Krull Dimension and Going-Down in Fixed Rings

David Dobbs Jay Shapiro

April 19, 2006

David Dobbs Jay Shapiro Krull Dimension and Going-Down in Fixed Rings

Basics

R will always be a commutative ring and G a group of (ring) automorphisms of R.

We let R^G denote the fixed ring, that is,

$$R^{\mathsf{G}} = \{ a \in R : g(a) = a ext{ for all } g \in G \}.$$

Thus R^G is a subring of R

4 3 b

Basics

R will always be a commutative ring and G a group of (ring) automorphisms of R.

We let R^G denote the fixed ring, that is,

$$R^{\mathsf{G}} = \{ a \in R : g(a) = a ext{ for all } g \in G \}.$$

Thus R^G is a subring of R

Example

Let R = K[x, y]; let $G = \langle g \rangle$ where $g : R \to R$ via g(x) = -x, g(y) = -y and g fixes the elements of K. Then

$$R^G = K[x^2, xy, y^2]$$

▲ □ ▶ ▲ 三 ▶ ▲ 三 ▶

Types of Questions

- 1. What properties of R are inherited by the ring R^G ?
- 2. What is the relation between R and the subring R^G ?

A B > A B >

Types of Questions

1. What properties of R are inherited by the ring R^G ?

2. What is the relation between R and the subring R^G ?

An important example of a type 1 question.

4 3 5 4

Types of Questions

1. What properties of R are inherited by the ring R^G ?

2. What is the relation between R and the subring R^G ?

An important example of a type 1 question.

Hilbert's XIVth Problem

Let K be a field, $x_1, x_2, ..., x_n$ algebraically independent elements over K, and G a subgroup of GL(n, K). Is the fixed ring $K[x_1, x_2, ..., x_n]^G$ (or ring of invariants) finitely generated over K?

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Solution

There were some partial positive answers by Zariski and Noether. However in 1958 Nagata showed that the answer in general was no.

Solution

There were some partial positive answers by Zariski and Noether. However in 1958 Nagata showed that the answer in general was no.

A simple example of a type two question and answer:

Solution

There were some partial positive answers by Zariski and Noether. However in 1958 Nagata showed that the answer in general was no.

A simple example of a type two question and answer:

Definition

The group G is said to be locally finite on R if for each $a \in R$, the orbit of a under the action of G is finite, i.e., for each $a \in R$, the set $\{g(a) : g \in G\}$ is finite.

同 ト イ ヨ ト イ ヨ ト

Proposition

If G is locally finite, then $R^G \subset R$ is an integral extension. That is, every element of R satisfies a monic polynomial over R^G .

Proposition

If G is locally finite, then $R^G \subset R$ is an integral extension. That is, every element of R satisfies a monic polynomial over R^G .

Proof

Let $a \in R$, then a satisfies the polynomial

$$f(x) = \prod_{b \in \mathcal{O}(a)} (x - b),$$

where O(a) denotes the orbit of *a* under the action of *G*. The coefficients are in \mathbb{R}^{G} .

I ≡ →

Type 1 Question:

Does *R* Noetherian imply R^G Noetherian under the assumption that *G* is finite?

3. 3

Type 1 Question:

Does *R* Noetherian imply R^G Noetherian under the assumption that *G* is finite?

Answers

- Nagarajan (1968) constructed an example of a Noetherian ring R (R = F[[x, y]]) of characteristic 2, and a group G of order 2 acting on R such that R^G was not Noetherian.
- Bergman (1971) showed that if the order of G was a unit of R, then R Noetherian implies that R^G is Noetherian.

伺 ト イヨト イヨト

A Question We Considered

When does R Artinian imply that R^G Artinian?

A Question We Considered

When does R Artinian imply that R^G Artinian?

Definitions

- Recall that R is Artinian if R has the descending chain condition on ideals.
- The Krull dimension of R (which we denote dim(R)) is the length of the longest chain of prime ideals.

4 3 5 4

A Question We Considered

When does R Artinian imply that R^G Artinian?

Definitions

- Recall that R is Artinian if R has the descending chain condition on ideals.
- **②** The *Krull dimension* of R (which we denote dim(R)) is the length of the longest chain of prime ideals.

Basic Facts

- Artinian ⇔ Noetherian & dim(R) = 0. Also note that R Artinian implies that R has only finitely many maximal ideals.
- 2 If G is locally finite, then R is integral over R^G . This in turn implies that dim $(R^G) = \dim(R)$.

Transfer of Krull Dimension

- Without any assumptions on G we have examples such that dim(R) - dim(R^G) is any integer we want (positive or negative). We can even have dim(R) = ∞ and dim(R^G) = 0
- On the other hand we have no examples where the dimensions differ if dim(R) = 0.

Transfer of Krull Dimension

- Without any assumptions on G we have examples such that $\dim(R) \dim(R^G)$ is any integer we want (positive or negative). We can even have $\dim(R) = \infty$ and $\dim(R^G) = 0$
- On the other hand we have no examples where the dimensions differ if dim(R) = 0.

However with an assumption on R we have the following (Note: No assumptions on G.):

Transfer of Krull Dimension

- Without any assumptions on G we have examples such that $\dim(R) \dim(R^G)$ is any integer we want (positive or negative). We can even have $\dim(R) = \infty$ and $\dim(R^G) = 0$
- On the other hand we have no examples where the dimensions differ if dim(R) = 0.

However with an assumption on R we have the following (Note: No assumptions on G.):

Theorem

If dim(R) = 0 (so all prime ideals are maximal) and R has n maximal ideals, then R^G has at most n maximal ideals and dim $(R^G) = 0$.

(4 同) (4 日) (4 日)

Corollary

If R is Artinian, then dim $(R^G) = 0$ and R^G has finitely many maximal ideals.

∃ ▶ ∢

э

Corollary

If R is Artinian, then $\dim(R^G) = 0$ and R^G has finitely many maximal ideals.

∃ ▶ ∢

э

Corollary

If R is Artinian, then dim $(R^G) = 0$ and R^G has finitely many maximal ideals.

We saw how to modify Nagarajan (R Noetherian, G finite, yet R^G not Noetherian) to provide an example of R Artinian and G finite, yet R^G is not Artinian.

→ □ → → □ →

The Construction of Nagarajan

Let $F := \mathbb{Z}_2(a_i, b_i, i \ge 1)$, where the a_i, b_i are commuting algebraically independent indeterminates over the field \mathbb{Z}_2 with two elements. (Note F is the field of quotients of the integral domain $\mathbb{Z}_2[a_i, b_i]$.)

Consider the formal power series ring S := F[[X, Y]]. Then S has an automorphism g given

$$g(X) := X, g(Y) := Y$$
 and

$$g(a_i) := a_i + p_{i+1}Y, \ g(b_i) := b_i + p_{i+1}X,$$

where $p_i := a_i X + b_i Y$. Let $G := \langle g \rangle$. Since g^2 is the identity map, |G| = 2. It is well known that S is a Noetherian ring. However, Nagarajan has shown that R^G is not a Noetherian ring.

伺 ト く ヨ ト く ヨ ト

Our Variation

Consider the ideal $J := (X^2, Y^2)$ of S. Since X^2 and Y^2 are each fixed by g, it is easy to see that J is G-invariant, and so G acts (via ring automorphisms) on R := S/J. Of course, R inherits the property of being a Noetherian ring from S. Moreover, it is easy to check that R is zero-dimensional and local. Thus R is an Artinian ring, yet we can show that S^G is not Noetherian, hence not Artinian.

The proof does not involve describing all the elements of R^G explicitly (that seems too difficult). Rather, one shows that a certain family of elements are in R^G , from which we are able to create a strictly ascending chain of ideals.

伺 ト く ヨ ト く ヨ ト

Basic Ideas of Proof

Let x and y denote the canonical images of X and Y, respectively, in R. A degree argument shows that the set $\{1, x, y, xy\}$ is a basis of the vector space R over the field F. Also, note that when a_i is viewed as an element of R, then

$$g(a_i) = a_i + a_{i+1}xy$$
 (since $y^2 = 0 \in R$).

Thus

$$g(a_iy) = g(a_i)g(y) = (a_i + a_{i+1}xy)y = a_iy,$$

and so $a_i y \in R^G$. We show that the sequence of ideals of R^G given in

$$(a_1y) \subseteq (a_1y, a_2y) \subseteq (a_1y, a_2y, a_3y) \subseteq \ldots$$

is strictly ascending.

A Question of Type 2

David Dobbs Jay Shapiro Krull Dimension and Going-Down in Fixed Rings

æ

- 《圖》 《문》 《문》

A Question of Type 2

Recall

If G is locally finite on R, then R is integral over R^G .

Note since $R^G \subset R$, there is a map (called the *contraction map*) Spec $(R) \rightarrow$ Spec (R^G) , given by $P \mapsto P \cap R^G$.

直 と く ヨ と く ヨ と

3

Integrality

Integrality has a number of consequences for this map.

For example:

1. The map is onto.

2. If $P \subset Q$ are elements of Spec(R), then $P \cap R^G \subset Q \cap R^G$.

3. "Going-up" (GU). If $p \subset q$ are elements of $\text{Spec}(R^G)$ and $P \in \text{Spec}(R)$ such that $P \cap R^G = p$, then there exists $Q \in \text{Spec}(R)$ such that $P \subset Q$ and $Q \cap R^G = q$. In other words the diagram can be filled in:

$$P \subset ?$$

 $\downarrow \qquad \downarrow$
 $p \subset q$

伺下 イヨト イヨト

Definition of a Related Property

A ring injection $S \hookrightarrow R$ satisfies going-down (GD) if the following diagram can be filled in:

 $\begin{array}{cccc} ? & \subset & Q \\ \downarrow & & \downarrow \\ p & \subset & q \end{array}$

Integral extensions do not have to satisfy GD. Nonetheless we were able to show a stronger property for fixed rings. First a definition.

Definition of a Stronger Version of GD

An inclusion map of rings $S \hookrightarrow R$ is said to be *universally going-down*, if for any commutative *R*-algebra *T*, the canonical map $T \to T \otimes_S R$ satisfies going-down.

 $S \hookrightarrow R$ satisfies universally going-down if and only if the canonical map $S[x_1, x_2, ..., x_n] \hookrightarrow R[x_1, x_2, ..., x_n]$ satisfies going-down for each n.

Note that if G acts on R, then this action naturally extends to $R[x_1, x_2, ..., x_n]$.

Theorem

If G is locally finite on R, then $R^G \hookrightarrow R$ is universally going-down.

We did not do this at one time.

Steps in Proof

We first proved this when G is locally finite and R Noetherian (what we really needed was that there are only finitely many primes minimal over an arbitrary ideal).

Continuation

Then we realized, using a criteria of Kaplansky, that the obstruction to going-down was a finite data set. Basically, if the inclusion R^G into R does not satisfy universally going-down, then there exists finitely many elements $a_1, a_2, \ldots, a_n \in R$ that screw things up. Take these elements and their orbits (which still leave you with a finite set) and take the ring generated by \mathbb{Z} and these finite number of elements. This ring, call it T, is Noetherian, and G still acts on this ring. By construction $T^G \hookrightarrow T$ does not satisfies universally going-down. But by earlier result it does - a contradiction.

For a while we did not have an example to show that if we dropped the locally finite assumption, then $R^G \hookrightarrow R$ does not satisfy GD. But finally we did come up with an example using a semigroup ring.

Outline of the Construction

- We construct an abelian semigroup S (under +) via generators and relations.
- We define an automorphism group G acting on S.
- We let R = K[S] = K[x^s : s ∈ S], where K is a field. The action of G extends in a natural fashion to R.
- We show that $R^G = K[S^G]$
- We construct the appropriate diagram and show that it cannot be completed.

The Semigroup

Let *M* denote the free abelian monoid on the symbols $\{A, C_i \mid i \in \mathbb{Z}\}$, written additively.

We define a congruence relation on this monoid, as follows. Let $nA + C_{i_1} + C_{i_2} + \cdots + C_{i_k}$ and $mA + C_{j_1} + \cdots + C_{j_t}$ be arbitrary elements of M, where t is a nonnegative integer, the C_k are not necessarily distinct, and n and m are nonnegative integers. Then we declare that

$$nA + C_{i_1} + C_{i_2} + \cdots + C_{i_k} \equiv mA + C_{j_1} + \cdots + C_{j_t}$$

if either $nA + C_{i_1} + C_{i_2} + \cdots + C_{i_k} = mA + C_{j_1} + \cdots + C_{j_t}$ or $[n = m \neq 0]$ and k = t]. This is a congruence relation on M (that is, an equivalence relation on M that is compatible with the operation of addition on M). Let S denote the factor semigroup M / \equiv .

イロト 不得 トイヨト イヨト 二日

The Automorphism Group of S

First we define G on M. Let $g: M \to M$ be given by g(A) = A and $g(C_i) = C_{i+1}$ and then extending linearly. It is clear that if $x, y \in M$ satisfy $x \equiv y$, then $g(x) \equiv g(y)$. Hence, g induces an automorphism of S, also denoted g. Then g has infinite order and $G = \langle g \rangle$ acts on S.

The Example

With R = K[S], we have that $K[S^G] = R^G \subset R$ does not satisfy going-down (much less universally going-down).

The End

THE END

イロト 不得 トイヨト イヨト 二日