1. (5.1, # 14) For any square matrix A, prove that A and A^t have the same characteristic polynomial.

Proof:

Let B := A - xI and $C := A^t - xI$ (use x to denote our variable since t denotes the transpose in this problem). Then $B^t = (A - xI)^t$. We next show that for arbitrary matrices X and Y (of the same size), $(X + Y)^t = X^t + Y^t$. Clearly $(X^t + Y^t)_{ij} = X_{ji} + Y_{ji} = [(X + Y)^t]_{ji}$, where X_{ij} is the entry in the *i*th row and *j*th column of the matrix X. Hence the claim is proved. Thus $(A - tI)^t = A^t - (tI)^t = A^t - xI = C$. Hence char $(A) = \det(B)$ which by an earlier result equals $\det(B^t) = \det(C) = \operatorname{char}(A^t)$.

2. (Sec. 5.2, # 18a) Prove that if T and U are simultaneously diagonalizable linear operators on V, then T and U commute (i.e., $T \circ U = U \circ T$).

Proof: First we note that if C and D are both diagonal matrices, then CD = DC. To see this let

$$C = \begin{pmatrix} c_1 & 0 & \cdots & 0 \\ 0 & c_2 & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & 0 & 0 & c_n \end{pmatrix} \text{ and } D = \begin{pmatrix} d_1 & 0 & \cdots & 0 \\ 0 & d_2 & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & 0 & 0 & d_n \end{pmatrix} \text{ then,}$$
$$CD = \begin{pmatrix} c_1 d_1 & 0 & \cdots & 0 \\ 0 & c_2 d_2 & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & 0 & 0 & c_n d_n \end{pmatrix} = DC$$

Now suppose that β is a basis for V such that both $[T]_{\beta}$ and $[U]_{\beta}$ are diagonal. Then $[T \circ U]_{\beta} = [T]_{\beta}[U]_{\beta}$ and since these are diagonal matrices, they commute. Thus $[T]_{\beta}[U]_{\beta} = [U]_{\beta}[T]_{\beta} = [U \circ T]_{\beta}$. Since $T \circ U$ and $U \circ T$ have the same matrix with respect to β , they must be the same transformation. Done. 3. (Sec. 5.4, #13) Let A be an $n \times n$ matrix. Prove that

$$\dim(\operatorname{span}\{I_n, A, A^2, \ldots\}) \le n.$$

Proof: By Caley-Hamilton, A is a root of the characteristic polynomial of A, which has degree n. Thus there exists scalars, $a_0, a_1, \ldots, a_{n-1}$ such that

$$A^{n} = a_{0}I_{n} + a_{1}A + \dots + a_{n-1}A^{n-1}$$
.*

In other words A^n is a linear combination of the set $\{A^i\}_{i=0,\dots,n-1}$. Then

$$A^{n+1} = A(A^n) = A(a_0I_n + a_1A + \dots + a_{n-1}A^{n-1}) = a_0A + \dots + a_{n-1}A^n$$

Then, since A^n can be written in terms of lower powers of A, it follows that A^{n+1} is in the span of $\{I, A, \ldots, A^{n-1}\}$. Clearly we can repeat this argument (by induction) for all A^k , where k > n. Thus the set $\{I, A, \ldots, A^{n-1}\}$ is a spanning set for the space span $\{I_n, A, A^2, \ldots\}$. Since this spanning set only has n elements, the dimension of this space is at most n.