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Abstract. Most technologically useful materials possess polycrystalline microstructures com-
posed of a large number of small monocrystalline grains separated by grain boundaries. The energet-
ics and connectivity of the grain boundary network plays a crucial role in determining the properties
of a material across a wide range of scales. A central problem in materials science is to develop
technologies capable of producing an arrangement of grains—a texture—that provides for a desired
set of material properties.

One of the most challenging aspects of this problem is to understand the role of topological re-
configurations during coarsening. Here we propose an upscaling procedure suitable for large complex
systems. The procedure is based on numerical experimentation combined with stochastic tools and
consists of large-scale numerical simulations of a system at a microscopic level, statistical analysis of
the microscopic data, and formulation of the model based on stochastic characteristics predicted by
the statistical analysis. The procedure promises to be valuable in establishing the effective model of
microstructural evolution in realistic two- and three-dimensional systems.

To test these ideas we use our upscaling procedure to study the mesoscopic behavior of a re-
duced one-dimensional network of grain boundaries. Despite the simplicity of its formulation, this
model exhibits highly nontrivial behavior characterized by both growth and disappearance of grain
boundaries and develops probability distributions similar to those observed in higher-dimensional
simulations. Here we focus on the grain deletion events which are common to all coarsening systems.

1. Introduction. Most technologically useful materials arise as polycrystalline
microstructures, composed of a myriad of small crystallites, termed grains, separated
by interfaces, the grain boundaries. The energetics and connectivity of the boundaries
are implicated in many properties across wide scales, for example, functional prop-
erties, like electrical conductivity of metal wirings in microprocessors, and lifetime
properties, like fracture toughness in structures.

Coarsening consists of the growth and rearrangement of the crystallites, a process
which may be interpreted as the anisotropic evolution of a large metastable network.
Its control and understanding is a central problem in materials science, the problem
of microstructure. It has, after all, been of recognized importance since the stone
age (see [15]). Evolution of individual interfaces is governed by known local thermo-
dynamical principles. In addition, facet interchange and grain deletion, coarsening
induced variations in topology, introduce network level changes in the system which
are stochastic in nature.

In simulation, we are presented with solution trajectories of many thousands of
coupled nonlinear partial differential equations representing details of the evolution.
Assorted statistics may be harvested and offered up as material properties. But we
lack a theory to predict or to verify the presence of stationary, or even stable, fea-
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tures of the system. In general, a metastable multiscale process where “upscaling” or
“coarse graining” is required for interpretation and subsequent predictive capability,
is found increasingly both in engineering and biological applications and represents an
interesting direction for computational science. The application of this approach to
coarsening in materials, both from simulation and experimental points of view, relies
on recently developed computational methods and is new for the study of microstruc-
ture. It likewise presents many challenges for mathematical modeling, simulation,
and analysis. Obviously, the simulation environment is very flexible and offers us the
possibility of interplay with the laboratory.

Historical emphasis in this field has been on the geometry, or more exactly, on
statistics of simple geometric features of experimental and simulated polycrystalline
networks. Some geometric features of the configuration, like relative area statistics in
two-dimensional sections, appear to be properties in the sense that they are robust;
however, they are not strongly related to energetics and are, perhaps, better employed
as diagnostics. We direct our attention to texture, the mesoscopic description of ar-
rangement and properties of the network described in terms of both geometry and
crystallography. It is known that optimizing texture in specific ways improves func-
tion, as we observed at the outset. But are there any texture related distributions
which are material properties? Recent work has provided us with a new statistic,
the grain boundary character distribution, the GBCD, which has enormous promise
in this direction. The GBCD is a measure of the relative amount of grain boundary
with a given net misorientation. Owing to our new ability to simulate the evolution
of large scale systems, we have been able to show that this statistic is robust and, in
elementary cases, easily correlated to the grain boundary energy [12],[11], [13].

Our objective is to understand the random processes associated with evolution
of polycrystalline networks and the relationship between these processes and GBCD.
The first manifestation of random behavior is the grain disappearance event, and
so we shall pursue this. For the sake of clarity, our attention within this paper is
mostly restricted to the times of these disappearance events, however, the modeling
techniques we propose are far more general, as will be demonstrated in subsequent
publications.

Our strategy is to conduct numerical experiments with a large computational
model valid at the level of microstructure and to obtain the statistical characteristics
of the microscopic model through numerical simulations. We target a specific random
event (times of disappearance of grains), analyze its statistical properties and derive
the appropriate evolution equation that we subsequently solve numerically. Finally
we verify that the predictions of both mesoscopic and microscopic models for the rates
of grain disappearance events coincide. Although, in this paper we use probabilistic
derivation of evolution equations, statistical data can also be interpreted using a
Boltzmann-like description [4].

Throughout the presentation, the implementation of our ideas is presented for a
simplified model for texture development targeted to capture the stochastic features
of network evolution. A simplified, dimensionally reduced model is obtained by re-
moving curvature-driven kinetics of boundary evolution. The model lacks the full
physical complexity of a grain growth system due to space reduction, but offers a
much more feasible object for mathematical modeling, simulation and analysis. Its
physical validity comes from the fact that it retains important statistical properties of
network coarsening, specifically, a “relative area histogram” and a “GBCD”. More in-
terestingly, identification of the set of stable statistics revealed a close match with the
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statistics produced by two-dimensional simulations known from previous literature
[9], [11], [13], [22].

The applicability of the evolution equation for disappearance events will subse-
quently be compared to that obtained for the higher-dimensional grain-growth mod-
els. Note that, in the one-dimensional model, the dynamics is essentially governed
by the disappearance events, while it raises to a higher level of difficulty in higher-
dimensional cases. Understanding the disappearance events for the one-dimensional
evolution, can be instrumental to understanding the same events in two and/or three
dimensions. Currently we are at the stage of final testing of the numerical models of
two- and three-dimensional growth; the techniques developed here will be applied to
the results of higher-dimensional simulations as these results become available.

This paper is organized as follows. We start by providing a short account on recent
developments in the area that prompted the current study in Section 2. In Section 3,
we present a simplified model targeted to capture the stochastic features of network
evolution. In Section 3.2, we discuss the results of the large-scale simulations of the
simplified model, identify the set of stable statistics and demonstrate the nondiffusive
nature of the underlying kinetics. Further, in Section 3.3, we determine the statistical
properties of the disappearance events. We show that the waiting times between
successive disappearances are independent random variables and find their probability
distribution functions (we use the term “waiting time” in agreement with stochastic
analysis terminology). The waiting times are not identically distributed but rather
are time-dependent scalings of an exponential distribution; this reflects the fact that
the coarsening process slows down with time.

In Section 4 we develop a generalized master equation for the disappearance
events. The master equation can be explicitly solved for the model system and we
have found that disappearance rates obtained both analytically and via the numerical
experiment are in close agreement with one another (Section 4.2). The form of the
probability distribution functions for waiting times suggests that the disappearance
events can be approximated as a stationary Poisson process at the initial stages of
evolution and by a continuous time random walk (CTRW) at the later stages, respec-
tively. This conjecture has also been verified by comparing the theoretical predictions
to the numerical experiment. In Section 5 we review the traditional CTRW theory,
which offers a simpler way to handle the complexity of the intermediate stages of the
jump process. We further compare the statistics obtained by direct simulation with
the solution of the fractional diffusion equation developed through CTRW theory.

Suggested above is that there are several regimes exhibited by grain disappearance
waiting time distribution that have an affect on the evolution of the grain boundary
character distribution evolution. We are obliged to consider all of them, the rapid
relaxation, the middle regime, and the end regime not only for thoroughness but also
because it is unknown which regimes will be observed in practice.

2. Disappearance events: background and motivation. We begin with a
short perspective. The regular evolution of a network of grain boundaries in two
dimensions, sometimes referred to as normal grain growth, [3], is governed by the
Mullins equation of curvature driven growth supplemented by the Herring condition
of force balance at triple junctions—a system of parabolic equations with coercive
boundary conditions, [1], [5], [14], [17]. (For the higher dimensional case, see [12].)
When applied to an individual grain in an ensemble whose grain boundary energy is
constant, this mechanism leads to the von Neumann-Mullins n− 6 rule [16]: the rate
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of change of the area of an n-sided grain is proportional to n− 6, i.e.,

dAn
dt

= c(n− 6), where An is the area of an n− sided grain, (2.1)

and c > 0 is a material constant. Inspection of Fig.2.1 shows that, contrary to
(2.1), the average area of five-sided grains in a columnar aluminum structure increases
several-fold during coarsening. This does not imply that (2.1) fails, but rather that
most of the grains observed at the time t = 2 hours, for example, had 6, 7, 8, . . . sides
at some earlier time t < 2 hours. Thus in the network setting, the topological changes
(disappearance events and facet interchanges) play a major role.

Although small grains with small num-

0 0.5 1 1.5 2 2.5 3

Time (hrs)

0

4000

8000

12000

A
ve

ra
ge

 g
ra

in
 a

re
a 

(n
m

2 )

Fig. 2.1. Average area of five sided grains in
an Al columnar structure.

bers of sides will be deleted, their effect
on the configuration is essentially ran-
dom. A significant difficulty in devel-
oping a theory of the GBCD lies in the
lack of understanding of the relation-
ship between these stochastic events
and coarsening. This is the reason
why the study of the network aspect
of grain boundary system is so impor-
tant. As a first step, it is natural to
consider the following model. Suppose
that high energy boundaries are prefer-
entially deleted in favor of lower energy
ones, for example, through the motion
of triple junctions where a low energy

boundary segment is present, and new boundaries are created and disappear at ran-
dom. This is, in fact, what we observe. A Langevin equation for the misorientation
angle α expresses this,

dαt = −γ′(α) + εdBt, (2.2)

where dBt is white noise. Above, α represents the difference of lattice orientations on
either side of the boundary, the lattice misorientation, γ(α) represents the energy of
the boundary, and ε is related to the rate at which new grain boundaries enter the
system. The stationary distribution for α is given by the Boltzmann-like expression

ρ(α) =
1
Z
e−

2γ(α)
ε2 ,

where Z is a normalizing constant, that can be found by solving the stationary Fokker-
Planck equation associated to (2.2). This distribution is actually what is found, both
in our experiments (Fig. 3.2) and large-scale 2-dimensional simulations [11], [13].
Unfortunately, (2.2) is a naive description of the coarsening process, so we need to
study network behavior in greater depth. This is the main focus of the present paper.

3. Reduced model - a simple coarsening network.

3.1. Model description. In this section we define and analyze the properties
of the simple coarsening network—a system of grain boundaries represented by in-
tervals on the line. We assume that each grain boundary is described by its length
and a prescribed “misorientation”. There will be only nearest neighbor interactions
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between the boundaries with the strength of the interactions dependent on relative
misorientation of the neighboring boundaries.

For a fixed L > 0, consider a partition of a circle of circumference L by n randomly
chosen points. This is equivalent to partitioning the interval [0, L] ⊂ R by the points
xi, i = 1, . . . , n where xi ≤ xi+1, i = 1, . . . , n−1 and the point xn+1 is identified with
the point x1. Given the periodicity assumption, the interval [0, L] is thus subdivided
into n intervals [xi, xi+1], i = 1, . . . , n of the lengths xi+1 − xi, i = 1, . . . , n − 1 and
L+ x1 − xn, respectively. Note that the locations and the number of points will vary
during evolution, however the total length L of all intervals remains fixed. Further, if
a partition point leaves [0, L] through x = 0, it immediately reenters [0, L] at x = L
and vice versa.

For each interval [xi, xi+1], i = 1, . . . , n, we select a random number αi ∈ R.
The intervals [xi, xi+1] correspond to grain boundaries and the points xi represent
the triple junctions. The parameters {αi}i=1,...,n can be viewed as representing
crystallographic misorientations. The length of the ith grain boundary is given by
li = xi+1− xi. Now choose a non-negative energy density f(α) and define the energy

E(t) =
n∑
i=1

f(αi)(xi+1(t)− xi(t)). (3.1)

Consider gradient flow dynamics characterized by the system of ordinary differ-
ential equations

ẋi = f(αi+1)− f(αi), i = 2, . . . , n, and ẋ1 = f(α1)− f(αn). (3.2)

The parameter αi is prescribed for each grain boundary initially according to
some random distribution and does not change during its lifetime. The velocities of
the grain boundary i can be computed from the relation

vi = ẋi+1 − ẋi = f(αi+1) + f(αi−1)− 2f(αi) (3.3)

The grain boundary velocities remain constant until the moment when one of the
boundaries collapses. The velocity of that boundary is then removed from the list
of the current grain velocities and two velocities of its neighbors are changed due to
the creation of a new triple junction. Every such disappearance event rearranges the
grain boundary network and, therefore, affects its subsequent evolution. Note that
the lengths of the individual grain boundaries vary linearly between the disappearance
events and depend entirely on the respective grain boundary velocities.

An important feature of the thermodynamics of the normal grain growth is that
it is energy dissipative. Our reduced gradient flow model (3.2) is specifically designed
to enforce dissipation. To verify this, first consider a time t between any two disap-
pearance events. Then

dE

dt
=
∑

f(αi)vi

=
∑

f(αi)(f(αi+1)− f(αi)− f(αi) + f(αi−1))

=
∑

f(αi)(f(αi+1)− f(αi))− f(αi)(f(αi)− f(αi−1))

=
∑

f(αi)(f(αi+1)− f(αi))− f(αi+1)(f(αi+1)− f(αi))

= −
∑

(f(αi+1)− f(αi))2
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by periodicity and relabeling of indices. This also follows from the fact that for any
gradient flow dynamics

(ẋi)2 = − ∂E
∂xi

ẋi,

so that ∂E
∂t = −

∑
ẋ2
i < 0. Now suppose that a grain boundary [xc, xc+1] vanishes at

time t = tc and it is the only grain boundary vanishing at tc. Then the velocity of
that boundary vc(t) < 0, t < tc, namely,

1
2

(f(αc+1) + f(αc−1)) < f(αc).

and lc → 0 for t→ t−c . Now E(t) >
∑
i6=c f(αi)li, t < tc, and

E(tc) = lim
t→tc

∑
i6=c

f(αi)li 5 lim
t→tc

E(t).

Thus the model system is indeed dissipative.
From the materials science perspective, it is important to know the distributions

of relative lengths, the geometric statistics, as well as the total area of grains with
certain grain misorientations. In our reduced gradient flow model, the state space
is S := {(l, v, α)}, where l ∈ R+, v ∈ R, α ∈ (a, b). Then the dynamics of the
system (3.2) can be described at a mesoscopic level by solving the set of evolution
equations for the joint probability density function ρ(l, v, α, t). A somewhat easier
task is to understand the dynamics of the disappearance events—the rates at which
these events are likely to occur as well as the distributions of accompanying velocity
changes. The difficulty is that there is no a priory information regarding statistical
properties associated with disappearance events; this information has to be harvested
from either laboratory or numerical experimentation. We follow the latter route in
the next section.

3.2. Simulation results and validation. The first step toward a mesoscopic
model is the identification of stable statistics. To this end, we simulated the reduced
gradient flow model described in Section 3. For each simulation run, a system of
n grain boundaries on the interval [0, L] was considered with the partition points
{xi}ni=1 and the misorientation parameters {αi}ni=1 randomly chosen according to a
uniform distribution. The resulting collection of segments was subsequently allowed
to evolve according to the coupled system of ordinary differential equations (3.2). For
each of the segments, the disappearance times were calculated and the minimum of
these times was taken across all segments. Then the number of grain boundaries
was decreased (with remaining lengths preserved and velocities adjusted to the new
configuration) and the simulation was continued. This process was repeated until a
stopping criterion was reached. Since the main goal of this procedure was to obtain
statistical information, the simulation was stopped when the size of the sample became
too small. This simulation was repeated many times by varying the initial grain
boundary configuration.

In what follows, we refer to each grain boundary disappearance event as a simula-
tion ”step” and to each simulation run as a ”trial”. Hence, unless there are coincident
events, 104 boundaries disappear exactly after 104 steps. The statistics of several
numerical experiments for s system of 104 grain boundaries is presented below. The
runs are initialized with a random configuration of misorientations and lengths and
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use the same energy functional f(x) = (x− 0.5)2, unless noted otherwise. The grain

boundary character distribution (GBCD) is computed as
n∑
i=1

liδ(α− αi), which mea-

sures the total length of grain boundaries with a particular misorientation parameter
αi.

Fig. 3.1. Evolution of the probability densities of: (a) relative lengths, (b) grain boundary
character distribution, i.e. total lengths occupied by particular misorientation, for the choice of
f = (x− 0.5)2. Both distributions stabilize early in the simulation and remain stable until very last
stages.
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Fig. 3.2. Comparing GBCD for f(x) = 1 + 0.02(1 − (cos(4x))3) obtained via reduced gradi-
ent flow, large-scale two-dimensional simulations, and Boltzmann distribution. Evidence of inverse
correlation between grain boundary character distributions and interfacial energies, as well as Boltz-
mann shape are preserved in the reduced model.

Figure 3.1 shows evolution of the relative length and grain boundary character
distributions for the choice of a quadratic potential. Neither statistic changes its
shape in the latter part of the simulation up until a moment when too few grain
boundaries remain in the system. To compute the relative length distribution, we
scale the total number of elements in each bin by the value of the mean length 〈l〉
at a particular moment during simulation (similar to how relative area distributions
are computed in higher-dimensional simulations and experiments [11]). We clearly
observe stabilization of both distributions. The existence of stable statistics for both
lengths and misorientations is a strong evidence that a well-defined statistical model
can be formulated for this type of dynamics.
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In Figure 3.2 we compare the reduced-model analog of the GBCD obtained from
our computational experiments with the numerical results for the two-dimensional,
large-scale simulations ([11]). The graphs clearly show that the shapes of f and the
corresponding misorientation distribution are inversely correlated. This is a natural
consequence of the fact that the lower energy boundaries dominate those with higher
energy. Importantly, GBCD in the reduced system is shown to have a very good
match with its two-dimensional counterpart and is in almost perfect agreement with
the shape given by a Boltzmann distribution. These observations show that the
reduced gradient flow model has the same generic features as the physically realistic
three-dimensional model.

Relying on our microscopic reduced model description and statistics harvested
from the corresponding deterministic simulation, we want to find a suitable analytical
description that would match our numerical observations. To the best of our knowl-
edge, none of the previously conducted investigations into grain growth phenomena
succeeded in understanding the role of disappearance events during evolution, hence
we cannot rely on any a priori knowledge of such processes. As was mentioned earlier,
in this paper we want to gain some computational insight into the system evolution
by analyzing the statistical characteristics of the times of disappearance events.

3.3. Computational analysis of waiting times. To understand the statistics
associated with evolution of the reduced gradient flow system, a large collection of
data was harvested from the microscopic model via direct simulation of the system
of ordinary differential equations (3.2). By interrogating this dataset, we want to
identify basic characteristics of the main statistical model parameters. In all tests
that follow, we use data collected from 1.5 ·104 trial runs each containing 5 ·103 grain
boundaries.

First, we want to verify whether the waiting times between disappearance events
can be regarded as independent random variables. Let T1 be the waiting time before
the first disappearance event and set Ti to be the waiting time between the (i− 1)-st
and the ith disappearance events for every i = 2, . . . , n. Note that Ti is a random
variable for each i = 1, . . . , n due to the randomness of the initial data.
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Fig. 3.3. (a) Correlation between the consecutive waiting times as a function of the index of
the disappearance event. (b) Evidence of the diagonal dominance of the correlation matrix. The plot
represents the correlation a(i, j) between variables Ti and Tj .

In Figure 3.3(a) we plot the correlation coefficient between Ti and Ti−1, where
i ranges from 1 to 4.5 · 103. Observe that the correlation between neighbors does
not grow with time. Figure 3.3(b) depicts a typical shape of the correlation matrix
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A = {a(i, j)} =
{
c(i, j)/

√
c(i, i)c(j, j)

}
between the variables Ti and Tj , with i, j =

1, . . . , n. Here C = {c(i, j)} is the corresponding covariance matrix constructed from
our 1.5·104×5·103 dataset. The matrix is close to being diagonal, with all off-diagonal
entries limited in absolute values by 0.05 and all diagonal entries equal to 1, which
suggests that there is no significant correlation between the waiting times.

The next question is to identify the distribution function wi(t) for the waiting
time Ti, i = 1, . . . , n. The answer is provided by Figure 3.4. In the first of the
two pictures, we plot the histograms of wi(t) for every 100-th waiting time, starting
with step number 100 and ending with step 4500. Due to a dramatic change of
characteristic scale during the course of the simulation, we scale the time axis by
dividing time range of each distribution by the corresponding maximum, so that it
ranges from 0 to 1, to make all curves visible. The fact that all curves lie on top
of each other suggests a common form for the distribution law. The second plot
Fig. 3.4(b) shows the behavior of distributions wi(t) on a log-normal scale given for
every 500 steps starting with step number 2000 for visual clarity. It is obvious that
all curves have a linear trend on a log-normal scale, showing that each probability
density exhibits an exponential behavior. However, as clearly visible in Figure 3.4(b),
the means of the exponential distributions increase with time, due to the slowdown of
the grain growth dynamics attributed to the decreasing variability of grain boundary
misorientations and to the increasing average grain boundary length.
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Fig. 3.4. (a) Histograms of waiting times wi(t) for i = 100, 200, . . . , 4500 vs. times scaled
to range from 0 to 1. (b) Log-normal scale plot of the histograms for waiting times wi(t), i =
2000, 2500, . . . , 4500, reveals exponential behavior with decaying rates.

Hence we conclude that the waiting times distributions depend on the step number
i and are given by

wi(t) = ri exp (−rit),

where ri is a constant dependent on i.
Having made these observations, we can use probabilistic arguments to under-

stand how the rates at which the disappearances are observed depend on time and
to write down the corresponding evolution equations. Note, however, that non-
identically distributed waiting times are beyond the scope of the traditionally used
theories, e.g. the theory of random walks or standard renewal processes.

4. Modeling non-homogeneous waiting times. Here we use the statistical
properties of the waiting times determined in the previous section to derive the meso-
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scopic model for the rate of disappearance events.

4.1. Renewal master equation. Let us consider the sequence of disappearance
events during the grain coarsening. These events can be described within the frame-
work of a traditional renewal process theory as long as the waiting times T1, T2, . . .
between consecutive events are independent, identically distributed random variables
[6, 7, 10]. Here we must deal with a more general case, where Ti, i = 1, 2, . . . are
nonnegative, independent random variables that may not be identically distributed,
that is each Ti is drawn from its own distribution wi(t), i = 1, 2, . . ..

Set t0 = 0 and let

tk =
k∑
i=0

Ti, k ≥ 1 (4.1)

be the time of the k-th jump. Consider the random process

N(t) = max{k ≥ 0 : tk ≤ t} (4.2)

counting the number of jumps up to time t. Denote the probability that at least k
disappearances have occurred prior to time t by

Λk(t) = P(tk ≤ t), (4.3)

and the corresponding density function by

λk(t) =
dΛk(t)
dt

. (4.4)

Note that λk(t)dt is the probability that the k-th disappearance occurs during the
time interval [t, t + dt]. The probability that some disappearance will be observed
during the same time interval is given by

λ(t)dt = P (∪k {tk ∈ [t, t+ dt]}) =
∞∑
k=1

λk(t)dt, (4.5)

where the last equality follows if we assume that

P ({tn ∈ [t, t+ dt]} ∩ {tn+1 ∈ [t, t+ dt]}) = 0,

for any n ≥ 1 when dt is small enough. We call λ(t) the disappearance rate.
Since the quantity Λk(t) is a sum of mutually independent random variables

Ti, i = 1, . . . , k, the density λk(t) can be computed as a k-fold convolution of the
waiting time densities wi(t), i = 1, . . . , k, so that

λk(t) =
∫ t

0

∫ t−s1

0

. . .

∫ t−s1−...−sk−2

0

w1(s1)w2(s2) . . . wk−1(t− s1− . . .− sk−1)dsk−1 . . . ds1. (4.6)

We can construct the master equation as follows. Observe that

λk+1(t) =
∫ t

0

λk(s)wk+1(t− s)ds, (4.7)
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that is, every (k + 1)-st disappearance event at the time t has its k-th predecessor at
some time s < t. Then, assuming that we can interchange summation and integration,

λ(t) = λ1(t) +
∑∞
k=1 λk+1(t) = w1(t) +

∑∞
k=1

∫ t
0
λk(s)wk+1(t− s)ds

= w1(t) +
∫ t

0

λ(s)
∞∑
k=1

λk(s)
λ(s)

wk+1(t− s)ds

= w1(t) +
∫ t

0

λ(s)W (s, t− s)ds,

where

W (s, t− s) :=
∞∑
k=1

λk(s)
λ(s)

wk+1(t− s) (4.8)

is the kernel describing the overall probability that a disappearance event at the time
s will be followed by another such event t − s units of time later. Note that, by the
definition of λ, we can treat the ratio λk(t)/λ(t) as a probability that a disappearance
event observed during the time interval [t, t + dt] is the k-th such event from the
beginning of the simulation.

We conclude that the disappearance rates satisfy

λ(t) = w1(t) +
∫ t

0

λ(s)W (s, t− s)ds, (4.9)

which will be referred to as a generalized renewal equation from now on. In the case
of the waiting times distributed according to a common law wk(t) = w(t), k ≥ 1, we
obtain a standard renewal equation (cf. [7])

λ(t) = w(t) +
∫ t

0

λ(s)w(t− s)ds. (4.10)

This equation, in turn, yields λ(t) = r = const in the case of a regular Poisson
process when w(t) = re−rt. Notice, however, that the behavior of the disappearance
rate is more complicated in the case of non-identically distributed waiting times. For
instance, if wi(t) = rie

−rit, by a simple but tedious calculation of k-fold convolutions
we can solve (4.9) to obtain

λ(t) =
∞∑
k=1

k∑
i=1

rie
−rit

k∏
j=1,j 6=i

rj
ri − rj

. (4.11)

In order to avoid possible convergence issues and to reflect the fact that the number
of events in the model systems is finite we will assume that the first summation in
(4.11) is performed up to a large m <∞.

We now compare the computational results based on a MATLAB implementation
of the expression (4.11) with those obtained via microscopic simulation of our reduced
gradient flow system as discussed above.

4.2. Numerical experiments based on renewal theory. First notice that
the dependence of ri on i is quartic, as demonstrated by the least-squares fit in Figure
4.1(a). Hence ri ∼ (N∞ − i)4, where N∞ denotes the total number of disappearance
events in the simulation. Since the number of disappearance events is equal to the
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number of grain boundaries in the system at t = 0, here N∞ = 4.5 · 103. This gives
precise characterization of wi(t) in the previous analysis.

Combining this result with the analytical solution of the generalized renewal equa-
tion (4.11) we see that it predicts the complex behavior observed in our experiments.
Indeed, Figure 4.1(b) shows good agreement of the analytical and simulated disap-
pearance rates for a relatively long period within the simulation timespan. The fact
that the validity of the derived generalized equation is preserved for so long makes it
a very robust estimate for system behavior.

Examining the expression ri ∼ (N∞ − i)4, we observe that ri ≈ N4
∞ for i� N∞

hence, at its initial stages, the renewal process is close to a stationary Poisson process.
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Fig. 4.1. (a) Least squares fit for the exponential distribution parameters ri. (b) (circles) em-
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However, our numerical experiments show that the cumulative disappearances do
not behave linearly with respect to time overall.

Figures 4.2(a) and (b) depict N∞ −N(t), the number of intervals in the system
surviving at time t for the period from 1000 to 4500-th disappearances, and the
disappearance rate for the same period of time, respectively. This behavior conforms
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well with N(t) ∼ t in the beginning. However, when we analyze N∞−N(t) vs. t with
t between 3000th and 5000th disappearances (Figure 4.2(b)), we notice that

N∞ −N(t) ∼ t−β , where β ∼ 0.3.

The dynamics of the process experience a transition from one mode to another at some
critical point tcr in the simulation. At the same critical time tcr the stabilization of
relative distributions is observed. Note that, although by the time t = tcr almost
half of the boundaries have disappeared, the absolute time elapsed from the onset of
simulation remains minuscule (of the order of 10−2 sec for a 100 sec long simulation).
The change in the behavior of the system can be attributed to ”washing-out” of
transients during the relaxation stage until it reaches the steady state.

The deviation from Poisson behavior is easily captured by the generalized renewal
equation derived earlier. However, what is even more intriguing is that the disappear-
ance times match those obtained via the regular renewal equation for the choice of
w(t) = 0.051 t−1.3, as shown by the solid line in Figure 4.2(a). Similar correspondence
is demonstrated by the plot of the number of surviving grain boundaries at a time
t (Figure 4.2(b)). This suggests the existence of an intermediate fractional diffusive
regime in our model (see the Appendix) that we will discuss next. As we will show,
while the generalized equation (4.11) has the advantage of reproducing all stages of
the system evolution, the intermediate stages of evolution admit a reasonably good
approximation by means of a more simple set of equations.

5. Modeling intermediate stages of the simulation.

5.1. Continuous time random walk approach—derivation of a master
equation. In the standard theory of continuous time random walks, one usually ad-
heres to the following basic description originally due to Montroll and Weiss [23].
Consider a walker making random steps in a state space X. Let the walk be ho-
mogeneous in the following sense: if the walker arrives at a point x at a time t, the
probability φ(y, s) of making the next step of size y after a pause s depends on y and
s, but not on x and t. Also, assume that the transition probability density φ can be
factored into a product of a function of time and a function of step length:

φ(y, s) = µ(y)w(s). (5.1)

Here w(s) is the waiting time density and µ(y) is the step-length density defined as the
marginals of the transition density φ. This separability assumption of the Montroll-
Weiss model [10], [23] will be considered in what follows for the sake of simplicity.

Let P (x, t) be the occupancy probability, i.e. the probability of finding the walker
at the state x at time t, given that at time zero the walker was at the origin, i.e.
P (x, 0) = δ(x). Due to the homogeneity assumption above, if the walker arrives at
x′ at time t′, the probability of finding him at x at time t is P (x− x′, t− t′). Given
w, we can compute the probability that a walker arriving at a site pauses for at least
time t before leaving that site: ψ(t) = 1−

∫ t
0
w(t′)dt′.

The occupancy density P and the transition probability density φ(x, t) are related
via a master equation that we can formally derive. At time t either the walker has
never left the starting site, or he has made at least one step. The probability of the
former has the density ψ(t) and the corresponding contribution to P (x, t) is given
by ψ(t)δ(x). If the walker makes one or more jumps, we may partition all possible
motions over the outcome and time of occurrence

P (x, t) = δ(x)ψ(t) +
∫ t

0

∫ ∞
−∞

P (x− x′, t− t′)µ(x′)w(t′)dx′dt′. (5.2)
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Fig. 5.1. Random walk: partitioning over the first jump.

Intuitively, the first term on the right-hand side above accounts for a walker who
fails to move from the starting position before time t elapses. The integral expresses
the fact that a walker found at site x at time t after making at least one step must
have made his first jump from x0 = 0 to x′ at some time t′ and subsequently found
his way to site x in remaining time t− t′, as shown in Figure 5.1.

If the initial state of the walker is given by an initial distribution p(x, 0) = p0(x),
we can write the probability of being in state x at time t as

p(x, t) =
∫
P (x− y, t)p0(y)dy.

As shown in the Appendix, the evolution equation for p(x, t) then can be derived
directly from the equation (5.2). The type of the resulting equations depends on
the choice of the waiting time distribution. When the waiting times are distributed
exponentially, i.e. w(t) = re−rt, (5.2) reduces to a regular integro-differential equation
with jump kernel:

∂

∂t
p(x, t) = r

∫ ∞
−∞

[p(x− x′, t)− p(x, t)]µ(x′)dx′. (5.3)

For all other choices of the waiting times, the differential equation is history-dependent
and does not represent a Markov process. For a particular choice of waiting times
w(t) = t−1−β , for instance, (5.2) is a fractional integro-differential equation

∂β

∂tβ
p(x, t) =

∫ ∞
−∞

[p(x− x′, t)− p(x, t)]µ(x′)dx′. (5.4)

where we employ the so-called Caputo fractional derivative definition

dβ

dtβ
f(t) =

1
Γ(1− β)

∫ t

0

f ′(τ)
(t− τ)β

dτ. (5.5)

Leaving further technical details to the Appendix, we would like to determine whether
our model falls within the scope of this theory.

5.2. Numerical experiments based on fractional approach. While the
dependence of the waiting times distribution on the step number does not correspond
to the standard fractional dynamics, in Section 4.2 we have seen the evidence that,
at the intermediate stage, the evolution may indeed be fractional with the empirical
value of β = 0.3. Here we will provide further numerical justification that this is
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indeed the case by showing that at the intermediate stage the time dependence of
the joint distribution of grain boundary lengths and velocities can be described by a
fractional PDE.

Suppose that the state of the grain boundary is described by a pair (v, l), where
l > 0 and v ∈ R and that the distribution of (v, l) is given by p(v, l, t). Further,
suppose that the grain boundary velocity jump process satisfies the assumptions made
in the previous section. We need to modify the equation (5.4) to take into account
that, in addition to the velocity, a grain boundary is described by its length which
changes continuously through disappearance events. The dependence on length can
be incorporated into the equation (5.4) through a convective term that takes into
account the relationship between the velocity and the length of the given interval.

In other words, we wish to consider the evolution of the joint density p(v, l, t)
described by the fractional integro-differential equation with a drift:

∂β

∂tβ
p(v, l, t) = v

∂

∂l
p(v, l, t) +

∫ ∞
−∞

[p(v − v′, l, t)− p(v, l, t)]µ(v′)dv′, (5.6)

where ∂β/∂t stands for the Caputo fractional derivative, as given in equation (5.5)
above, while ∂/∂l is the regular partial derivative with respect to the length variable.

Numerically, this equation is best solved by using Grunwald-Letnikov approxima-
tion of fractional derivative (see [21]):

∂βf(t)
∂tβ

= lim
h→0

1
hβ

[t/h]∑
k=0

ω
(β)
k f(t− kh), where ω

(β)
k = (−1)k

(
β
k

)
.

Taking β = 0.3 to conform with earlier observations, numerical solution of (5.6) can
be obtained by using the explicit forward time centered space difference scheme, with
pmi,j representing the value of the discretized probability density after m steps, with
velocity v in j-th bin and length l in i-th bin, i.e. v ∈ [vj , vj + ∆v], j = 1, . . . , Nj and
l ∈ [li, li + ∆l], i = 1, . . . , Ni, as follows:

p
(m+1)
i,j = p

(m)
i,j +

m∑
k=0

ω
(β)
k [Dβvj∆lp

(m−k)
i,j + SβI

(m−k)
i,j ], (5.7)

where the constants take the form Sβ =
(∆t)β

(∆v)
, Dβ =

(∆t)β

(∆l)
. The first derivative in

l is computed using an upwind scheme

∆lp
(m−k)
i,j =

{
p
(m−k)
i,j − p(m−k)

i−1,j , vj ≥ 0
p
(m−k)
i+1,j − p

(m−k)
i,j , vj < 0

where a natural boundary condition is assumed for the part of the domain with v > 0.
The contribution of the jump part corresponds to the following discretization of the
integral:

I
(m−k)
i,j =

∑
sl:j+sl∈[1,Nj ]

µl[p
(m−k)
i,j+sl

− p(m−k)
i,j ], (5.8)

where µl = µ(xl).
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In the absence of the drift term and with purely diffusive jumps, this numerical
scheme has been shown in [24] to be conditionally stable. While similar conjectures
have been made in some more general cases, full analysis of stability and accuracy
issues for the schemes involving fractional derivatives and jump kernels of this type
are subject to further investigation and will be presented in subsequent works. Notice
that fractional derivative in time introduces dependence on the past history, which
brings in extra memory requirements for the corresponding numerical scheme. Luckily,
weights ω decay almost exponentially as shown in Figure 5.2(a).
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Similar to the previous section, we look at the evolution of 5000 grain boundaries
for f(x) = (x − 0.5)2. We determine µ(s) from the empirical jump probability den-
sity shown in Figure 5.2(b) constructed using data harvested from the deterministic
simulation. We use µ to form the expression for the jump integral (5.8) and proceed
by running the computational model (??) with β = 0.3 as in Figure 4.2. Figure 5.3
shows that the results of the the FPDE simulation (right) are in reasonable agree-
ment with simulation (left) in the stable regime between 3000 and 4000 simulation
steps. Both distributions narrow down with time and preserve singularity at the max-
imum, contrary to regular diffusive behavior. The dashed curve denotes the starting
distribution, while the final shape is represented by the boldface curve.
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Fig. 5.3. (a) Evolution of grain boundary velocities as collected from simulation; (b) numerical
solution of the fractional equation (5.7). Snapshots are taken after every 200 steps, starting at
3000th step, with the shape after 4000 steps depicted with boldface font.
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Having made these observations, it becomes clear that the jump process under-
lying the grain growth dynamics in the simplified system is far from trivial. It is not
just the fact that it does not fit into the regular diffusion framework, but also that
due to the decaying disappearance rates, it deviates from the more general framework
of continuous time random walks, which makes the analysis more complicated. By
means of the generalized renewal theory, we have been able to completely determine
the disappearance rates throughout the model evolution. Moreover, we have shown
that the model bears striking similarity to the fractional sub-diffusion in an interme-
diate regime where most relevant distributions stabilize resulting in simpler evolution
equation. While we have been able to successfully simulate both equations numer-
ically, many interesting questions remain about the stability and accuracy of these
implementations.

This kind of analysis readily suggests several directions of research in the context
of medium-to-large scale 2d and 3d models that are currently under investigation. If
we treat the effect of disappearance events on grain boundary distributions as that
of a jump process, then which of the characteristics will be preserved when we go to
higher space dimensions? As long as the waiting times and the magnitudes of jumps
for the relevant quantities can be estimated, we can perform an in-depth analysis
employing the tools derived above and use the results for validation and prediction of
materials properties.

6. Discussion. One of the principal coarsening mechanisms of microstructural
evolution is the motion of the triple junctions. The effect of topological changes (facet
interchanges and disappearances) on this process is not yet understood. We propose
a framework capable of describing the jump process associated with these events via a
generalized continuous time random walk theory. We consider a reduced gradient flow
model that neglects the curvature kinetic effects but retains other main characteristics
of the evolution of triple junctions. We analyze the grain boundary distributions
generated by the simplified dynamics. We show that the model possesses stable
statistics for lengths, velocities and misorientations and demonstrate a subdiffusive
nature of the evolution of grain boundary velocities. We show that the waiting times
between the disappearance events are not identically distributed, but rather have
exponential distributions that decay with time. This is one manifestation of the
slowdown associated with coarsening. We identify the generalized renewal equation for
the disappearance rates and confirm its validity via a comparison with simulations. We
show that there is an intermediate regime within the simulation that can be described
within the framework of the theory of continuous time random walks. We obtain a
fractional evolution equation for a distribution of the grain boundary velocities and
orientations that shows good agreement with the statistics generated by the gradient
flow dynamics in the simplified model.

Although the results presented here are confined to the one-dimensional topology,
we believe that the main attributes of the system behavior have been identified. We
conjecture that the form of the fractional evolution equation should be preserved in
higher dimensions. Numerical implementation and testing of the higher-dimensional
model will be presented in future publications.
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8. Appendix. Evolution equations for Markov and non-Markov jump
processes. Here we present a short derivation of the generalized master equation that
produces equations (5.3) and (5.4) used in Section 5.1. Let us start with equation
(5.2) and suppose as before that the initial state of the walker is given by an initial
distribution p(x, 0) = p0(x). In this situation, we can write the probability of being
in state x at time t as

p(x, t) =
∫
P (x− y, t)p0(y)dy (8.1)

which yields a more general form of the random walk equation 5.2:

p(x, t) = p0(x)ψ(t) +
∫ t

0

∫ ∞
−∞

p(x− x′, t− t′)µ(x′)w(t′)dx′dt′. (8.2)

We will now see that both equations (5.3) and (5.4) are simple consequences of
the above equation for some special choices of parameters. For this purpose, it is
convenient to work with equation (8.2) in Laplace space. Indeed, denote the Laplace
time variable as u and the Laplace transforms of p(x, t) and w(t) by p̂(x, u) and ŵ(u),
respectively. Then we arrive at

p̂(x, u) =
p0(x)(1− ŵ(u))

u
+ ŵ(u)

∫ ∞
−∞

p̂(x− x′, u)µ(x′)dx′. (8.3)

We can look at this equation from a slightly different perspective, similar to that
offered in [20]. After some simple algebra we can rewrite (8.3) as follows:

1− ŵ(u)
uŵ(u)

(up̂(x, u)− p0(x)) + p̂(x, u) =
∫ ∞
−∞

p̂(x− x′, u)µ(x′)dx′

and let

Φ̂(u) =
1− ŵ(u)
uŵ(u)

.

Then we have

Φ̂(u)(up̂(x, u)− p0(x)) =
∫ ∞
−∞

[p̂(x− x′, u)− p̂(x, u)]µ(x′)dx′, (8.4)

and by taking inverse Laplace transform∫ ∞
0

Φ(t− t′) ∂
∂t
p(x, t′)dt′ =

∫ ∞
−∞

[p(x− x′, t)− p(x, t)]µ(x′)dx′. (8.5)

Following [20] we call Φ(t) the ”memory function” of the CTRW.
It is easy to see that (8.5) formally reduces to a differential equation if the process

is Markov (”memoryless”). Then Φ(t) =
1
r
δ(t), where r = const and

∂

∂t
p(x, t) = r

∫ ∞
−∞

[p(x− x′, t)− p(x, t)]µ(x′)dx′. (8.6)

This is equivalent to having Φ̂(u) =
1
r

and

ŵ(u) =
r

u+ r
and w(t) = re−rt.
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In other words, in order to have a Markovian CTRW one needs to have exponentially
distributed waiting times. It is useful for us to derive a generalized master equation
of the form (8.6) for a much wider class of processes. Namely, suppose

Φ̂(u) = uβ−1, (8.7)

then equation (8.4) becomes

(uβ p̂(x, u)− p0(x)uβ−1) =
∫ ∞
−∞

[p(x− x′, t)− p(x, t)]µ(x′)dx′, (8.8)

which corresponds to

∂β

∂tβ
p(x, t) =

∫ ∞
−∞

[p(x− x′, t)− p(x, t)]µ(x′)dx′. (8.9)

Here we employ the so-called Caputo fractional derivative definition

dβ

dtβ
f(t) =

1
Γ(1− β)

∫ t

0

f ′(τ)
(t− τ)β

dτ,

for which

L
[ dβ
dtβ

f(t)
]

= uβ f̂(u)− uβ−1f(0).

The choice of Φ̂(u) in (8.7) suggests the form of waiting times distribution that gen-
eralizes exponential behavior of the Markovian case. Namely,

ŵ(u) =
1

uβ + 1
,

which after inversion gives

w(t) = − d

dt
Eβ(−tβ), (8.10)

where Eβ =
∞∑
n=0

zn

Γ(βn+ 1)
is the Mittag-Leffler function, which interpolates between

the stretched exponential form and long-time inverse power law behavior [18]. This is
the only choice of a waiting time distribution that allows one to transform the basic
CTRW equation (8.2) directly into a fractional evolution equation without a limiting
procedure (see [8]). As shown in [20], we get the following asymptotic behavior for
the waiting times in this case:

w(t) =
1

t1−β

∞∑
n=0

(−1)n
tβn

Γ(βn+ β)
, t ≥ 0,

w(t) ∼ sinβn
π

Γ(β + 1)
tβ+1

, t→∞.
(8.11)

When β = 1 we recover the exponential waiting time behavior of the Markovian case.
Also, note that this discussion applies to the generalized renewal equation (4.10)
which can be converted to a fractional ODE. In the case of exponential waiting times
with arbitrary jump sizes, equation (8.9) coincides with the evolution equation for the
Poisson jump process as developed in the theory of Levy processes (see [2], [19]).
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