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ABSTRACT. Simple expressions for the previously given conjec-
tural upper bounds for the entries of mutation count matrices are
presented.

1. INTRODUCTION

For an introduction to the topic of oriented matroids, see [2].

Let O denote an oriented matroid of rank r = d+ 1 without loops. It
is associated with an arrangement of finitely many pseudospheres in the
d-sphere S* C R". Let n be the number of elements of the underlying
matroid, so that n is the number of pseudospheres in the arrangement,
and let these be denoted by H; (1 <i < n). Let H;" and H; denote the
two open sides of H;, each assumed to be an open ball; for each i the
sets H;, H;", and H; form a partition of S¢. The minimal nonempty
sets of the form (;_, K;, where for each ¢, K; is either H;, H,", or
H., are the cells of the arrangement. A pseudosphere H; supports the
cell C' if the pseudosphere and the topological closure of the cell have
nonempty intersection.

We describe the notion of a “mutation” of a uniform oriented ma-
troid, and then, that of the “mutation count matrix” of an ordered pair
of uniform oriented matroids having common rank and underlying set.

Any d-dimensional cell of the arrangement is contained in exactly
one of the sides, H;" or H; , of each pseudosphere H;. Therefore each
d-cell C' determines an element v = v(C') € {1, —1}", where v; is 1 if
C C Hf, and —1 if C C H; . Such a vector is called a tope of the
oriented matroid. The oriented matroid is uniquely determined by its
set of topes.

Let 7 denote the set of topes of a uniform oriented matroid, O. If v
is a tope, then —uv is a tope. It is sometimes possible to replace topes
v and —v by two other elements v’ and —v of {1, —1}", preserving the

property that the new set 7' is the set of topes of a uniform oriented
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matroid. This is the case precisely when the d-cell C' for which v =
v(C) has exactly d + 1 supporting pseudospheres H;. In this case,
the d-cell is a simplex cell of the arrangement and the tope is termed
simplicial. Of course, —v will also be a simplicial tope, and v and —v’
will be simplicial topes of the new oriented matroid. The new oriented
matroid, (', is said to be obtained from O by a mutation. The reverse
of this mutation is the mutation that transforms O’ into O.

It is not difficult to describe the new topes v’ and —v'. Let K C [n]
denote the set of indices ¢ such that the pseudosphere H; supports the
simplicial tope v. Since v is simplicial, there are exactly r = d + 1 of
these. One of the two new topes is v/, where v, equals —v; if i € K,
and equals v;, otherwise; the other is its negative, —v’.

Let L C [n] denote the set of the remaining n — r elements of [n],
L = [n]\ K. Let k denote the number of indices i € K such that
v; = —1, and let ¢ denote the number of indices i € L such that
v; = —1. We term the pair (k,¢) the type of the simplicial tope wv.
Then —v has type (r —k,n—r —{). Also, in @', v and —v’ have types
(r —k,¢) and (k,n —r — £). The type of the mutation taking O to O’
is designated by either of the pairs (k, ¢), (r — k,n —r — (). Its reverse
has the types (r — k,¢) and (k,n —r — ().

Given a sequence of uniform oriented matroids O = Oqy, O4,...,0,, =
O" which transforms the oriented matroid O into O”, the entry M,
where 0 < k < L%lj and 0 < /7 < L”’THJ, of the mutation count
matrizc M = M(O,O") records the number ¢, — c_, where ¢, is the
number of mutations of type (k,¢) in the sequence, while c_ is the
number of reverse mutations of type (k, ). It is shown in [6] that this
number only depends upon the pair O and O”, not upon the particular
sequence. However, it is not known whether or not, given two uniform
oriented matroids of the same rank on the same underlying set, there
must exist such a sequence of mutations connecting them (although this
is always so in the realizable case), so the definition given in [6], which
will be repeated here, differs from the foregoing description. (Perhaps
the mutation count matrices should be called “mutation pseudo-count
matrices”!)

For each i, let x; and y; be indeterminates. For each cell C' let we
denote the product

wo = ([T =) (1] w)
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where AT = {i : C C H'} and A~ = {j : C C H;}. The total
polynomial (see [5]) of O is

TO(‘Il?ylamQayQ?‘“anayn) - E We.
C, a cell

The (dual) Radon catalog is
R(’)(I’, y) - T(’)([E, Y, 2, Y, .-, x)y>

It is a polynomial of degree n. When O is a uniform oriented matroid
(which is assumed to be the case henceforth), it has no terms of total
degree less than n — 7+ 1. The coefficient of 2%y is the number of cells
of the arrangement which are on the positive side of k pseudospheres
and on the negative side of ¢ pseudospheres.

For 0 < k < L’”;le and 0 < ¢ < L”’THJ, let my denote the little
mutation polynomaial

mye(z,y) = (2" F ="y (L42) (1+y) " = (1+2) " (1+y)").

It is shown in [6] that, for any pair O, O” of uniform oriented matroids
of rank r on the same underlying set of cardinality n, there are unique
integers ;¢ such that

(1) Row(2,y) = Ro(z,y) = > Yremi

The matrix (y4,) is the mutation count matriz M(O,O0"). If there
exists a sequence of mutations which transforms O into O” (as will
be the case if the well-known conjecture of Cordovil and Las Vergnas
holds), then the (k,¢)—th entry of M(O,0") enumerates mutations of
type (k, ) in the sequence, in the way described above.

In [6] it is conjectured that the entries in M(O,0") are bounded
above by the numbers 0y o:

k 0 . .
ZZ fmito—j [T — 0 n—1r—3j n
o k—i)\ (- ijn—i—j)

J=

for 0 <k < [%5%] and 0 < ¢ < [®=2=1]. These numbers are obtained as

the entries in the mutation count matrix M (A(n,n—r), A(n,r)) where
A(n,r) is the alternating oriented matroid of rank r and A(n,n —r) is
the dual of the alternating oriented matroid of rank n — r.

The expression above leaves a little to be desired: It is not even
clear from (2) that the 04 ,'s are nonnegative, which must be the case if
the conjecture is valid, since M (O, 0") = =M (0", O). As it happens,
there are closed—form expressions for the numbers dy .
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In this paper we give simple expressions for the d ¢’s, namely, letting
7 denote n — r (which is the rank of the dual oriented matroid) and

d=r—1=n—r—1,
3) b= d—k+0\(d—C+k\ (d—k+0\(d—{(+k
me 0 k (-1 k-1

rr —A0r — kr r—k+0\[(r—C+k
(4) Okt = — .
(F—k+0)(r—(+k) 1 k
It is easily seen (and left to the reader) that these two expressions yield
the same numbers. From the second of these, it is clear that the dj,’s
are nonnegative, when k and ¢ are in the given range. The equations
hold more generally, however, for any nonnegative integers k and /.

For this extension we use the convention that (g) =1, (:1) represents
the polynomial function of x given as

T _a:x—l r—m-+1
m) 1 2 m

for m a positive integer, and (:Z) = 0 if m is a negative integer. Then
the equations (2), (3), and (4) are equivalent.

2. GENERATING FUNCTIONS AND PROOFS

Let f(x,y) be the rational function

B (I+z+y)"
(5) fla,y) = (1 + ) —F+1(1 4yt

It is not difficult to see that &, as given in (2) above is the coefficient
of z*y* in the the power series expansion of f(z,y):

(6) [l y) = Z Sk 0™y’

k,0>0

It would be nice to have a single function from which to extract all
the coefficients 0. Such a function, given in Proposition 3, will be
obtained through the use of the following two lemmas.

Lemma 1. Let h(z) be a formal power series in x, with coefficients in
a commutative ring. Then the coefficients of x* in

# and (1 —x)h( i

)

l1—z

are equal.



Proof. This is clear when h(z) = 2™ for some nonnegative integer m,
the common value of the coefficients then being (—1)""™(9-™). The
general result follows by additivity.

With two variables, this appears as follows.

Lemma 2. Let h(z,y) be a formal power series in x,y with coefficients
in a commutative ring. Then the coefficients of x*y in

h(z,y)
(1 _i_x)akarl(l +y)bf€+1

and . y
1 —2)*(1 —y)’h(——, ——
(12 (1 =m0
are equal.
Proof. Use Lemma 1 twice. 0

Proposition 3. The coefficients of z*y* in the power series expansions

for (1+$)T,§€1j‘ff'f;)n,r,@“ and (1,£§;fry()1,y)r are equal.

Proof. Use Lemma 2 with the function h(z,y) = (1 +z+y)", a =r,
and b=n—r. O

It follows that dy, is the coefficient of 2%y in the power series ex-
pansion for ; (1—ay)"

(A—z)"=r(1—y)" "
Let Gy be the function

(1 o Z.y)aerfl
(1 —=z)e(1—y)>

We wish to show that the coefficient of 2¥y* in the power series expan-

sion of G, about the origin is given by the product (a—l;é-{—k) (b_lzk”%).

The following lemma gives this for a = 0.

(7) Ga,b(aj’ y) =

Lemma 4. We have the power series expansion

(1 —ay)’? k—C—1\(b—k+(-1\ , ,
(1—y) > k ¢ v
k>0

Proof. We begin with

ey = (7 )

and




Upon multiplication we get
w(O—1\(b—1+0—Fk\ .,
S ()
We have
b—1\/(b—1+(—k b-1)! (b-=14¢—k)!
( k )( b—1 > TROG—k—1 (b— DI — k)
Upon replacing the (b — 1)!I’s by ¢!’s and rearranging, we get

e ()

k—0+1
k

Finally, rewriting (f;) as (—1)* ( ) yields the desired conclusion. [

Lemma 5. When

S a—C+k\N/(b—1—-k+/
kit — ]C ﬁ
oo (O TR (ke
Rt k I

Ay — Ok—10 = B — Br—1-

and

we have
Proof. Both sides are equal to
a—0+k—1\(b—1—Fk+/0\ab—ak -l
a—/{ l k(b—Fk)
Theorem 6. If G,y is as in (7) then

a—1—0+k\/b—1—k+/{
Ga,b(xay> = Z ( L )( f )xkyé

k,0>0

Proof. The proof proceeds by induction on a, the case a = 0 having
been dealt with in Lemma 4. Suppose a > 0 and that the result holds
for a.

By the inductive assumption, the coefficient of z¥y* in G411 (z,y)
is the By, of Lemma 5. Let dy ¢ be that of Gyi1p. We must show that

A = . This is certainly the case for k = 0, for G,115(0,y) = ==

(1-y)®°
”2_1) = apy. Then &y and ayy

so that the coefficient of y* is Qpp = (
agree for k = 0.
Also we have (1 — 2)Gor1p(z,y) = (1 — y)Gapri(z,y), SO Gpe —
k-1, = Bre — Orye—1- By Lemma 5, gy — ap—10 = g — a1, for all
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k> 1,0 > 0. Since gy = apy for £ > 0, it follows that a;; = oy, for
all k,¢ > 0, completing the inductive step. (We note the resemblance
to a Wilf-Zeilberger proof; see [§].)

This theorem remains valid when a and b are not nonnegative in-
tegers, the power series converging inside the unit polydisk. To see
this, note that for fixed k£ and ¢, the coefficients in the Taylor series
will be polynomials in @ and b, and, since these polynomials agree for
nonnegative integers a and b, they agree everywhere. U

Theorem 7. The entries 0y are as given in (3).

Proof. Use Theorem 6 with a = r and b = n —r, noting that dy ¢ is the
coefficient of 2%y in (1 — zy)G,. (2, y). O

3. VARIOUS QUESTIONS AND SPECIAL CASES

In the case of mutation count matrices of realizable oriented ma-
troids, the conjectured inequalities hold for the first row and column
as a consequence of the “g—theorem” characterizing the f—vectors of
simplicial polytopes, proven by Stanley. (See [9].) In general, the con-
jecture is open, even in the realizable case.

For r = 3, the conjecture would imply that of Guy that the spherical
crossing number of K, is equal to $[2] %] [%2][%2]. (The same
number is conjectured for the value of the topological crossing number
of K,,. In this case, no refinement of the sort described here is known.)

It would certainly be nice to be able to state conditions characterizing
the mutation count matrices. The difficulty of this problem is indicated
by recent results on some old problems concerning configurations of
planar point sets. Let S denote a set of 2n points in the plane, no
three colinear. Enumerate the lines L which are determined by pairs
of the points and for which the same number of points of S lie in each
of the open halfplanes determined by L. How large can this number
be? This problem dates to [4] and [7]. For some recent lower and
upper bounds, see [10] and [3]. Certainly a nice characterization of the
mutation count matrices of acyclic, rank 3 oriented matroids would
bear on this problem. The fact that there is still a large gap between
the known upper and lower bounds seems to show that even making
reasonable guesses will be hard.

The problem of determining the rectilinear crossing number of K,
also illustrates this. Although there has been a flurry of activity and
considerable progress on this problem, it is difficult to find a reasonable
guess about what might be the answer in general. For a web site

devoted to this problem, see [1].
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It would be nice to have a direct combinatorial proof that the num-
bers given in (3) are the entries of the mutation count matrix for the
alternating and dual-alternating uniform oriented matroids. In this
case, there certainly exist sequences of mutations connecting the two
oriented matroids; and it might be possible to find a particular such
sequence, and directly enumerate the mutations of each type. This
would yield a different proof of Theorem 7.

1]

[10]
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