
The Odd-Even Invariant for Graphs

by
Richard Eager1 and Jim Lawrence2

The odd-even invariant for graphs is the graphic version of the
odd-even invariant for oriented matroids. Here, simple proper-
ties of this invariant are verified, and for certain graphs, including
chordal graphs and complete bipartite graphs, its value is deter-
mined. The odd-even chromatic polynomial is introduced, its coef-
ficients are briefly studied, and it is shown that the absolute value
of this polynomial at −1 equals the odd-even invariant, in analogy
with the usual chromatic polynomial and the number of acyclic
orientations.

1. Introduction. The odd-even invariant of oriented matroids was in-
troduced in [4]. The case in which the oriented matroid is graphic was
considered in [3], and in the present paper it is given further consideration.

The formal definition appears in the next section. Making use of the
well-known correspondence between oriented matroids and arrangements,
the basic idea can be conveyed in geometrical terms as follows. An ar-
rangement of (distinct) hyperplanes in R

d separates the space into open
polyhedral cells, the connected components of the complement of the union
of the hyperplanes. The “tope graph” (see [2]) of the arrangement (or the
corresponding oriented matroid) has the cells as its vertices, with two cells
adjacent provided that their closures have an intersection of codimension 1,
so that they share a common border. This graph is bipartite and connected,
and when the graph is 2-colored, red and blue, the odd-even invariant of the
oriented matroid is (as in [4]) the absolute value of the difference between
the number of red cells and the number of blue cells. In the graphic case
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(restricted in this description to graphs without loops or multiple edges),
these full-dimensional cells of the graphic oriented matroid correspond to
the acyclic orientations of the graph. Cells share a common border pro-
vided that the corresponding acyclic orientations differ by the reversal of
a single edge. If an orientation ω is fixed, then the odd-even invariant of
the graph G is the absolute value of the difference between the number of
acyclic orientations agreeing with ω on an even number of edges and the
number agreeing on an odd number of edges. For oriented matroids, it was
proven in [4] that the odd-even invariant of an oriented matroid and of its
dual are equal.

It is known since [5] that the number of acyclic orientations of a graph
G equals |P (−1)|, where P is the chromatic polynomial of G. We introduce
the “odd-even chromatic polynomial” Pœ. The absolute value of Pœ(−1)
equals the odd-even invariant. While the chromatic polynomial and the
number of acyclic orientations of a graph are Tutte-Grothendieck invariants
and depend only on the graphic matroid, this is not true of the odd-even
chromatic polynomial and the odd-even invariant; and although the ordi-
nary chromatic polynomial extends to arbitrary matroids in a fairly natural
way, there is no similar extension of the odd-even chromatic polynomial to
matroids or oriented matroids, as can be seen from the fact that different
trees have isomorphic matroids but can have different odd-even chromatic
polynomials.

The odd-even invariant in the graphic case was the subject of the first
author’s high school senior project. He presented his results in the school
journal [3]. In particular, he found a generating function for the odd-even
invariants of the complete bipartite graphs Km,n. See Theorem 6 below. In
sections 2 and 3 below, results from [3] are reiterated.

For background on oriented matroids, see [2]; however, no knowledge
of oriented matroids will be required in what follows. Some familiarity with
graph theory will be assumed. For this, [1] might be more than sufficient.

2. The odd-even invariant. We will be concerned with a fixed undirected
graph and the directed graphs having it as their underlying undirected
graph. The graphs considered are finite and they may have loops and
parallel edges.

The vertex set of the (undirected) graph G is denoted by V (G); its edge
set is E(G). An edge e of G that is not a loop may be given a direction; that
is, one of its vertices may be designated as its head, with the other being its
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tail. There are two possible directions for e. The set of all directed edges
is denoted by D(G). The projection π : D(G) → E(G) is the function
that “forgets” the direction. The digraphs having G as underlying graph
correspond to the functions ω : E(G) → D(G) such that π(ω(e)) = e for
each e ∈ E that is not a loop. We call such functions orientations of G and
we denote the set of such functions ω by B. An orientation ω ∈ B is said
to be acyclic if the corresponding digraph has no directed cycles. We put
A(G) = {ω ∈ B | ω is acyclic }. In most of what follows, a fixed element
ω0 ∈ B will be specified, and then we will denote by A+(G) the set of acyclic
ω ∈ A(G) such that ω(e) 6= ω0(e) for an even number of edges e, and by
A−(G) the complementary set A(G) \ A+(G), of those that disagree with
ω0 on an odd number of edges. The sets A+(G) and A−(G) depend upon
the choice of ω0, but only up to sign; that is, the partition {A+(G),A−(G)}
of A(G) does not vary with the choice of ω0.

Given ω0 ∈ B, the odd-even invariant œ(G) is the absolute value of
the difference, |A+(G)| − |A−(G)|. We call the difference itself the signed

odd-even invariant: œ(G,ω0) = |A+(G)| − |A−(G)|; œ(G) = |œ(G,ω0)|.
Reversing the direction of an edge of ω0 changes the sign of the signed odd-
even invariant; the odd-even invariant does not depend upon the choice of
ω0.

In the undirected graph G, edges are termed parallel if they are not
loops and they are incident to the same two vertices. Being parallel is an
equivalence relation on the set of edges that are not loops.

We will denote the graph obtained from G by deletion of a set F ⊆
E(G) by G \ F , and that obtained by contraction by G/F .

The following theorem collects various simple facts about the odd-even
invariant.

Theorem 1. Suppose G is a graph, and ω0 ∈ B.
(a) If G has no edges then œ(G) = œ(G,ω0) = 1.
(b) If G has a loop then œ(G,ω0) = 0.
(c) If |E(G)| is odd then œ(G,ω0) = 0.
(d) Suppose e and e′ are parallel edges of G. Then, denoting by ω′

0 the
restriction of ω0 to E(G)\{e, e′}, œ(G,ω0) = œ(G/{e, e′}, ω′

0)+œ(G\
{e, e′}, ω′

0).
(e) Suppose r, s, and t are distinct vertices of G, where s and t are not

adjacent, and suppose that r is incident to precisely two edges, e and
e′, one of which is incident to s, and the other, to t. Then, denoting by
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ω′
0 the restriction of ω0 to E(G)\{e, e′}, œ(G,ω0) = œ(G\{e, e′}, ω′

0)−
œ(G/{e, e′}, ω′

0).
(f) If G is the union of two subgraphs G′ and G′′ that share at most
one vertex and ω′

0, ω
′′
0 are the functions induced by ω0 on E(G′), E(G′′)

respectively, then œ(G,ω0) = œ(G′, ω′
0)œ(G′′, ω′′

0 ).

Proof. (a): In this case, |A+(G)| = 1, |A−(G)| = 0.

(b): Here, |A+(G)| = |A−(G)| = 0.

(c): Reversing all edge directions is an involution on A(G). When |E(G)|
is odd, the contribution to œ(G,ω0) of an element of A(G) is the negative
of that of its reverse; so these contributions cancel.

(d): For any ω ∈ A(G), e and e′ have the same direction; that is, they
have the same head and the same tail, by acyclicity. Any ω ∈ A(G) can be
obtained from an element of A(G \ {e, e′}) by directing the edges e and e′

one way or the other, and at least one of these two possibilities must yield
an acyclic orientation. If both possibilities yield acyclic orientations, then
the induced orientation of G/{e, e′} is also acyclic.

(e): Let E0 denote the set of edges of G not incident to r. Any orientation
ω′ : E0 → D0 extends to four orientations ω : E(G) → D(G). These are
not acyclic unless ω′ ∈ A(G \ {e, e′}). If ω′ is acyclic then two of the four
extensions, namely those for which the edges incident to r both have r as
head or both have r as tail, are acyclic. Additionally, both of the other
orientations are also acyclic if ω′ ∈ A(G/{e, e′}), and exactly one of them
is acyclic if otherwise.

(f): Each acyclic orientation ω of G induces acyclic orientations ω′ of G′, ω′′

of G′′, and, since the two subgraphs share at most one vertex, the function
taking ω to the pair (ω′, ω′′) is a one-to-one correspondence. We have

œ(G,ω0) = |A+(G)| − |A−(G)|

= (|A+(G′)||A+(G′′)|+ |A−(G′)||A−(G′′)|)

−(|A+(G′)||A−(G′′)|+ |A−(G′)||A+(G′′)|)

= (|A+(G′)| − |A−(G′)|)(|A+(G′′)| − |A−(G′′)|)

= œ(G′, ω′
0)œ(G′′, ω′′

0 ).
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Part (d) of Theorem 1 can be used to reduce the computation of the
odd-even invariant to the case when no parallel class of edges has cardinality
greater than 2. Also it, combined with part (b), shows that if G has more
than two edges in some parallel class, then its odd-even invariant is the
same as that of the graph obtained by deleting two of those edges. Parts (e)
and (f) enable the computation of the odd-even invariant for any graph that
can be built up from a graph with known odd-even invariant by successively
adding vertices of degree at most 2. Using part (f) and the fact that the
graph having two vertices and one edge connecting them has invariant 0,
it follows that any graph with a leaf has odd-even invariant 0, as does any
graph with a bridge.

The neighborhood of the vertex v of G is the subgraph induced by v
together with all vertices of G that are adjacent to v. A clique in G is a
set of vertices of G having the property that each pair of distinct vertices
of the set comprise the vertices of at least one edge of G, and no vertex of
the set is on a loop of G. A vertex is simple if it is not on a loop and is
incident to no parallel edges. Also we denote the number of edges incident
to v by deg(v).

Theorem 2. Suppose v is a simple vertex of G which is not the tail of any
edge, with respect to the orientation ω0, and suppose the neighborhood of v
is a clique. Let E0 denote the set of edges incident to v and let ω′

0 denote the
restriction of ω0 to E \E0. If deg(v) is even then œ(G,ω0) = œ(G\E0, ω

′
0);

if deg(v) is odd then œ(G,ω0) = 0.

Proof. Let U denote the set of vertices to which v is adjacent. By assump-
tion, U induces a clique of G, so, any ω′ ∈ A(G\E0), induces a linear order-
ing on U . Therefore, for any such ω′, we may write U = {u1, u2, . . . , ud},
where d = deg(v), with the indices respecting the ordering induced on U ,
so that, for 1 ≤ i < j ≤ d, each edge incident to ui and uj has ui as tail
and uj as head. Each ω ∈ A(G) induces an orientation ω′ ∈ A(G \ E0),
and each ω′ ∈ A(G \ E0) extends to exactly d + 1 orientations ω ∈ A(G):
For each k with 0 ≤ k ≤ d, there is an acyclic orientation of G extending ω′

for which the edges joining u1, . . . , uk to v each have v as head, while those
joining uk+1, . . . , ud to v have v as tail, where the indexing on the ui’s is
determined by ω′ as above. This yields a sequence of d + 1 orientations
ω ∈ A(G), each of which agrees with ω′ on E \ E0, and they alternately
agree with an odd or with an even number of edges of E0, so that the net
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contribution to œ(G,ω0) is 0 if d is odd. When d is even, and if the number
of edges on which ω′ disagrees with ω0 is odd, then the number of edges
disagreeing altogether alternates, odd, even, odd, . . . , odd, so that the net
contribution of the d + 1 orientations to œ(G,ω0) is −1. If the number
of edges on which ω′ disagrees with ω0 is even, then the number of edges
disagreeing alternates, even, odd, even, . . . , even, so that the contribution
of the d+1 orientations to œ(G,ω0) is 1. Therefore the contribution is the
same as that of ω′ to œ(G \ E0, ω

′
0).

The next result gives a recursive method for computing œ(G). Given
a vertex x of G, let Ax denote the set of acyclic orientations having x as
a terminal vertex. For I ⊆ V , let AI denote the set of acyclic orientations
in which all vertices of I are terminal; AI = ∅ unless I is an independent
set. Let ν(I, ω0) denote the number of edges e having an element of I as
its initial vertex in ω0; it is the number of edges leaving I.

Theorem 3. The signed odd-even invariant is given by the following sum-
mation over the independent sets of G.

œ(G,ω0) =
∑

I⊆V (G),
I independent

(−1)|I|−1+ν(I,ω0)œ(G \ I, ω0|E(G\I)).

Proof. This is immediate from the principle of inclusion-exclusion, A(G)
being

⋃
x∈V (G) Ax and, for I ⊆ V (G), AI being

⋂
x∈I Ax.

Theorem 4. If G is a chordal graph having at least one edge, then œ(G) =
0. If G is a circuit with n vertices or a wheel with n + 1 vertices (and,
therefore, n spokes) then

œ(G) =

{
0 if n is odd,

2 if n is even.

Proof. These statements follow as easy corollaries of the previous theorems.
A chordal graph G can be built from scratch by successively adding one new
vertex at a time, with the new vertex being adjacent to the vertices of a
clique in the previous graph; and if G has an edge, we may start building
from that edge. That œ(G) = 0 then follows inductively using Theorem
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2. If G is a circuit with n vertices then œ(G) = 0 if n is odd, by (c) of
Theorem 1; and if n is even then the fact that œ(G) = 2 follows inductively,
beginning the induction at the 2-vertex circuit, using part (e) of Theorem
1, and noting that deleting a vertex yields a chordal graph. In the case
of a wheel graph with hub v and n + 1 vertices, the only nonzero term in
the summation of Theorem 3 is that in which I = {v}, since deletion of
any other independent set yields a chordal graph. When v is deleted, what
remains is a circuit with n vertices.

3. The odd-even invariants of the complete bipartite graphs. For
integers m,n ≥ 0, let Km,n be the complete bipartite graph having vertex
set V = U1 ∪ U2, where |U1| = m, |U2| = n, and having mn edges, joining
the m vertices of U1 and the n vertices of U2. Let ω0 denote the orientation
in which the vertices of U2 are terminal, and put bm,n = œ(Km,n, ω0).
Based upon Theorem 3 we derive the following recurrence relation for the
numbers bm,n.

Theorem 5. The bm,n’s satisfy the following recurrence relation:

bm,n =

n∑

i=1

(−1)i−1

(
n

i

)
bm,n−i +

m∑

j=1

(−1)nj+j−1

(
m

j

)
bm−j,n.

The equation holds for m,n ≥ 0, not both 0.

Proof. This follows directly from Theorem 3 upon noting that the nonempty
independent sets in Km,n are the nonempty subsets of U1 together with the
nonempty subsets of U2. The first summation is the contribution from the
nonempty subsets of U2. Since all vertices of such a set are terminal in ω0,
the value of ν of Theorem 3 is 0. The second summation is the contribution
from the nonempty subsets I of U1, where j represents |I|. Since all the
vertices are initial, each edge connecting the set to U2 is reversed; ν is the
number of such edges, which is nj.

The following table, containing the values of bm,n for small m, n, was
obtained using Theorem 5 with the boundary values bm,0 = b0,n = 1.
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m,n : 0 1 2 3 4 5 6
0 : 1 1 1 1 1 1 1
1 : 1 0 0 0 0 0 0
2 : 1 0 −2 −6 −14 −30 −62
3 : 1 0 −6 0 −6 0 −6
4 : 1 0 −14 −6 118 690 2806
5 : 1 0 −30 0 690 0 3570
6 : 1 0 −62 −6 2806 3570 −39722

The next theorem presents the exponential generating function for
these numbers. For background on generating functions in combinatorics
consult, for example, [7].

Theorem 6. The exponential generating function for the bm,n’s is:

f(x, y) =
∑

m,n≥0

bm,n

m!n!
xmyn =

ex + ey − 1

2(1− coshx)(1− cosh y) + 1
.

Proof. Given the formal power series

A =
∑

m,n

αm,n

m!n!
xmyn and B =

∑

m,n

βm,n

m!n!
xmyn,

the product C = AB is

C =
∑

m,n

γm,n

m!n!
xmyn,

where

γm,n =
∑(

m

i

)(
n

j

)
αi,m−iβj,n−j .

Using this, we find that, for m,n ≥ 0, not both 0, the coefficient of
xmyn in f(x, y)(1− e−y) is 1

m!n!

∑n
i=1(−1)i−1

(
n
i

)
bm,n−i; that in f(x, y)(1−

coshx) is 1
m!n!

∑m
j=1

1
2 ((−1)j−1 − 1)

(
m
j

)
bm−j,n; and that in f(x,−y) sinhx

is 1
m!n!

∑m
j=1

1
2 ((−1)n + (−1)n+j−1)

(
m
j

)
bm−j,n.
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Summing, and using Theorem 5 and the fact that 1
2

(
(−1)n+j−1 − 1 +

(−1)j−1 − (−1)n−1
)
= (−1)nj+j−1, we find that f(x, y) = 1 + f(x, y)(1 −

e−y) + f(x, y)(1− coshx) + f(x,−y) sinhx. Upon rewriting, this is

−f(x,−y) sinhx = 1− f(x, y)(e−y + coshx− 1).

Also, equivalently upon replacing y by −y in the above,

f(x,−y)(ey + coshx− 1) = 1 + f(x, y) sinhx.

Combining the two preceding equations we have

(−1 + f(x, y))(e−y + coshx− 1)(ey + coshx− 1)

=f(x,−y) sinhx(ey + coshx− 1)

= sinhx(1 + f(x, y) sinhx).

Then

f(x, y)
(
(e−y + coshx− 1)(ey+coshx− 1)− sinh2 x

)

= sinhx+ ey + coshx− 1,

which upon simplification becomes

f(x, y)
(
2(1− coshx)(1− cosh y) + 1

)
= ex + ey − 1.

4. The odd-even chromatic polynomial. The odd-even chromatic poly-

nomial Pœ bears a relation to the odd-even invariant that parallels that
of the (ordinary) chromatic polynomial to the number of acyclic orienta-
tions of a graph. Consider two functions, P e

G and P o
G, defined as follows.

Given an orientation ω0 of G, let P e
G (P o

G) be the function on positive in-
tegers whose value at k is the number of functions f : V (G) → [k] such
that (1) no two adjacent vertices have the same value (that is, it is a [k]-
coloring), and (2) the number of edges e such that f(v) < f(u), where u
is the tail and v is the head of e, is even (respectively, odd). Then, when
k is a positive integer, the total number of k-colorings of G is a function
PG(k) = P e

G(k) + P o
G(k). PG(k) is a polynomial in k, the usual chromatic
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polynomial of G. As we will see, P e
G(k) and P o

G(k) are also polynomials
in k. We define Pœ

G (k) = P e
G(k) − P o

G(k). This depends up to sign on
ω0, but we will usually suppress this dependence in the notation. Given
a coloring f , we define the sense of the coloring to be even if the number
of edges e having tail u and head v, where f(u) > f(v), is even, and odd,
otherwise. Given k, the odd-even chromatic polynomial gives the number
of k-colorings having even sense minus that of those having odd sense.

As an example, consider G = K1,2, with ω0 being the orientation in
which both edges have the vertex of degree 1 as their tail. In this case it is
not hard to verify the following:

P e
G(k) =

2

3
k3 − k2 +

1

3
k,

P o
G(k) =

1

3
k3 − k2 +

2

3
k,

Pœ
G (k) =

1

3
k3 −

1

3
k, and

PG(k) = k3 − 2k2 + k.

Replacing the orientation ω0 by one having the direction of one edge changed
results in the reversal of P e

G and P o
G, sign change for Pœ

G , and no change for
PG.

If a graph G has an odd number of edges then Pœ
G (k) = 0. If G is the

disjoint union of two subgraphs G1, G2, then Pœ
G the product of the odd-

even chromatic polynomials of the two subgraphs. If n > 1 and G = Kn

then Pœ
G (k) = 0.

As is well-known, PG(k) is a polynomial in k. The following theorem
gives the analogous fact for Pœ

G . The proofs given for the next two theorems
make use of facts about Ehrhart polynomials of convex polytopes. See
Stanley [7], pages 235–241, for basic facts about Ehrhart polynomials used
here. These statements can also be proven easily using Theorem 10, below,
without reference to Ehrhart polynomials.

Theorem 7. The functions P e
G and P o

G are polynomials of degree |V (G)|;
and Pœ

G is a polynomial of degree at most |V (G)|.

Proof. Each coloring f of G yields an orientation ω of G by taking, for edge
e incident to vertices u and v with f(u) < f(v), ω(e) to be the orientation in
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which u is the tail and v is the head. The resulting orientation is acyclic, so
this yields a partition of the collection of colorings into classes corresponding
to the acyclic orientations of G. Given an acyclic orientation ω, let Qω(k)
denote the number of [k]-colorings of G that yield ω in this way.

The functions Qω are related to the Ehrhart polynomials of certain
convex polytopes Q. Suppose that an acyclic orientation ω is given. It
determines a partial ordering of the vertex set of G. The set Q of functions
f : V (G) → [0, 1] such that, if the edge e ∈ E(G) has tail u and head v
then f(u) ≤ f(v), is (following Stanley [6]) the order polytope of the poset.
The polytope Q has dimension d = |V (G)|. Consider the dilation kQ of Q
by a factor of k, where k is a positive integer. The Ehrhart polynomial of
a polytope Q having integer vertices is the function E whose value E(k) is
the number of points of kQ that have integer coordinates (for k = 1, 2, . . . ).
This function is a polynomial in k whose degree is the dimension of Q. The
value of this polynomial at 0 is 1. Its values at negative integers also have
combinatorial significance: the number of points having integer coordinates
that lie in the interior of kQ (for k > 0) is given by (−1)dE(−k), where d is
the dimension of the polytope, according to the Combinatorial Reciprocity
Theorem. Since Qω(k) is the number of points having integer coordinates
that lie in the interior of the convex polytope (k+1)Q, it follows that Qω(k)
is a polynomial of degree |V (G)|.

The validity of the theorem follows by noting that

P e
G(k) =

∑

ω∈A(G),
d(ω,ω0) even

Qω(k),

P o
G(k) =

∑

ω∈A(G),
d(ω,ω0) odd

Qω(k),

and Pœ
G (k) = P e

G(k)− P o
G(k).

Theorem 8. We have œ(G,ω0) = (−1)|V (G)|Pœ
G (−1), where ω0 is the

orientation used to obtain Pœ
G .

Proof. In the proof of Theorem 7, the Ehrhart polynomials E have value
E(0) = 1. When k = −1 the values Qω(k) appearing in the summations are
Qω(−1) = (−1)|V (G)|E(0) = (−1)|V (G)|.
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The following theorem is an analogue of the well-known reduction the-
orem for the chromatic polynomial. It implies Theorem 1, part (d), by the
preceding theorem; and the proof, which is similar, is omitted.

Theorem 9. Suppose e and e′ are parallel edges of G. If, in ω0, the edges e,
e′ have the same head (and the same tail) then Pœ

G = Pœ
G\{e,e′} +Pœ

G/{e,e′}.

Theorem 9 can be used to reduce the computation of the odd-even
chromatic polynomial to that of graphs without multiple edges. Also, writ-
ing the equation as Pœ

G\{e,e′} = Pœ
G − Pœ

G/{e,e′}, the computation of the
polynomial can be recursively reduced to the computations involving only
graphs G for which V (G) is a clique. It is easy to see that for such a clique-
graph the odd-even chromatic polynomial is simply γ

(
k
n

)
, where n = |V (G)|

and γ is the number of [n]-colorings of even sense minus the number of [n]-
colorings of odd sense. We will consider this further in the next section.

The following theorem is an analogue of Theorem 3 for the odd-even
chromatic polynomials.

Theorem 10. The values of the odd-even chromatic polynomial are given
recursively by the following sum over the independent sets of G:

Pœ
G (k) =

∑

I∈I(G)

(−1)ν(I)Pœ
G\I(k − 1).

Proof. Given a [k]-coloring of G, let I be the set of vertices of color k. This
is an independent set. Clearly the contribution to Pœ

G (K) of [k]-colorings
of G in which precisely the vertices of I have color k is (−1)ν(I)PG\I(k−1),

with the factor (−1)ν(I) taking care of the sign.

For G = Km,n, and letting U1, U2 be as before, with ω0 being the
orientation in which all edges are directed from U1 to U2, denote the odd-
even chromatic polynomial Pœ

G by Bm,n.

Theorem 11. When not both m and n are odd, the following equation
holds.

Bm,n(k + 1)−Bm,n(k)

=
n∑

j=1

(
n

j

)
Bm,n−j(k) +

m∑

i=1

(
m

i

)
Bm−i,n(k).
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Proof. Directly from Theorem 10 we get:

Bm,n(k + 1)−Bm,n(k)

=

n∑

j=1

(
n

j

)
Bm,n−j(k) +

m∑

i=1

(
m

i

)
(−1)niBm−i,n(k).

When n is even, (−1)ni = 1, and we obtain the equation of the theorem.
When n is odd and m is even, (−1)ni = −1 when i is odd, in which case
m− i is odd, so that B(m− i, n) is 0.

Theorem 11 can be used to construct a table of the polynomials Bm,n,

expressed in terms of the polynomials
(
k
d

)
(d = 0, 1, . . . ). Here is a small

portion of this table.

m,n : 0 1 2

0 : 1
(
k
1

)
2
(
k
2

)
+
(
k
1

)

1 :
(
k
1

)
0 2

(
k
3

)
+ 2

(
k
2

)

2 : 2
(
k
2

)
+

(
k
1

)
2
(
k
3

)
+ 2

(
k
2

)
8
(
k
4

)
+ 12

(
k
3

)
+ 2

(
k
2

)

3 : 6
(
k
3

)
+ 6

(
k
2

)
+

(
k
1

)
0 24

(
k
5

)
+ 48

(
k
4

)
+ 20

(
k
3

)
+ 2

(
k
2

)

To obtain the table, first put a 1 as the entry labeled by m = 0 and n = 0.
Put 0’s in the positions indexed by odd m and n. Then, for each of the
other entries (starting in the corner and working outward), compute the
sum along the row and column containing that entry as in the right side
of the equation of the theorem, obtaining a sum of terms γ

(
k
d

)
. Finally,

advance the d’s, so that the term becomes γ
(

k
d+1

)
, thereby obtaining the

proper entry for that position. Notice that the coefficients are nonnegative
(using this basis, and for our choice of ω0). It isn’t hard to verify that, in

the entry for Km,n, the coefficient of
(

k
m+n

)
is m!n!

(⌊m
2 ⌋+⌊n

2 ⌋

⌊m
2 ⌋

)
, when m and

n are not both odd.

5. The coefficient of
(
k
l

)
. Let γl(G,ω0) denote the coefficient of

(
k
l

)
in

Pœ
G (k). Putting n = |V (G)|, we may write

Pœ
G (k) =

n∑

l=0

γl(G,ω0)

(
k

l

)
.
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We briefly consider the coefficients γl(G,ω0).
The coefficient γ0(G,ω0) of

(
k
0

)
equals 0 (unless G has no vertices). For

1 ≤ l ≤ n, let Πl denote the set of ordered partitions (I1, . . . , Il) of V (G)
into l nonempty independent sets. Each k-coloring f : V (G) → [k] of G
determines an element of Πl, where l is the cardinality of the image f(V (G)):
If k1 < k2 < · · · < kl are the “colors” that are actually used, then the
element of Πl is (f−1(k1), f

−1(k2), . . . , f
−1(kl)). Given π = (I1, . . . , Il) ∈

Πl, let Gπ denote the graph having vertices I1, . . . , Il, with edges arising
from edges of G: An edge e ∈ E(G) incident to vertices u, v ∈ V (G), where
u ∈ Ia and v ∈ Ib, is also considered to be an edge of Gπ, incident to the
vertices Ia and Ib of Gπ. If ω0 is an orientation of G, it is also an orientation
of Gπ. The graphs Gπ (for π ∈ Πl) have l vertices.

Theorem 12. The coefficient γl in Pœ
G (k) =

∑
l γl

(
k
l

)
is

γl(G,ω0) =
∑

π∈Πl

γl(Gπ, ω0).

Proof. Pœ
G (k) is the sum over all k-colorings of the sense, ±1, of the coloring.

Given a partition π ∈ Πl, the set {k1, . . . , kl} can be chosen in
(
k
l

)
distinct

ways, and for each such choice, the contribution to Pœ
G (k) of the k-colorings

for which π is the associated partition is γl(Gπ, ω0).

This result motivates an effort to determine the coefficient of the term
of degree |V (G)|; we are after γn(G,ω0), where n = |V (G)|. This is simply
the sum over the permutations π of the vertex set of G of numbers απ = ±1,
where απ = 1 if the orientation induced by the permutation agrees with ω0

on an even number of edges, and απ = −1, otherwise.
Put V (G) = {v1, . . . , vn}. We assume henceforth that ω0 is induced

by the order given by the indexing of the vertices, so that for an edge e
incident to vertices vi and vj where i < j, ω0(e) has tail vi and head vj .

If the graph G has a loop then γl(G,ω0) = 0; we assume G has no
loops.

Let R be the following ring. For each vertex vi, let xi denote an
indeterminate. As an abelian group the ring is freely generated by the
square-free monomials in the xi’s. There are the following multiplicative
identities: x2

i = 0, for each i; and xixj = −xjxi if an odd number of edges
of G oppose the direction vi to vj , where i < j; otherwise, xixj = xjxi.
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Call a permutation π = (v1, . . . , vn) of the vertex set an even ordering

if, for each index i, the number of j < i such that vi and vj are adjacent is
even.

Theorem 13. The highest-degree coefficient is γn(G,ω0) = γ, where (x1+
. . . + xn)

n = γx1 · · ·xn. Furthermore, γ =
∑

π N(π), where the sum is
taken over all permutations of the vertex set of G, N(π) = 0 if π is not an
even ordering, and otherwise N(π) = (−1)s, where s = s(π) is the number
of edges e that are incident to vertices vi and vj with i < j and π(i) > π(j).

Proof. The expression (x1 + . . . + xn)
n is the sum of the n! terms of the

form xπ(1)xπ(2) · · ·xπ(n), one for each permutation π of {1, 2, . . . , n}. In R,
xπ(1)xπ(2) · · ·xπ(n) = αx1x2 · · ·xn, where α = 1 if there is an even number
of edges e incident to vertices vi and vj for which i < j and π(i) > π(j),
and it is −1 otherwise. Summing yields the first statement.

We show that

(x1 + . . .+ xn)
n = (

∑

π

N(π))x1x2 · · ·xn.

This clearly holds if n = 1. To see that this is the case in general, assume
inductively that n is an integer that is greater than 1 and equality holds for
subgraphs having n− 1 vertices. Consider

(x1 + . . .+ xn)
n = (x1 + . . .+ xn)

n−1(x1 + . . .+ xn).

Notice that, for any i,

(x1 + . . .+ xn)
n−1xi = (x1 + . . .+ xi−1 + xi+1 + . . .+ xn)

n−1xi,

since x2
i = 0. It is clear that the contribution of this last product to the

coefficient is the odd-even invariant of the subgraph induced by {vj | j 6=
i}=(with the orientation induced by ω0) multiplied by (−1)t, where t is the
number of vertices adjacent to vi and appearing after it in π. This subgraph
has an odd number of edges if vi has odd degree, so the contribution in that
case is 0. Summing over the vertices gives the inductive step.

Theorem 14. For a bipartite graph G, |γn(G,ω0)| is the number of linear
orderings of the vertex set in which each vertex is adjacent to an even
number of its predecessors.
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Proof. For any two even orderings, π1 and π2, and for any vertex vi, the
number δ(vi) of edges incident to vi for which the orientations induced by
π1 and π2 differ is even. To see that this is true, let a denote the number
of edges incident to vi that are directed toward vi by both orderings, let b
be the number directed away from vi by π1 and toward vi by π2, and let c
be the number directed away from vi π2 and toward vi by π1; then a + b
and a + c are both even, so b + c, which is the number of edges on which
the orientations differ, is also even.

Since G is bipartite, there exists a 2-coloring of its vertices. Given the
2-coloring, the total number of edges on which π1 and π2 induce opposite
orientations can be found by summing the δ(vi)’s over the vertices of one
color, so the total number of edges for which this is the case must also be
even; that is, the numbers s(π1) and s(π2), are congruent modulo 2.

The k-th Eulerian number of order n, E(n, k), is the number of per-
mutations having k “falls,” a fall in a permutation π : {1, 2, . . . , n} →
{1, 2, . . . , n} being a pair of consecutive integers i, i+1, with 1 ≤ i ≤ n−1,
such that π(i+ 1) < π(i).

Theorem 15. For a path G with n vertices, |γn(G,ω0)| is the absolute
value of the alternating sum of the Eulerian numbers of order n.

Proof. We may take G to be the path with vertex set {1, 2, . . . , n} and edges
{1, 2}, {2, 3}, . . . , {n− 1, n}. For ω0, we take the orientation for which each
edge {i, i+1} is directed toward i+1. The alternating sum of the Eulerian
numbers is E(n, 0)−E(n, 1)+ . . .+(−1)n−1E(n, n− 1). Clearly this is the
number of orderings of {1, 2, . . . , n} with the order agreeing with ω0 on an
even number of edges of the path minus the number agreeing on an odd
number of edges.

Of course in Theorem 15, when n is even, the value is 0.

Some notes and acknowledgments. There are many questions that one
might ask about the graphical invariants introduced here. We mention a
few of these in the next paragraphs.

The algorithmic computational complexity of computing these invari-
ants is certainly of interest, although it has not been discussed here.

It is apparent that the odd-even invariant often has the value 0. Is
there anything “special” about the graphs for which this is true? Perhaps
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some simple property of the graph might make it easy to determine whether
or not this is the case.

The Bm,n’s of Theorem 11 are linear combinations of the
(
k
l

)
’s, having

nonnegative coefficients. For what other graphs does this happen?
We know that if graphs G and G̃ are planar duals, then their odd-

even invariants are equal. Is there some simple relationship between their
odd-even chromatic polynomials?

We thank Bob Sachs, Randy Latimer, and John Solomon for help of
various kinds. Also we are grateful to Tom Zaslavsky for suggesting the use
of the symbol “œ” for the odd-even invariant, and to anonymous referees
for additional help.
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