatgpe equation mod-
eling grain interaction that successfully reproduces &tan data on a long timescale
and has a good potential for generalization to higher dinoess
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Figure 1: Average area of five-sided grains infrtolumnar structure.

In [13]-[14] we conjectured the fractional nature of theigrhoundary kinetics and
proposed a unified approach to model it in terms of a fractiorester equation. We
tested our theoretical ideas on the one-dimensional modédntifying the set of
stable statistics and confirming the subdiffusive natuthefunderlying kinetics for a
prolonged transient regime exhibited by the system. Fyrthe demonstrated a rea-
sonable agreement between the statistics obtained byt direalation and the solu-
tion of the generalized master equation developed thrdugibdntinuous time random
walk (CTRW) theory.

Through our investigations, however, it became apparexit tithile some stages of
the evolution of one-dimensional system can be describied tise formalism of the
fractional CTRW theory, a complete understanding of theeolesd dynamics may
require a new, more general stochastic framework. The miffioulty here is that
which framework is appropriate is not known in advance andact, it may not be
available altogether.

In order to either develop a new or to select an existing thebe statistical char-
acteristics of the process need to be determined throughperiment. Given a de-
terministic mathematical model, the experiments can belecied numerically with
an advantage over physical experiments being that a largwewuof trials can be
conducted in a relatively short time. Here we demonstrageatiplicability of this
approach to grain boundary evolution by developing a stetahenodel for the times
of grain boundary disappearance events. A generalizafimuideas to the entire
grain boundary kinetics is a subject of a forthcoming puailan.

Our main goal is to determine the equation governing theutiasl of the arrival
rate—probability that a critical event will be observed at\aeg time—based on nu-
merically determined statistical properties of a largesthatnistic system. We study
a simplified one-dimensional model (Section 2) that we thticed in [12] exhibiting
the main features of the interacting grain boundary netwbrlparticular, the model
incorporates boundaries and junctions between boundardeing under a form of
gradient flow.

In Section 4 we develop a generalized arrivals master emjuftir independent, but not
identically distributed time increments. We show that theéejpendence assumption
holds for the model one-dimensional system and find the fittyadensity functions
(pdfs) for waiting times between critical events. The wajttimes are not identically
distributed but rather are time-dependent scalings of aemantial distribution; this



reflects the fact that the coarsening process slows downtiwvith

The arrival times master equation can be explicitly sohadtie model system (Sec-
tion 5) and we have found that arrival rates obtained bothy&nally and via the
numerical experiment are in a close agreement. The formefptfs for waiting
times suggests that, initially, the arrival rate corregfsoto a stationary Poisson pro-
cess while it can be approximated by a solution of a fractiQi2E at later times.

2 SIMPLIFIED MODEL

Here we report on a model which emphasizes the role of dri¢tigents. For a precise
description, fixL. > 0 and consider the interva|s;,z;1],7 = 0,...,n — 1 on the
real line wherer; < x;41, i = 0,...,n — 1 andz, = xg + L. The locations of
the endpoints;;, i = 0,...,n may vary in time and the total lengthof all intervals
remains fixed. For each intenval;, z;.1],¢ = 0,...,n—1, choose a number; from

the set{c; }j=1,..». The intervaldx;, z,11] correspond to grain boundaries and the
pointsz; represent to the triple junctions. The paramefers;—1.... ,, can be viewed

as representing crystallographic orientations. The enfithe:*" grain boundary is
given byll =Tiy1 — T;.
For a non-negative energy density), we define the energy

E(t) = y(ai) (i1 (t) — zi(t)) 4)

and consider gradient flow dynamics characterized by theesysf ordinary differ-
ential equations

xlz’y(az)—y(al_l), L:L,n (5)

An important feature of the thermodynamics of grain grovgthiat it is dissipative
for the energy during normal grain growth. The dynamics @ this property [13].
The parametet; is randomly prescribed for each grain boundary and doe
dulrir_lg its lifetime. The velocities of the grain boundargas be computed from the
relation

vp = Tipr — & = Y(ip1) + y(@i-1) — 2y(q;) (6)

Note that the velocities in the system remain constant berivegitical events corre-
sponding to disappearances of individual grain boundaBsry such critical event
changes the statistical state of the model through its tefie¢he grain boundary ve-
locities and therefore affects further evolution of theigsa

3 STOCHASTIC PROPERTIES OF THE SYSTEM

The first step toward a mesoscopic model is the identificaifatable statistics. The
stable statistics determined from numerical experimesits system of grain bound-
aries can be found in [13]. In particular, the analog of th@rgboundary character
approaches a stable distribution related to the energeftite system (Fig. 2).

Our goal in this paper is to describe the dynamics of critesants by understanding
the stochastic properties of waiting times between thesatsv Fig. 4 shows typical
distributions for waiting times. Note that, although theting times are close to being
exponentially distributed, their means increase with time

In what follows, we sometimes refer to each critical eventasmulation "step".
Hence, unless there are coincident evemtsyundaries disappear exactly aftesteps.
Waiting times between successive critical events can lagettleas random variables.
To formulate a probabilistic theory, we need to establighgioperties of these vari-
ables, e.g. their joint probability distribution funct®(pdf’s) etc. This task would be
significantly simpler if we could assume that the waitingesyare mutually indepen-
dent so that it would be sufficient to determine margirtil waiting time distribution
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Figure 2: Evolution of the grain boundary character disttiitn for various choices of
-

w;(t). In all tests that follow, we use data collected from 1500@srwithn = 5000
grain boundaries each. The runs are initialized with a remdonfiguration of orien-
tations and lengths and utilize the same energy functipgal = (z — 0.5)2.

Fig. 3 below provides the justification for the independeassumption. Fig. 3(a)
shows the correlation coefficient between two successivengaimesT; andT;_1,
wherel < i < 4500. Observe that this correlation does not grow with time. Bigp)
depicts the000-th row of the correlation matrix. This picture is generidlie sense
that an analogous plot is observed for an arbitrag 2000. Therefore, the matrix
is close to being diagonal, and there is no significant catia between thg-th and
k # j-th waiting times.
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Figure 3: (a) Correlation between successive waiting tiaes function of jump
number, showing no grow of dependence over time. (h}tA row of the correlation
matrix with j = 2000, showing the absence of long-order correlations.

Next, we identify the pdfsv;(¢) for the waiting times. The histograms wfi(tf for
each 100-th arrival are plotted in Fig. 4 in log-log scaleeTitend is clearly linear,
showing that each probability density exhibits an expoaébthavior. However, as
shown In Fig. 4(b), the means of the exponential distrimgimcrease with time, due
to the slowing effect of the grain growth dynamics attrilote increase in the average
grain boundary length. Hence we conclude that the waitinggidistributions depend
on the step humber and are given by

w;(t) = r; exp (—rit),
wherer; is a constant dependent aénThe dependence of oni is essentially quartic,
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Figure 4: (a) Double-log scale plot of the histograms fortimgi timesw;(¢), re-
vealing exponential behavior with decaying rates.(b) Theamof the waiting times
distribution for thei-th waiting timew; (¢) grows with time.

as demonstrated by the least-squares fit in Fig. 5. Hense(N,, —i)*.
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Figure 5: Least squares fit for the exponential distribuparameters;.

4 PROBABILISTIC DERIVATION OF THE ARRIVAL RATES MASTER EQUA
TION

We now derive the arrival rate master equation. Consideséugience of times of
critical events during grain coarsening. These events eaddscribed within the
framework of a renewal process as long as tiffied5s, . . . between consecutive steps
of the random walker are independent, identically distaduandom variables. Here
we consider a more general case, whErei = 1,2, ... are nonnegative, independent
random variables thamay not be identically distributed, that is eacl; is drawn from

a distributionw; (t), i = 1,2, .. ..

SetT'(0) = 0 and let

T(n)=> T, 7
=0
be the time of thex-th jump. Consider the random process

N(t) =max{n >0:T(n) <t} (8)



counting the number of jumps up to timand denote

k
th=> Ty, k>1
=1

to be renewal times of the process. Denote the probabilityahleast: arrivals have
occurred prior to time by

Ag(t) =P(te < 1), ©)
and the corresponding density function by
_dAg()

Note that\, (¢)dt is the probability that thé-th arrival occurs during the time interval

[t,t + dt]. The probability that an arbitrary arrival will be observaaring the same
time interval is given by

o0

A(t)dt =P (Ug {t € [t t +dt]}) = > A(t)dt, (11)
k=0
where the last equality follows from independence of timéments. We calh(¢)

the arrival rate. _ . _ _
It is easy to see that while being a density of a sum of randonablesT;, i =

1,..., k, the density\;(¢) can be computed as/afold convolution of individual
waiting time densitiesy;(t), i = 1,..., k, so thatin the Laplace space
R k
M(u) = [T @i(w), (12)
=1

where byf (u) we denote a Laplace transform of a well-behaved funcfion

R +00
L(f(1)(u) = f(u) = / et (1)t

We can construct the master equation based on the last jufopcaes:

k() = I3 Ae()wr (t — 5)ds
ML) =M+ Y M (t) = wi(t) + 50, fy Me(s)wpga (t — 5)ds

k=1

= wi(t)+ fg M)W (s,t — s)ds,
where
e k()
Wi(s,t —s):= Z \(s) wit1(t — ) (13)
k=1

is the kernel describing the probability of a single jumpamsgn timess and¢. Hence
the arrival rates satisfy

M) = wn (t) + /O M)W (s, ¢ — 5)ds, (14)



which will be referred to as a generalized renewal equatimmiiow on. In the case of
i.i.d waiting times distributed according to a common la), we obtain a standard
renewal equation

At) = w(t) + ./0 A(s)w(t — s)ds, (15)

which, in turn, yields\(t) = r» = const in the case of a regular Poisson process with
the waiting timesw(t) = re~"*. Notice, however, than the behavior of the arrival rate
is more complicated in the case of non-identically distigolvariables. For instance,
if w;(t) = r;e”", by a simple but tedious calculation éffold convolutions we
obtain
oo k o k r;
At) =D mie 1 — . (16)

r
k=1i=1 i=1,i#j

In order to avoid possible convergence issues and to refled¢att that the number of
events in the model systems is finite we will assume that teedirmmation in (16) is
performed up to a larger < co.

5 COMPARISON BETWEEN THEORY AND NUMERICS

Our numerical experiments show that the cumulative asidal not depend linearly
on time. In Fig. 6, we plot the cumulative number of arriv&i$t) (the number

of critical events) before time, and again observe the slowing effect comparing to
what we expect from regular Poisson-type process (Wh&r grows linearly with
time). What is even more intriguing is that the arrival timestoh those obtained via
the regular renewal equation (15) for the choiceudf) = 0.051¢~1-3 for 3500 <

1 < 4500, as shown in Fig. 6. This suggests existence of an interneeftictional
diffusive regime in our model [13]. To study this more pretyswe need to identify
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Figure 6: Empirical cumulative arrivals at tinteproduced via simulation and an-
alytically determined from the generalized fractional eeal equation (15) with
w(t) ~t713,

if the fractional exponeng = 0.3 conforms with the arrival rates given above. Fig.
7(a) shows the log-log graph of the number of intervals irstygtem surviving at time
t, Noo — N (1), for the period from1000 to 4500-th arrivals. This behavior conforms
well with N (¢) ~ t in the beginning. However the dependenceNaf — N(¢) on¢



for the period between 3000th and 5000th arrivals (Fig.)dgajiven by
Noo — N(t) ~t~P, wheref ~ 0.3.

The dynamics of the process experiences a transition froennoode to another at
some critical point.,. in the simulation. At the same critical tinte, the stabiliza-
tion of relative distributions is observed. Note that, alibh by the time = ¢.,,
almost half of the boundaries have disappeared, the abstime elapsed from the
onset of simulation remains minuscule (of the ordet®f* sec for a 1 sec long simu-
lation). The change in the behavior of the system can béatéil to "washing-out” of
transients during the relaxation stage of coarsening. Nm&ever, that the "stable"
regime corresponding to the stabilized distributions aleas significantly from regular
diffusion, with 8 = 0.3, in contrast with the normal diffusion, whefe= 1. Hence
we have a case of an anomalous (sub)diffusion.

Further, note that the analytical solution of the geneealienewal equation (16) pre-
dicts both stationary Poisson and fractional behavior ggein our experiments.
Indeed, there is a close match between the arrival rateahthrmediate stage of
coarsening as can be seen in Fig. 7(b). Here, for the inteataleen; = 3600 and

1 = 4500, we compare the empirical arrival rate versus the solutiotih® renewal
master equation (16). We approximate waiting times to meteHeast-squares fit in
Fig. 5 by settingu; (t) = r; exp (—r;t) with r; = 3.7-1072(1400 — i)*. We compen-
sate for the time elapsed before t#00 arrival by translating the absolute time by

3.4 - 10~2—the mean ofy_>%)" T;. The plot shows a close agreement in the double-

logarithmic scale, indicating that the generalized ren@gaation captures the system
dynamics in this interval.

If, on the other hand, we examine the expressipa- (N,, — i)*, we observe that
r; ~ Ni fori < Nu. Hence, at its initial stages, the renewal process is close t
stationary Poisson process. The drawback of this is thatdheion (16) of the gener-
alized renewal equation is numerically ill-behavedfeg 5000. Having made these
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Figure 7: (a) Least square power law fit for the number of simgigrain boundaries
at timet. (b) Comparison of arrival rates in log-log scale obtainedimulations of
the full system and analytically via equation (16).

observations, it is clear that the jump process underlytieggrain growth dynamics
in the one-dimensional case is far from being simple. Noy @rdoes not fit into the
regular diffusion framework but, due to the decaying atnigtes, it also deviates from
the more general framework of continuous time random walysmeans of the gen-
eralized renewal theory, we have been able to completebrmrte the arrival rates
throughout the evolution. Moreover, we have shown that thdehbears striking sim-
ilarity to the fractional sub-diffusion in an intermediatgime where most relevant
distributions stabilize. Similar observations can be nfadéhe full process that takes
into account jumps in orientation, as we will show in a fodhtgng paper.
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