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Mesoscale experiment and simulation permit harvesting information about both geometric features and texture
in polycrystals. The grain boundary character distribution (GBCD) is an empirical distribution of the relative
length [in two dimensions (2D)] or area (in 3D) of an interface with a given lattice misorientation and normal.
During the growth process, an initially randomdistribution of boundary types reaches a steady state that is strongly
correlated to the interfacial energy density. In simulation, it is found that if the given energy density depends only
on lattice misorientation, then the steady-state GBCD and the energy are related by a Boltzmann distribution.
This is among the simplest nonrandom distributions, corresponding to independent trials with respect to the
energy. In this paper, we derive an entropy-based theory that suggests that the evolution of the GBCD satisfies
a Fokker-Planck equation, an equation whose stationary state is a Boltzmann distribution. Cellular structures
coarsen according to a local evolution law, curvature-driven growth, and are limited by space-filling constraints.
The interaction between the evolution law and the constraints is governed primarily by the force balance at triple
junctions, the natural boundary condition associated with curvature-driven growth, and determines a dissipation
relation. A simplified coarsening model is introduced that is driven by the boundary conditions and reflects the
network level dissipation relation of the grain growth system. It resembles an ensemble of inertia-free spring-mass
dashpots. Application is made of the recent characterization of Fokker-Planck kinetics as a gradient flow for a
free energy in deriving the theory. The theory predicts the results of large-scale two-dimensional simulations and
is consistent with experiment.
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I. INTRODUCTION

Cellular networks are ubiquitous in nature. They exhibit
behavior on many different length and time scales and are
generally metastable. Most technologically useful materials
are polycrystalline microstructures composed of a myriad of
small monocrystalline grains separated by grain boundaries,
and thus comprise cellular networks. The energetics and
connectivity of the grain boundary network plays a crucial
role in determining the properties of a material across a
wide range of scales. A central problem in materials is to
develop technologies capable of producing an arrangement of
grains that provides for a desired set of material properties.
Traditionally, the focus has been on the geometric feature
of size and the preferred distribution of grain orientations,
termed texture. More recent mesoscale experiment and sim-
ulation permit harvesting large amounts of information about
both geometric features and crystallography of the boundary
network in material microstructures.1–5

A leading candidate to characterize the texture of the
grain boundary population is the grain boundary character

distribution.3 The grain boundary character distribution
(GBCD) is an empirical distribution of the relative length
[in two dimensions (2D)] or area (in 3D) of interface with
a given lattice misorientation and grain boundary normal.
During the growth process, an initially random grain boundary
texture reaches a steady state that is strongly correlated to the
interfacial energy density. In simulation, a GBCD is always
found. In viewof the previouswork3,4 and the theory developed
in this paper, it is the GBCD that should serve as a reference
distribution for texture in preference to other distributions.
If the given energy depends only on lattice misorientation,

then the steady-state GBCD and the interfacial energy density
are related by a Boltzmann distribution. This is among the sim-
plest nonrandom distributions, corresponding to independent
trials with respect to the density. Such a simple dependence
between the character distribution and the interfacial energy
offers evidence that theGBCD is amaterial property.Whydoes
such a simple distribution arise from such a complex system
comprised of many interacting interfaces? In this paper, we
attempt to answer this question.
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We outline an entropy-based theory that suggests that the
evolving GBCD satisfies a Fokker-Planck equation. Coarsen-
ing in polycrystalline systems is a complicated process involv-
ing the details of material structures, chemistry, arrangement
of grains in the configuration, and environment. In this context,
we consider just two competing global features, as articulated
by C. S. Smith:6 cell growth according to a local evolution law
and space-filling constraints.We shall impose curvature-driven
growth for the local evolution law, cf. Mullins.7 Space-filling
requirements are managed by critical events, rearrangements
of the network involving deletion of small contracting cells,
and facets. The interaction between the evolution law and
the constraints is, we shall discover, governed primarily by
the balance of forces at triple junctions. This balance of
forces, often referred to as the Herring condition,8 is the
natural boundary condition associated with the equations of
curvature-driven growth. It determines a dissipation relation
for the network as a whole.
We introduce a simplified coarsening model driven by the

boundary conditions that reflects the dissipation relation of the
grain growth system. It resembles an ensemble of inertia-free
spring-mass dashpots.9 For this simpler network, we learn how
entropic or diffusive behavior at the large scale emerges from
a dissipation relation at the scale of local evolution. The cor-
nerstone is our novel implementation of the iterative scheme
for the Fokker-Planck equation in terms of the system free
energy and a Kantorovich-Rubinstein-Wasserstein metric,10

cf. also Ref. 11, whichwill be defined and explained later in the
text. The network level nonequilibrium nature of the iterative
scheme leaves free a temperature-like parameter. The entropy
method is exploited to identify uniquely this parameter. To
illustrate the idea, we include a simple application to the
solution of the Fokker-Planck equation itself.
We present evidence that the theory predicts the results of

large-scale two-dimensional simulations.12 Energy densities
consisting of quadratic and quartic trigonometric polynomials
are analyzed in detail. The discussion of the quartic-based
energy density places in relief the entropic nature of theGBCD.
It would take us rather far afield to discuss consistency with
experiment, and we refer the reader to Ref. 3. A companion
paper emphasizing the mathematical and simulation issues of
the project is Ref. 13. A theory for the evolution of geometric
features of microstructure is discussed in Refs. 14 and 15.
Some of the results of the present work were announced in
Refs. 16 and 12. Different treatments of texture development
are given in Refs. 17–20.

II. MESOSCALE THEORY

Our point of departure is the common denominator the-
ory for the mesoscale description of grain growth. This is
curvature-driven growth, more precisely Eq. (2) below, for the
motion of curves or arcs individually or in a network, which
we employ for our local law of evolution. Boundary conditions
must be imposed where the arcs meet. This condition is
the Herring condition, (3), which is the natural boundary
condition at equilibrium for (2). Since their appearance by
Mullins for general or anisotropic growth7 and Herring,8,21

a large and distinguished body of work has grown regarding
these equations. Most relevant to the work presented herein

FIG. 1. (Color online) An arc � with normal n, tangent b, and
latticemisorientationα, illustrating lattice elements (reproduced from
Ref. 16).

are Refs. 22–25. Let α denote the misorientation between
two grains separated by an arc �, as noted in Fig. 1, with
normal n = (cos θ, sin θ ), tangent direction b, and curvature
κ . Let ψ = ψ(θ,α) denote the energy density on �. So,
representing the time-evolving arc � in the x = (x1,x2) plane
by the vector-valued function ξ (s,t) = (ξ1(s,t),ξ2(s,t)) of arc
parameter s and time t ,

� : x = ξ (s,t), 0 � s � L, t > 0, (1)

with

b = ∂ξ

∂s
(tangent), n = Rb (normal),

v = ∂ξ

∂t
(velocity), vn = v · n (normal velocity),

where R is a positive rotation of π/2. The Mullins equation of
evolution is

vn = (ψθθ + ψ)κ on �. (2)

We assume that only triple junctions are stable and that the
Herring condition holds at triple junctions. This means that
whenever three curves {�(1),�(2),�(3)} meet at a point p, the
force balance, (3) below, holds:∑

i=1,...,3
(ψθn

(i) + ψb(i)) = 0. (3)

It is easy to check24 that the instantaneous rate of change of
energy of � is

d

dt

∫
�

ψ |b|ds = −
∫

�

v2nds + v · (ψθn + ψb)|∂�. (4)

We turn now to a network of grains bounded by a collection
of curves {�i} subject to some condition at the border of the
region they occupy, such as fixed end points or periodicity, cf.
Fig. 2. Our simulation is described in Refs. 26 and 27. The
typical simulation consists of initializing a configuration of
cells and their boundary arcs, usually by a modified Voronoi
tessellation, assigning random orientations to the cells, and
then solving the system (2) and (3), eliminating facets when
they have negligible length and cells when they have negligible
area. The simulation satisfies all known diagnostics and, in
particular, when ψ = const, the von Neumann–Mullins n − 6
rule28,29 is satisfied for each cell at each time when it is not
subjected to a critical event, facet, or grain deletion.
The total energy of the system is given by

E(t) =
∑
{�i }

∫
�i

ψ |b|ds. (5)
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FIG. 2. (Color online) Example of an instant during the simulated
evolution of a cellular network. This is part of the frame from a small
simulation with constant energy density and periodic conditions at
the border of the configuration.

Owing exactly to the Herring condition (3), the instantaneous
rate of change of the energy is

d

dt
E(t) = −

∑
{�i }

∫
�i

v2nds +
∑
T J

v ·
∑
(ψθn + ψb)

= −
∑
{�i }

∫
�i

v2nds

� 0, (6)

rendering the network dissipative for the energy in any instant
absent of critical events. Indeed, in an interval (t0,t0 + τ )where
there are no critical events, we may integrate (6) to obtain a
local dissipation equation,

∑
{�i }

∫ t0+τ

t0

∫
�i

v2ndsdt + E(t0 + τ ) = E(t0), (7)

which bears a resemblance to the simple dissipation relation
for an ensemble of inertia-free springs with friction. In the
simulation, the facet interchange and cell deletion are arranged
so that the inequality in (6) is maintained. In the case in which
the energy density is independent of the normal direction, so
ψ = ψ(α), the situation we will be concerned with in this
paper, (2) and (3) may be expressed as

vn = ψκ on � (8)∑
i=1,...,3

ψb(i) = 0 at p, (9)

where p denotes a triple junction. Equation (9) is the same as
the Young wetting law.30 Our interfacial energy densities ψ

are chosen so that

1 � ψ(α) � 3

2
, |α| � π

4
(10)

(periodic with period π/2) giving square symmetry that is
intended to mimic cubic symmetry in three dimensions. For
the range of ψ in (10), one may check that (9) can always be
resolved, namely, given three numbers ψi ∈ [1,3/2] there are

unit vectors bi such that

ψ1b1 + ψ2b2 + ψ3b3 = 0.

In executing this check, one may note that if the oscillation
in ψ is too large, then it may not be possible to fulfill the
Young law condition in general; cf. Ref. 2 for a discussion
of the issue. To develop the GBCD, the collection of initial
orientations must be sufficiently random, since for this type of
density, all misorientations are drawn from the initial list of
pairwise differences of cell orientations.31

For this situation, we define the GBCD with� = (−π
4 ,

π
4 ),

ρ(α,t) = relative length of arc of misorientation

α at time t,normalized so that∫
�

ρdα = 1. (11)

III. SIMPLIFIED COARSENING MODEL

A significant difficulty in developing a theory for the
GBCD, and understanding texture development in general,
lies in the lack of understanding of the consequences of
rearrangement events or critical events, facet interchange, and
grain deletion on misorientations and grain size. For example,
in Fig. 3, the average area of six-faceted grains during a
growth experiment on an Al thin film32 and the average area
of six-faceted cells in a typical simulation33 both increase with
time. Note that the von Neumann-Mullins rule is that the area
An of a cell with n facets satisfies

A′
n(t) = c(n − 6), (12)

when ψ = const and triple junctions meet at angles of 2π/3.
This is thought to hold approximately when anisotropy is
small. The von Neumann–Mullins rule does not fail in the
example in Fig. 3, of course, but cells observed at later times
had 7, 8, . . . facets at earlier times. The trend of increase in
average area over time holds for all facet classes. Thus in the
network setting, critical events and subsequent rearrangement
play a major role. Although we may be reasonably confident
that small cells with small numbers of facets will be deleted,
their resulting effect on the configuration appears to be
essentially random.
We shall study this by a simplified model that retains

critical events and kinetics but neglects curvature-driven
motion of the boundaries. It is an abstraction of the role of
triple junctions in the presence of the rearrangement events.
We have used this model to develop a statistical theory for
critical events.34–36 It has been found to have its own GBCD,
which we shall now study.
Our theme will be that the GBCD statistic for the simplified

model resembles the solution of a Fokker-Planck equation
obtained via the mass transport implicit scheme. The first
part of the discussion consists in introducing this model.
The simplified model is formulated as a gradient flow,
which results in a dissipation inequality analogous to the
one found for the coarsening grain network. Because of this
simplicity, it will be possible to “upscale” the network level
system description to a higher-level GBCD description that
accommodates irreversibility. As this changes the ensemble,
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(a) (b)

FIG. 3. (Color online) The average area of six-sided cell populations during coarsening in two different cellular systems showing that the
von Neumann–Mullins n − 6 rule (12) does not hold at the scale of the network. (a) In an experiment on Al thin film, (b) a typical simulation
(arbitrary units). Please refer to the first paragraph of Sec. III for additional explanation.

following Boltzmann, there is an entropic contribution, which
we take in the form of configurational entropy. A more useful
dissipation inequality is obtained by modifying the “velocity”
term to be a true viscous term,which now brings us to the realm
of the Kantorovich-Rubinstein-Wasserstein implicit scheme,
sometimes referred to as the JKO scheme. At this stage, we
explain how we may appeal to the Fokker-Planck paradigm.
The second part of the discussion, in Sec. IV, will be

our argument to validate this paradigm. We do not know
that the statistic solves the Fokker-Planck partial differential
equation (PDE), but we ask if it shares important aspects
of Fokker-Planck behavior. A defining characteristic of the
Fokker-Planck equation, and diffusion equations in general, is
the exponential decay of their solutions to equilibrium.Wegive
evidence for this by asking for the unique “temperature-like”
parameter that minimizes the relative entropy over a long
time. The empirical stationary distribution and Boltzmann
distribution with the special parameter value are in excellent
agreement; see Fig. 6. This gives an explanation for the
stationary distribution and the kinetics of evolution. We do not
know, at this point in our investigation, if the two-dimensional
network has the detailed dissipative structure of the simplified
model, but we are able to produce evidence that the same
argument employing the relative entropy does suggest the
correct kinetics and stationary distribution.

A. Formulation

Let I ⊂ R be an interval of length L partitioned by points
xi,i = 1, . . . ,n, where xi < xi+1,i = 1, . . . ,n − 1 and xn+1 is
identified with x1. For each interval [xi,xi+1],i = 1, . . . ,n,

select a random misorientation number αi ∈ (−π/4,π/4].
The intervals [xi,xi+1] correspond to grain boundaries with
misorientations αi and the points xi represent the triple
junctions. Choose an energy density ψ(α) � 0 and introduce
the energy

E =
∑

i=1,...,n
ψ(αi)(xi+1 − xi). (13)

We impose gradient flow kinetics with respect to (13), which
is the system of ordinary differential equations

dxi

dt
= − ∂E

∂xi

,i = 1, . . . ,n, that is

dxi

dt
= ψ(αi)− ψ(αi−1),i = 2, . . . ,n, and (14)

dx1

dt
= ψ(α1)− ψ(αn).

The velocity vi of the ith boundary is

vi = dxi+1
dt

− dxi

dt
= ψ(αi−1)− 2ψ(αi)+ ψ(αi+1). (15)

The grain boundary velocities are constant until one of the
boundaries collapses. That segment is removed from the
inventory of active cells, and the velocities of its two neighbors
are changed due to the emergence of a new junction. Each such
deletion event rearranges the network and, therefore, affects its
subsequent evolution just as in the two-dimensional cellular
network. Actually, since the interval velocities are constant,
this gradient flow is just a sorting problem. At any time, the
next deletion event occurs at the smallest of

xi − xi+1
vi

with vi < 0.

We turn to the dissipation inequality for the gradient flow.
At any time t between deletion events,

dE

dt
=

∑
ψ(αi)vi

= −
∑
[ψ(αi)− ψ(αi−1)]2

= −
∑ dxi

dt

2

� 0. (16)

We may write a mass-spring-dashpot–like local dissipation
inequality analogous to the grain growth one. In an interval
(t0,t0 + τ ) where there are no critical events, dE/dt may be

134117-4



CRITICAL EVENTS, ENTROPY, AND THE GRAIN . . . PHYSICAL REVIEW B 83, 134117 (2011)

integrated to give

τ
∑

i=1,...,n

dxi

dt

2

+ E(t0 + τ ) = E(t0)

or ∑
i=1,...,n

∫ τ

0

dxi

dt

2

dt + E(t0 + τ ) = E(t0). (17)

With appropriate interpretation of the sum, (17) holds for all
t0 and almost every τ sufficiently small. With the obvious use
of Young’s inequality,37 we have that

1

4

∑
i=1,...,n

∫ τ

0
v2i dt + E(t0 + τ ) � E(t0). (18)

The energy of the system at time t0 + τ is determined by its
state at time t0. Vice versa, changing the sign on the right-hand
side of (14) allows us to begin with the state at time t0 + τ

and return to the state of time t0: the system is reversible in
an interval of time absent of rearrangement events. This is no
longer the situation after such an event. At the later time, we
have no knowledge about which interval, now no longer in the
inventory, was deleted.
We introduce a new ensemble based on the misorientation

parameter α where we take � : −π
4 < α < π

4 for later ease
of comparison with the two-dimensional network. The GBCD
or character distribution in this context is, as expected, the
histogram of lengths of intervals sorted by misorientation α

scaled to be a probability distribution on �. To be precise, let

li(α,t) = xi+1(t)− xi(t)

= length of the ith interval,

where explicit note has been taken of

its misorientation parameter α.

Now partition � into m subintervals of length h = π
2
1
m
, and

let

ρ(α,t) =
∑

α′∈((k−1)h,kh]

li(α
′,t)

1

Lh

(19)
for (k − 1)h < α � kh, t > 0.

For this definition of the statistic,∫
�

ρ(α,t)dα = 1.

Note that

∂ρ

∂t
(α,t) =

∑
α′∈((k−1)h,kh]

vi(α
′)
1

Lh

(20)
for (k − 1)h < α � kh.

We may express (18) in terms of the character distribution
(19), which amounts to

μ0

∫ t0+τ

t0

∫
�

∣∣∣∣∂ρ∂t

∣∣∣∣
2

dαdt +
∫

�

ψ(α)ρ(α,t0 + τ )dα

�
∫

�

ψ(α)ρ(α,t0)dα, (21)

where μ0 > 0 is some constant.

We now impose a modeling assumption. The expression
(21) is in terms of the new misorientation level ensemble,
upscaled from the local level of the original system. Consistent
with the lack of reversibility when rearrangement events
occur, an entropic term will be added. We use standard
configurational entropy,

+
∫

�

ρ log ρdα, (22)

although this is not the only choice. Minimizing (22) favors
the uniform state, which would be the situation were ψ(α) =
const.
Given that (21) holds, we assume for any t0 and τ

sufficiently small that

μ0

∫ t0+τ

t0

∫
�

(
∂ρ

∂t

)2
dαdt +

∫
�

(ψρ + λρ log ρ)dα|t0+τ

�
∫

�

(ψρ + λρ log ρ)dα|t0 . (23)

E(t) was analogous to an internal energy or the energy of a
microcanonical ensemble, and now

F (ρ) = Fλ(ρ) = E(t)+ λ

∫
�

ρ log ρdα (24)

is a free energy.

B. Fokker-Planck paradigm

Equation (23) above fails as a proper dissipation principle
because the first term does not represent lost energy due to
frictional or viscous forces. For a deformation pathf (α,t),t0 �
t � t0 + τ, of probability densities, this quantity is

D = D(f ) =
∫ τ

0

∫
�

v2f dαdt, (25)

where f,v are related by the continuity equation and initial
and terminal conditions

ft + (vf )α = 0 in � × (t0,t0 + τ ) and
(26)

f (α,t0) = ρ(α,t0), f (α,t0 + τ ) = ρ(α,t0 + τ ) in �,

by analogy with fluids,38 p. 53 et seq. and elementary
mechanics.
For brevity, setρ∗(·) = ρ(·,t0). Our question now iswhether

the first term of (23) can dominate the termD(f ) for some f so
thatD(f ) may be substituted while maintaining the inequality.
Using the deformation path given by ρ itself, we may calculate
that indeed

D(ρ) =
∫ τ

0

∫
�

v2ρdαdt

� c�

min� ρ
·
∫ τ

0

∫
�

(
∂ρ

∂t

)2
dαdt, (27)

where the v is chosen by solving explicitly the continuity
equation (26).We now have that for any relaxation time τ > 0,

μ

2

∫ τ

0

∫
�

v2ρdαdt + Fλ(ρ) � Fλ(ρ
∗) (28)

for some constant μ.
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The infimum ofD(f ) over all admissible (v,f ) is a known
statistical measure of closeness of probability densities, the
square of the Kantorovich-Rubinstein-Wasserstein or Wasser-
stein metric.39,40 For densities ρ,ρ∗ it is defined to be

d(ρ,ρ∗)2 = inf
P

∫
�

∫
�

|x − y|2dp(x,y),
(29)

P = joint distributions for ρ,ρ∗ on �̄ × �̄.

Recall here that the probability density p(x,y) is a joint
distribution for the probability distributions P and P ∗ with
densities ρ and ρ∗ provided that

P (E) =
∫

E

ρ(x)dx =
∫

E

∫
�

dp(x,y) and

P ∗(F ) =
∫

F

ρ∗(y)dy =
∫

�

∫
F

dp(x,y)

for all E,F ⊂ �.

The metric d has the property that

1

τ
d(ρ,ρ∗)2 = infD(f ), (30)

where the infimum is taken over all deformation paths
(f,v) satisfying (26).41 We next replace (28) by a minimum
principle, arguing that the path given by ρ(α,t) is the one
most likely to occur and that the minimizing path has the
highest probability. We are led to the variational principle for
the unknown ρ given ρ∗,

μ

2τ
d(ρ,ρ∗)2 + Fλ(ρ) = inf

{η}

{ μ

2τ
d(η,ρ∗)2 + Fλ(η)

}
. (31)

For each relaxation time τ > 0 we determine iteratively the
sequence {ρ(k)} by choosing ρ∗ = ρ(k−1) and ρ(k) = ρ in (31),
and we set

ρ(τ )(α,t) = ρ(k)(α) in � for kτ � t < (k + 1)τ.
(32)

We then anticipate recovering the GBCD ρ as

ρ(α,t) = lim
τ→0

ρ(τ )(α,t), (33)

with the limit taken in a suitable sense.42 It has been recently
established that ρ obtained from (33) is the solution of the
Fokker-Planck equation,10

μ
∂ρ

∂t
= ∂

∂α

(
λ

∂ρ

∂α
+ ψ ′ρ

)
in �, 0 < t < ∞. (34)

We might point out here, as well, that a solution of (34) with
periodic boundary conditions and non-negative initial data is
positive for t > 0.

IV. VALIDATION OF THE SCHEME

We now begin the validation step of our model. First we
review a few facts about solutions of (34). Introduce the
notation for the Boltzmann distribution with parameter λ,

ρλ(α) = 1

Zλ

e− 1
λ
ψ(α),α ∈ �, where

(35)
Zλ =

∫
�

e− 1
λ
ψ(α)dα.

The Kullback-Leibler relative entropy with parameter λ for
(34) is given by

�λ(η) = λ

∫
�

η log
η

ρλ

dα, where
(36)

η � 0 in �,

∫
�

ηdα = 1,

with ρλ from (35). It is a convex function of η, and by Jensen’s
inequality it is always non-negative.43 In terms of the free
energy (24) and (35), (36) is given by

�λ(η) = Fλ(η)+ λ logZλ, (37)

(a) (b)

FIG. 4. (Color online) (a) The relative entropy �σ of the solution u(x,t) of the Fokker-Planck equation (34) for the potential ψ(x) =
1+ r(x − 1

2 )
2,r = 2, with the choice λ = σ = 0.029 691 5, computed by a routine numerical method, compared with a sequence of �λ with

the curve for σ = 0.029 691 5 noted in red. The values of λ correspond to ρλ with max ρσ /2 � max ρλ � (3/2)max ρσ . (b) The computed
equilibrium solution, which is indistinguishable from ρσ , the Boltzmann distribution of (36).
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FIG. 5. (Color online) Plots of − log�λ vs t with − log�σ in
red for the solution of (34), cf. Fig. 4. The plot illustrates that �σ

decreases exponentially to 0 but that �λ for choices of λ 	= σ do not
have this property.

that is, it differs from the free energy by a known function
of λ. A solution ρ of (34) with λ = σ satisfies,40 or13 for an
elementary demonstration,

lim
t→∞ �σ (ρ) = 0 exponentially fast, whereas

(38)
lim
t→∞ �λ(ρ) > 0 for λ 	= σ.

From (38) and the classical Csiszar-Kullback inequality,40,44

ρ(α,t) → ρσ (α) as t → ∞ exponentially fast. (39)

We point out here that (39) follows whenever a function
satisfies (38).
We now turn to the validation of our method. The procedure

that leads to the implicit scheme is based on a dissipation
inequality, (18), that holds for the entire system but does not

FIG. 7. (Color online) Plots of− log�λ vs t with− log�σ ,σ =
0.029 691 5, in red for the simplified coarsening model with potential
(40). It shows that �σ decays exponentially to its minimum at
simulation time t = T∞.

identify individual intermediate “spring-mass dashpots.” The
consequence is that we cannot set the parameter σ , but in some
way must decide if one exists, as we have been suggesting.
Therefore, we seek to identify the particular λ = σ for

which�σ defined by theGBCDstatisticρ tendsmonotonically
to the minimum of all the {�λ} as t becomes large. The
empirical GBCD ρ is a statistic, and so the minimum of all
the {�λ} may not be zero. So we must proceed to ask if the
terminal, or equilibrium, empirical distribution ρ is equal, that
is, reasonably close, to ρσ given by the formula (35). This is
the essence of our validation procedure. For our purposes, we
simply decide the question of equality by inspection.
With validation, we would gain qualitative properties of

solutions of (34): If we find the correct choice for λ = σ , then
from our discussion above,

(a) (b)

FIG. 6. (Color online) Graphical results for the simplified coarsening model with potential (40). (a) Relative entropy plots for values of λ
chosen according to (41) with�σ noted in red. The value of σ = 0.029 691 5. (b) Empirical GBCD at simulation time t = T∞ in red compared
with ρσ in black.
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(i) ρ(α,t) → ρσ (α) as t → ∞, and
(ii) this convergence is exponentially fast,

and otherwise these properties fail.
In this context, determining a parameter on the basis of

its thermodynamic restrictions is well known. A noteworthy
feature here is its use in a nonequilibrium setting; cf. also
Refs. 45–47.
To understand our implementation, we offer an illustration

using the solution of (34) itself, u computed on � = (0,1)
with the choices ψ(x) = 1+ r(x − 1/2)2,r = 2, and λ =
σ = 0.029 691 5, and a collection of relative entropy plots
{�λ}where values of λ are close to σ , cf. Fig. 4(a). The plot of
�σ vs time t is noted in red and it is decreasing and tends to 0.
A glance at the resulting equilibriumu, Fig. 4(b), identifies it as
the Boltzmann distribution ρσ , as constructed. In Fig. 5, plots
of − log�λ are shown, illustrating that − log�σ increases
linearly, or �σ decreases exponentially while �λ for λ 	= σ

does not have this property.
For the simplified coarsening model, we consider

ψ(α) = 1+ 2α2, α ∈ � =
(
−π

4
,
π

4

)
, (40)

and we shall identify one such unique parameter, which we la-
bel σ, by seeking the minimum of the relative entropy (36) and
then comparing it with ρσ . Thisψ is the development to second
order of ψ(α) = 1+ 0.5 sin2 2α used in the two-dimensional
simulation. Moreover, since the potential is quadratic, it
represents a version of the Ornstein-Uhlenbeck process48 that
we computed above directly. To proceed, we must agree upon
which simulation time t = T∞ represents time equal to infinity.
For the simplified critical event model we are considering, it
is clear that by computing for a sufficiently long time, all cells
will be gone. This time may be quite long. We choose the
time parameter so that 80% of segments have been deleted,
which corresponds to the stationary configuration in the two-
dimensional simulation. For the simplified model simulation,
this time isT∞ = T (80%) = 6.73.Here,T (�) denotes the time
at which �% of the cells have been deleted. For comparison,

T (90%) = 30 and T (95%) = 103. There may be additional
criteria for choosing a terminal time T∞ in the neighborhood
of T (80%), and we may wish to discuss this later.
This simulation is initialized with 215 + 1 cells, and

approximately 155 trial distributions ρj are collected at 200
rearrangement event intervals. A total of 155 trial relative
entropies are constructed from Gaussians ρλj

satisfying

ρλj
(0) = max ρλj

= max ρj . (41)

Some of these are shown in Fig. 6(a). The empirical GBCD
is compared with the appropriate Boltzmann distribution in
Fig. 6(b).
We include the plots of − log�λ, Fig. 7, which suggests

that �σ decays exponentially to its minimum whereas �λ

corresponding to other values of λ do not.
For a second example to illustrate the method, we consider

the potential

ψ(α) = 1+ εα4, α ∈ �, ε = 8. (42)

This choice, ε = 8, corresponds to the first-order terms in the
two-dimensional quartic energy density we discuss in the next
section. Also here in Fig. 8 one sees very good agreement
between the empirical GBCD and the appropriate Boltzmann
distribution.

V. THE ENTROPY METHOD FOR THE GBCD

We shall apply the method of Sec. IV to the GBCD
harvested from the 2D simulation. We consider first a typical
simulation with the energy density

ψ(α) = 1+ ε(sin 2α)2, − π

4
� α � π

4
, ε = 1/2,

(43)

Fig. 9, initialized with 104 cells and normally distributed
misorientation angles and terminated when 2000 cells remain.
At this stage, the simulation is essentially stagnant. Possible

(a) (b)

FIG. 8. (Color online) Graphical results for the simplified coarsening model with potential (42). (a) Relative entropy plot for selected
values of λ with �σ noted in red. The value of σ = 0.003 033 356 683 and is ascertained at the simulation time t = T∞ corresponding to 80%
of cells deleted. (b) Empirical GBCD at time t = T∞ in red compared with ρσ in black.
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FIG. 9. (Color online) The energy density ψ(α) = 1+
ε sin2 2α, |α| < π/4, ε = 1

2 .

parameters λ are constructed similarly to those of the sim-
plified coarsening model: From the maximum of a harvested
GBCD, we construct the Gaussian with the same maximum.
This determines a value of λ that is used to define ρλ in (35) for
the density (43). This ρλ then defines a trial relative entropy
via (36).
We now identify the parameter σ , which turns out to be

σ ≈ 0.1, Fig. 10(a). In Fig. 10(b) the empirical GBCD is
compared with the Boltzmann distribution with the parameter
determined by Fig. 10(a), showing excellent agreement. From
Fig. 11, we see that this relative entropy �σ has exponential
decay until it reaches a value of about 1.5, when it remains
constant. The solution itself thus tends exponentially (in L1)
to its limit ρσ by the Csiszar-Kullback inequality.
Figure 12 shows that averaging over a few trials, five in

this case, the empirical GBCD’s approach the Boltzmann
distribution ρσ of (35) quite closely.

FIG. 11. (Color online) Plot of− log�σ vs t with energy density
(43). It is approximately linear until it becomes constant showing that
�σ decays exponentially.

A second example presented here is a quartic energy,

ψ(α) = 1+ ε(sin 2α)4, − π

4
� α � π

4
, ε = 1/2.

(44)

Again, a configuration of 104 cells is initialized with normally
distributed misorientations, and, this time, the computation
proceeds until about 1000 cells remain. The relative entropy
and the equilibrium Boltzmann statistic stabilize when 2000
cells remain.
With the equilibrium solution in hand, as depicted in Fig. 13,

we again initialized a configuration of 104 cells with, on this
occasion, misorientations normally distributed in the much
narrower range defined by the sides of the solution GBCD.
Since these misorientations see, essentially, only the near
minimum of the potential, we would expect the new stationary
distribution to be Gaussian or random. However, we obtain

(a) (b)

FIG. 10. (Color online) (a) The relative entropy of the grain growth simulation with energy density (43) for a sequence of �λ vs t with
the optimal choice σ ≈ 0.1 noted in red. (b) Comparison of the empirical GBCD distribution at time t = T∞ = 2, when 80% of the cells have
been deleted, with ρσ the Boltzmann distribution of (35).
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FIG. 12. (Color online) GBCD (red) and Boltzmann distribution
(black) for the potentialψ of (43)with parameterσ ≈ 0.1 as predicted
by our theory. This GBCD is averaged over five trials.

the same relative entropy curve and equilibrium depicted in
Fig. 13. Although coarsening is not like a molecular system
with eternal collisions causing the entire system to equilibrate,
the fluctuations of misorientations caused by the “perpetual”
critical events provide the system with a sufficiently ample
library to be driven by the given grain boundary energy
density. On the other hand, we may defeat this attribute,
for example, with a Read-Shockley type of energy, which is
cusplike near the origin and rises sharply to a maximum. Near
the origin, we obtain a reasonable distribution, however there
are otherwise insufficient orientations to populate a Boltzmann
distribution.16

Future work will address the theory when the interfacial
energy density ψ = ψ(θ,α) depends on both normal angle
andmisorientation of the interface. In this context, we have ob-

served that simply resolving the solution of the Fokker-Planck
equation with quartic potential leads to bimodal intermediate
distributions, which are the stationary distributions for quartic
interfacial energy distributions.3,49 This suggests that this
situation represents the quenched solution of a Fokker-Planck
equation and a role for the second eigenfunction of the
equation. Other effects will also be studied. These can be added
to the local evolution law, most simply varying mobility, and
other retarding forces such as triple junction drag.

VI. DISCUSSION AND CONCLUSIONS

We have outlined an entropy-based theory of the GBCD
that is an upscaling of cell growth according to the two most
basic properties of a coarsening network: a local evolution law
and space-filling constraints. The theory accommodates the
irreversibility conferred by the critical events or topological
rearrangements that arise during coarsening. Details are given
for a model system in which the analytical tools are easily
exploited, and they are seen to describe well the results of
two-dimensional simulations. Our principal conclusion is that
these events occur preferentially in a manner that renders
the GBCD closely related to the solution of a Fokker-Planck
equationwhose potential is the given interfacial energy density.
This reasoning exploits the recent characterization of Fokker-
Planck kinetics as a gradient flow for the free energy.
We note that the theory states in particular that it is the

GBCD that is a consequence of the coarsening process. The
traditional texture distribution is the orientation distribution
(OD), the distribution of grain orientations. The GBCD is the
distribution of differences of the OD, basically the convolution
of the OD with itself. This relationship may be inverted by
elementary Fourier analysis, so, in this simple case, the GBCD
determines the OD and not the other way around. Therefore,
we may expect, in nature, that it is among the processes that
determine the OD.

(a) (b)

FIG. 13. (Color online) (a) The relative entropy of the grain growth simulation with density (44) for a sequence of�λ vs t with the optimal
choice σ ≈ 0.08 noted in red. (b) Comparison of the empirical GBCD at time t = T∞ = 3, when 80% of the cells have been deleted, with ρσ

the Boltzmann distribution of (35).
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