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Abstract. Here it is shown that a set in Euclidean space can be
represented as the intersection of a descending sequence of sets
affinely equivalent to a given convex body, or arbitrarily closely
approximated from above by sets affinely equivalent to the body,
if and only if it is affinely equivalent to an affine retract of the
body. For the special case in which the body is a simplex, the
statement concerning descending sequences is a well-known result
of Borovikov.

1. Introduction. Answering a question of Kolmogorov, Borovikov [1]
showed that the intersection of a descending sequence of simplexes in R

d

is a simplex. In this paper, given a compact, convex set K lying in R
d,

we characterize the possible intersections of descending sequences of sets
affinely equivalent to K, thereby obtaining a generalization of the result of
Borovikov. This characterization is obtained as a consequence of a similar
characterization of the family of sets that can be arbitrarily closely approx-
imated from above by sets affinely equivalent to K. It is shown that these
families coincide (Theorems 3 and 4), and consist of those compact convex
sets that are affinely equivalent to affine retracts of K. In the presence
of the characterizations of simplexes by Choquet [2] and Rogers, Shephard
[6], this can be seen to generalize the Borovikov result: It is not difficult to
show that any affine retract of a Choquet simplex is itself a Choquet sim-
plex, a result first noticed by Semadeni [7]. For completeness, Semadeni’s
result with a proof is given below in Theorem 5. For a concise proof of the
Choquet-Rogers-Shephard result, see Martini’s paper [4]. The theorem of
Borovikov and Kolmogorov was extended by Eggleston, Grünbaum, Klee
[3] to include intersections of chains of compact Choquet simplexes in topo-
logical linear spaces. See also Phelps [5]. For an informative survey of work
on Choquet simplexes up to 2004, see Soltan [9].
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Some questions concerning special cases of these results are briefly con-
sidered.

2. Affine retracts. A function α : R
d → R

d is affine provided that it is of
the form α(x) = λ(x) + b, where λ : R

d → R
d is linear and b ∈ R

d. Such an
affine function α is termed nonsingular if it has an inverse α−1 : R

d → R
d,

necessarily also an affine function.
Sets X and Y in R

d are termed affinely equivalent if there is a nonsingu-
lar affine mapping α : R

d → R
d such that Y = α(X). An affine retraction of

a compact, convex set K ⊆ R
d is an affine function ϕ : R

d → R
d such that

ϕ(ϕ(x)) = ϕ(x) for each x ∈ R
d, that maps K into itself. An affine retract

of such a set K ⊆ R
d is the image ϕ(K) of K under an affine retraction.

Any affine retract of K is a subset of K.
The first theorem gives some characterizations of affine retracts. Some

necessary lemmas, that also serve to place the idea of affine retract into a
suitable general framework, precede this result.

Lemma 1. Suppose X is a set and f : X → X is a function mapping
X into itself. Then there is a unique maximal subset W ⊆ X such that
f(W ) ⊇ W . Furthermore,
(a) W = {y ∈ X : there is a sequence w1, w2, . . . of elements of X such that
y = f(w1) and wk−1 = f(wk) when k ≥ 2};
(b) W ⊆

⋂∞
k=1 f (k)(X); and

(c) f(W ) = W , and W is the unique maximal subset of X satisfying this
equality.

Proof. If each element of a collection of subsets Y of X has the property
that f(Y ) ⊇ Y , then the union of the sets in the collection also has this
property. The collection of such subsets of X is nonempty, since ∅ is such
a set. Letting W denote the union of all such sets, it is clear that W is the
unique maximal subset of X such that f(W ) ⊇ W .

Suppose y ∈ X and there exists a sequence w1, w2, . . . as in (a). Letting
Y = {y, w1, w2, . . . }, it is clear that f(Y ) ⊇ Y , so y ∈ Y ⊆ W . Suppose
now that y ∈ f(W ). Let w1 ∈ W be such that y = f(w1). Since w1 ∈
W ⊆ f(W ), there is w2 ∈ W such that f(w2) = w1. Continuing in this
way, by induction we obtain a sequence w1, w2, . . . such that f(w1) = y and
f(wk) = wk−1 when k > 1. We see that (a) holds.

Since X ⊇ W , we have that f(X) ⊇ f(W ) ⊇ W . Inductively,
f (k)(X) ⊇ W . Therefore, W ⊆

⋂∞
k=1 f (k)(X).
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For (c), let V = f(W ) and note that from f(W ) ⊇ W it follows that
f(V ) ⊇ V . Since W is the maximal set having this property, V ⊆ W . Then
f(W ) = W . Uniqueness follows at once.

Lemma 2. If, in the previous lemma, the set X has the structure of
a compact Hausdorff space and the function f is continuous, then W =
⋂∞

k=1 f (k)(X).

Proof. In view of (b) of Lemma 1, we need only show that
⋂

k
f (k)(X) ⊆ W .

Suppose y ∈
⋂

k
f (k)(X). For k = 1, 2, . . . , let Ak = {w ∈ X : f (k)(w) = y}.

By assumption, Ak 6= ∅; also the sets Ak are closed subsets of X and
therefore compact. For k = 1, 2, 3, . . . , let Bk = f (k)(Ak+1). Then each
Bk is compact and nonempty. Furthermore, B1 ⊇ B2 ⊇ B3 ⊇ · · · . It
follows that

⋂

k
Bk 6= ∅. Let w1 be an element of this set. Then f(w1) = y

and w1 ∈
⋂

k
f (k)(X). Inductively, choose w2, w3, . . . such that, for each

k = 2, 3, . . . , f(wk) = wk−1 and wk ∈
⋂

k
f (k)(X). Then y, w1, w2, . . . are

as in (a) of Lemma 1.

Lemma 3. Let X ⊆ R
d be a compact, convex set. Suppose that φ : R

d →
R

d is an affine function mapping X to a subset Y and that φ(Y ) = Y . Then
Y is an affine retract of X.

Proof. If A denotes the affine space spanned by Y , then the restriction of
φ to A is invertible; there is a function τ : A → A such that τ(φ(x)) = x
for each x ∈ A. Letting ρ be the composition, ρ = τ ◦ φ, then ρ is an affine
retraction of X to Y , and Y is an affine retract of X.

Theorem 1. Suppose X is a compact, convex set in R
d and Y ⊆ X. Then

the following statements are equivalent.
(a) There is an affine function α : X → X such that Y is the maximal
subset of X for which α(Y ) = Y .
(b) There is a nonsingular affine function α : X → X such that Y is the
maximal subset of X for which α(Y ) = Y .
(c) There is an affine function α : X → X such that Y =

⋂

k
α(k)(X).

(d) There is a nonsingular affine function α : X → X such that Y =
⋂

k
α(k)(X).

(e) The set Y is an affine retract of X.

Proof. Clearly (b) implies (a) and (d) implies (c). Lemmas 1 and 2 show
that (a) and (c) are equivalent, and that (b) and (d) are equivalent.
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Suppose that (e) holds; we verify (d). Let β : X → Y be an affine
retraction. Define α by α(x) = 1

2 (x + β(x)). Since β is an affine retraction,
β(α(x)) = β(x), so that x = 2α(x)−β(α(x)). It follows that α is nonsingu-
lar, its inverse being given by u 7→ 2u− β(u). For x ∈ Y , α(x) = β(x) = x,
so Y ⊆ α(Y ). Suppose x ∈ X \ Y . We must show that x /∈

⋂

k
α(k)(X).

Let ǫ denote the distance of x to Y . For each k, α(k)(X) ⊆ 1
2k X + 2k−1

2k Y .

Since X is compact, 1
2k X is contained in an open ball of radius ǫ centered

at the origin, when k is large. Therefore, for such k, the distance of x to
α(k)(X) is positive, so that x /∈

⋂

k
α(k)(X), and (d) holds.

Suppose (c) holds; we verify (e). Let α be as in (c). The sequence α(k)

must have a subsequence α(kj) that converges pointwise to a (necessarily
affine) function β : R

d → R
d. Clearly β(X) = Y = β(Y ). By Lemma 3, (e)

holds.

When the set X of the theorem is the simplex of probability measures
on a finite set, the computation of the set W has been studied by Sierksma
[8]; the theorem is of some interest when dealing with Markov chains.

3. A general result. Part of the proof of the main theorems will be based
upon the following general result, in which we are given a compact metric
space X together with two collections of functions F , G mapping X to itself.
The following assumptions are made.
(a) The identity function on X is in F ; G ⊆ F .
(b) If fn ∈ F (n = 1, 2, . . . ) and the sequence {fn} converges to f uni-

formly, then f ∈ F .
(c) Any sequence {fn} in F has a uniformly convergent subsequence.
(d) The collections F and G are closed under composition.
(e) If g ∈ G, f ∈ F , and g(X) ⊇ f(X), then there is h ∈ F such that the

composition g ◦ h = f .
(f) The functions in G are injective.

The following theorem is applied in the next section. In this applica-
tion, the set X is a compact, convex set in R

d, F is the set of all affine linear
functions f : R

d → R
d such that f(X) ⊆ X, and G is the set of nonsingular

affine functions that are in F . For the function h in (e), we may then take
h = g−1 ◦ f .

Theorem 2. Suppose that X, F , and G are as above. Suppose also that
Y ⊆ X, and Y can be approximated arbitrarily well (with respect to the
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Hausdoff metric) by sets of the form f(X), where f ∈ G and f(X) ⊇ Y .
Then there is a set Z ⊆ X, a function h ∈ F such that h ◦ h = h with
h(X) = Z, and a function g ∈ F such that the restriction of g to Z is a
bijection, g : Z → Y .

Proof. Let D denote the metric on X.

For n = 1, 2, . . . , let gn : X → X be an element of G such that Y ⊆
gn(X) and the Hausdorff distance between gn(X) and Y is at most 1

n
. In

view of (b), by passing to a subsequence if necessary, we may assume that
{gn} converges uniformly to a function g ∈ F . Clearly g(X) ⊆ Y , and by
uniform convergence, g(X) = Y .

Considering (e), for each n we may find hn ∈ F such that gn ◦ hn =
g. Again passing to a subsequence, we may assume that hn → h ∈ F
uniformly.

We show that g(h(x)) = g(x) for each x ∈ X. Suppose ǫ > 0.
Choose δ > 0 such that if D(u, v) < δ then D(g(u), g(v)) < ǫ

2
. Choose

a positive integer N such that if n > N then D(h(x), hn(x)) < δ and
D(g(x), gn(x)) < ǫ

2
. Then D(g(h(x)), g(x)) = D(g(h(x)), gn(hn(x))) <

D(g(h(x)), g(hn(x)))+D(g(hn(x)), gn(hn(x))) < ǫ when n > N . Since this
holds for each ǫ > 0, we have g(h(x)) = g(x).

We show that h◦h = h. Let y = h(x). For each n we have gn(hn(y)) =
g(y) = g(x) = gn(hn(x)). Since gn ∈ G, gn is injective, so hn(y) = hn(x).
Taking the limit, we have h(h(x)) = h(y) = h(x).

Finally, we show that g maps h(X) bijectively to Y . If y = g(x) ∈ g(X)
then, as we have seen, g(h(x)) = g(x), so g maps h(X) onto Y . Suppose
x1, x2 ∈ X, so that h(x1), h(x2) ∈ h(X), and suppose g(h(x1)) = g(h(x2)).
We must show that h(x1) = h(x2). But gn(hn(x1)) = g(x1) = g(h(x1))
and gn(hn(x2)) = g(x2) = g(h(x2)) for each n, so by injectivity of the gn’s
we have hn(x1) = hn(x2) for each n, and upon taking limits we obtain the
desired equality.

The result holds, with Z = h(X).

4. Approximation from above and intersections of sequences. Let
Ud denote the interior of the unit ball centered at the origin in R

d. We say
that Y can be approximated arbitrarily well from above by compact, convex

sets affinely equivalent to X provided that, for each ǫ > 0, there exists a
compact convex set X ′ affinely equivalent to X such that Y ⊆ X ′ ⊆ Y +ǫUd.
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In this definition, the set Ud can be replaced by any nonempty bounded
open convex set containing the origin without changing the meaning.

Theorem 3. Let X and Y be compact, convex sets. Then Y can be
approximated arbitrarily well from above by compact, convex sets affinely
equivalent to X if and only if Y is affinely equivalent to an affine retract of
X.

Proof. First suppose that Y is an affine retract of X. By Theorem 1, there
is a nonsingular affine function α which maps X to itself and for which
Y =

⋂

k
α(k)(X). If ǫ > 0, the sets α(k)(X) \ (Y + ǫUd) form a decreasing

sequence of compact sets with empty intersection; therefore, for some k̄,
this set is empty. Then α(k̄)(X) contains Y and is contained in Y + ǫUd.
The sets α(k)(X) are affinely equivalent to X, so it follows that Y can be
approximated arbitrarily well from above by sets affinely equivalent to X.

The property of being representable as such an intersection is invariant
under affine equivalence, so the “converse” part is done.

For the other direction, we need only observe that, for G the set of
nonsingular affine functions mapping X into itself and F the set of all
affine functions mapping X into itself, the hypotheses of Theorem 2 are
satisfied, and that theorem yields the desired result.

Theorem 4. Let X ⊆ R
d be a compact, convex set. A convex set Y can

be represented as the intersection of a chain of sets affinely equivalent to X
if and only if Y is affinely equivalent to an affine retract of X.

Proof. If Y is an affine retract of X then, by Theorem 1, it can be repre-
sented as the intersection of a chain of sets affinely equivalent to X.

Suppose X1 ⊇ X2 ⊇ X3 ⊇ · · · , where each set Xk is affinely equivalent
to X, and Y =

⋂

Xk. If ǫ > 0, the sets Xk \ (Y + ǫUd) form a decreasing
sequence of compact sets with empty intersection; therefore, for some k̄,
this set is empty. Then Xk̄ contains Y and is contained in Y + ǫUd. The
sets Xk are affinely equivalent to X, so it follows that Y can be approxi-
mated arbitrarily well by sets affinely equivalent to X which contain it. By
Theorem 3, Y is an affine retract of X.

Theorem 5. (Semadeni [7].) Suppose that T ⊆ R
d is a simplex and

π : R
d → R

d is an affine retraction of T . Then π(T ) is a simplex.
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Proof. We use the Choquet-Rogers-Shephard theorem: The compact set S
is a simplex if and only if, for each t ∈ R

d, (S + t) ∩ S is either empty, a
singleton, or homothetic to S.

Suppose t ∈ R
d. If t /∈ π(Rd), then (π(T ) + t) ∩ π(T ) = ∅. If t ∈ R

d,
then π(t) = t and (π(T ) + t) ∩ π(T ) = π(T + t) ∩ π(T ) = π((T + t)∩ T ). If
(T +t)∩T is a singleton or empty, so is π((T +t)∩T ). If (T +t)∩T = λT +s,
then π((T + t) ∩ T ) = λπ(T ) + π(s).

Theorem 6. (Borovikov [1].) The intersection of a descending sequence of
simplexes in R

d is a simplex.

Proof. This is immediate from Theorems 4 and 5.

5. Best approximations. In this section we briefly consider a question
that immediately presents itself given the results above: If Y is not affinely
equivalent to an affine retract of X, how far must a set affinely equivalent
to X that contains Y be, from Y ? There are many ways to measure this.
In Theorem 7, we consider the volume in the affine space spanned by Y of
an affine projection of X. Also, in Theorem 8, we show that for any convex
polytope P the set of possible dimensions of simplexes containing P but
properly containing no other such simplex is bounded above.

The following lemma will be of use.

Lemma 4. Suppose X is a compact, convex set in R
d and ǫ > 0. There

is a number ν strictly larger than the d-measure of X such that, if Y is a
compact, convex set in R

d whose d-measure is less than ν and Y ⊇ X, then
Y ⊆ X + ǫUd.

Proof. Let W ⊆ R
d consist of all points at distance ǫ from X. Then W is a

nonempty compact set missing X. The function f(y) = vol(conv({y}∪X is
continuous and its value is larger than vol(X) at each point of W . Therefore
the minimum value of f on W exists and is larger than vol(X). Let ν be
this value; then if Y ⊇ X and vol(Y ) < ν, Y ⊆ X + ǫUd.

We denote the number ν in the lemma by ν(X, ǫ).

Theorem 7. Suppose X and Y are compact, convex sets in R
d, and

dim Y ≤ dim X. Let A be the affine space spanned by Y . Let ν be the
volume of Y in this space. If Y is not affinely equivalent to an affine retract
of X, then there is a number µ > ν such that, for any polytope X ′ affinely
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equivalent to X with Y ⊆ X ′, the volume in A of any affine projection of
X ′ to A is at least µ.

Proof. Suppose that for each µ > ν there is a compact, convex set X ′

affinely equivalent to X such that X ′ ⊇ Y and vol(X ′) < µ. Let ǫ be
a positive real number. Let µ = ν(Y, ǫ) > ν. If X ′ is as above then by
Lemma 4, πA(X ′) ⊆ Y + ǫUd, where πA denotes orthogonal projection.
Letting b denote the maximum value of |x − πA(x)| on X ′, the function
x 7→ ǫ

b
x + (1 − ǫ

b
)πA(x) is a nonsingular affine mapping that takes X ′ to a

set X ′′ contained in Y + ǫUd; so Y can be approximated arbitrarily well by
compact, convex sets affinely equivalent to X. Then by Theorem 5, Y is
affinely equivalent to an affine retract of X.

Theorem 8. Suppose P is a convex polytope having n vertices, T is a
simplex that contains P , and there exists no simplex T ′ 6= T such that
P ⊆ T ′ ⊆ T . Then dim(T ) <

(

n

⌊n
2
⌋

)

.

Proof. Without loss of generality we may assume that T lies in the vector
space R

X of real-valued functions on the finite set X, and that T = {f ∈
R

X : f(x) ≥ 0 for each x ∈ X and
∑

x∈X
f(x) = 1}. Let the vertices of

P be v1, v2, . . . , vn ∈ R
X . For f ∈ R

X let the support of f be denoted by
supp(f), so that supp(f) = {x ∈ X : f(x) 6= 0}. For any pair x, y ∈ X with
x 6= y, and for ǫ such that 0 < ǫ ≤ 1, the set {f ∈ T : f(x) − ǫf(y) ≥ 0}
is a simplex properly contained in T . It follows from the hypotheses that,
for any pair x and y of distinct elements of X, there exists a vertex v of P
such that v(x) − ǫv(y) < 0, for each ǫ > 0. In order for this to be the case
we must have v(x) = 0 and v(y) > 0; that is, x /∈ supp(v) and y ∈ supp(v).
It follows that, if we put S(x) = {i : x ∈ supp(vi)} ⊆ {1, 2, . . . , n}, then
x 6= y implies S(y) 6⊆ S(x). The sets S(x) are distinct and no one contains
another. By a theorem of Sperner, there can be at most

(

n

⌊n
2
⌋

)

of them.

Probably the simplest nontrivial situation for each of the two theorems
above is that of a square. If, in Theorem 7, Y is a square, then we may
take µ = 2ν; and if in Theorem 8, P is a square, then the dimension of T
is bounded by 3.

6. Notes and acknowledgements. The paper of Eggleston, Grünbaum,
and Klee [3] contains discussions of problems in the same spirit as those of
the previous sections. It also presented another possible proof of Borovikov’s
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result (Theorem [1], based upon the assumption of an affirmative answer to
the following question.

If S is a d-simplex and P is an r-polytope in S having at most
r + 2 vertices, must S have an r-face whose r-measure is at least
that of P ?

For r = d − 1, the question was answered affirmatively in the paper, and
it was noted that the answer is also positive when r = 0, 1, or d. In other
cases the question is apparently still unresolved. The question without the
restriction on the number of vertices of P was also raised. Walkup [10]
showed by example that the answer is negative when the restriction on P
is dropped.

It would be nice to have results analogous to the foregoing, for projec-
tively equivalent compact, convex sets.

We thank Valeriu Soltan for information that was useful in writing
this paper. In particular, he reminded the author of [3] and noted its
relevance to the theorem of Borovikov. He, together with Peter Gruber,
had previously discussed the question of what can be the intersection of
sets affinely equivalent to a given compact, convex set.
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