
Math 321 Spring 2016 Solutions to HW #4

(1) (6.26) Let φ : U(16)→ U(16) be defined by x 7→ x3. Show that φ is an automorphism
of U(16).

Proof. Note that U(16) = {1, 3, 5, 7, 9, 11, 13, 15}, so the order of the group is
8. First we show that the map is structure preserving. Let x, y ∈ U(16). Then
φ(xy) = (xy)3 = x3y3, since the group is abelian.

Next we show that it is injective, which is sufficient to show that it is a bijection, since
the group is finite. This has to be done by brute force at this point. Namely look at all
8 elements and then list the cube of each element. We see that there is no repetition.
On the other hand, after the next section, we could use Lagrange’s Theorem. To see
how just note that x3 = y3 implies (xy−1)3 = 1. Thus the order of xy−1 must divide 3.
Since it also must divide 8, the order of the element is one. Equivalently, x = y, which
shows that th map is injective.

It is clear, that if 3 is replaced with any odd number the map is still a bijection, and
hence an automorphism.

(2) (7.26) Show that if G is a group with more than one element and such that G has no
proper subgroups, then |G| is finite

Proof. Let a ∈ G such that a 6= e. Then 〈a〉 is a nontrivial subgroup of G. Hence
by assumption it is all of G. Thus G is cyclic. Next suppose that G is infinite. Then
a2 generates a proper subgroup of G - contradiction. Thus G is finite. Finally suppose
that |G| = n is not prime and let d be a divisor of n, where d 6= 1 and d 6= n. By the
Fundamental Theorem of cyclic groups, G has a subgroup of order d - contradiction
(note Lagrange’s Theorem is not relevant here, one needs the converse of Lagrange,
which only exists for cyclic groups).

(3) (7.30) Show that a group G of order 8 must have an element of order 2.

Proof. By Lagrange every element of G other than e has order either 2, 4 or 8. If
x ∈ G has order 4, then x2 has order 2. Similarly if y ∈ G has order 8, then x4 has
order 2 - done.
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(4) (7.32) Determine all finite subgroups of C∗, the group of nonzero complex numbers
under multiplication.

Proof. First note that any nonzero element z of the complexes can be written in
the form

r(cos(θ) + i sin(θ))

where r is a positive real number, and 0 ≤ θ < 2π. Moreover, if z′ = r′(cos(θ′) +
i sin(θ′)), then

zz′ = rr′(cos(θ + θ′) + i sin(θ + θ′)).

Now let H be a finite subgroup of C∗, and let z ∈ H. Then for some n, 1 = zn =
rn(cos(nθ) + i sin(nθ)). But rn = 1 implies that r = 1, i.e., z is on the unit circle. We
also have thatnθ is a multiple of 2π, i.e. nθ = k(2π) or θ = 2kπ/n (a rational multiple
of π).

Finally we claim that H must be cyclic. Let α be the minimal angle among all
z ∈ H, say z = cos(α) + i sin(α). If z does not generate, let z′ = cos(β) + i sin(β) ∈ H
not be a power of z. Thus β is not an integer multiple of α. Since β is minimal,
there exists an integer m > 0 such that α > β − mα > 0. In particular z′(z−m) =
cos(β − mα) + i sin(β − mα) ∈ H. But this contradicts the minimality of α among
angles in H. Thus z′ cannot exist and so H is cyclic.


