Valuation rings

Theorem 1. Let R be a commutative domain with quotient field K. Then
the following conditions on R are equivalent:

(1) For any q € K either ¢ € Ror ¢! € R.
(2) Let a,b € R be non-zero elements. Then either a|b or bla (in R).
(3) The set of ideals of R are linearly ordered.

EXERCISE 1 - Prove Theorem 1.

Definition Any ring satisfying the above conditions is called a wvaluation
Ting.

Theorem 2. A valuation ring is integrally closed.

Proof. Let V be a valuation ring. We will use condition 1 of Theorem 1. Let
K = Frac(V) and let v € K be integral over V. Then

U Gt 4 ag =0 *

for some a; € V. We may as well assume that v ¢ V. Thus by condition 1 of
Theorem 1, we have that u=! € V and it is not a unit of V. Thus v=' € M
the unique maximal ideal of V. Multiply % by ™" and we get

l4apu 4. . +au"=0

Since u~! € M, by rearranging terms, we see that 1 € M, a contradiction.

Thus v € V. Done O

Finding valuation rings

Let G be an abelian group under addition which is totally ordered by <. It
is called an ordered group if the axiom

x>y, z>2t=cx+2z>2y+t

is satisfied. This axiom implies
(1)z>0,y>0=2x+y>0and
2 zr>y=—-y>—=x

Examples of ordered groups:

(1) Z,Q, R under addition with the usual ordering.
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(2) the product Z" of n copies of Z with lexicographic ordering, that is
(al,ag,...,an) < (bl,bg,...,bn) =

for some i,b; = ay,by = as,...,b; = a; and b1 > a;1q
(3) Let G1,Gy, ..., G, be any set of ordered groups. Then using the lexi-
cographic ordering as above makes G x G5 X --- X (G, into an ordered
group.

We make G U {oo} into an ordered set by declaring co to be bigger than
any element of G. We also make the convention that g + co = oo for all
g € GU{oo}. The positive elements of G, are those g € G, such that g > 0.

Definition. Let K be a field. A map v : K — GU{oo} is called a valuation
if it satisfies the following conditions for all z,y € K.
(1) v(zy) = v(z) +v(y)
(2) v(z +y) > min{v(z),v(y)}
3) v(r)=c0c<=x=0

Note: The following statements follow from the definition of a valuation.
Let v and K be as above, Then
(1) v(1)=0
(2) v(z™t) = —v(x), for all x € K.

If we let K* denote the non-zero elements of K, then by (1) v defines a group
homomorphism K* — G. The image of this map is an ordered subgroup of G
called the value group of v.

Theorem 3. Let K and v be as above. Let R, = {z € K|v(xz) > 0} and
M, = {z € K|v(xz) > 0}. Then the following statements hold:

(1) R, is a ring, in fact a valuation ring.
(2) M, is an ideal of R,, in fact the maximal ideal of R,,.
(3) The set U = {x € K|v(z) = 0} is precisely the set of units of R,.

EXERCISE 2 - Prove Theorem 3.

Example 1: Fix p € Z a prime number. For a € Z let n,(a) be the highest
power of p that divides a. Let Q be the field of rational numbers and define
vy 1 Q = Z U {oo} via v,(a/b) = ny(a) — ny(b). Then n, is a valuation on Q.

EXERCISE 3 - Describe the ring R,,.



We see that any ring derived from a valuation on a field as above is a valu-
ation ring. Next we show the converse, namely every valuation ring is derived
from a valuation on its quotient field.

Theorem 4. Let R satisfy the equivalent conditions of Theorem 1. Then
R = R, for some valuation v on the quotient field of R.

Proof. Let K denote the quotient field of R. We first need an ordered group to
serve as the value group. Consider the set G of cyclic R-submodules of K (i.e.,
submodules of K of the form ¢R for some ¢ € K). Let x,y € K. We define a
(multiplicative) binary operation on this set on this set via (xR)* (yR) = zyR.
This makes GG into an abelian group with identity element R; the inverse of
R is x7'R). We put an ordering on G by taking the reverse ordering under
inclusion! Thus we define xR < yR if and only if yR C zR. Since R satisfies the
equivalent conditions of Theorem 3, this puts a total ordering on the elements
of G (any two cyclic submodules are comparable, since either z/y or y/z is
in R. Thus either (z/y)R C R or (y/z)R C R). It is not difficult to check
that this satisfies the axiom needed to make G an ordered group. That is if
TR > yR, zR > tR, then (xR)(zR) > (yR)(tR)). Since ordering is determined
by containment, this is easy. The valuation mapping v from K to G U {oc}
is the obvious one, namely v(z) = zR, for  # 0, while v(0) = oco. It is
straightforward to show that this mapping satisfies the three conditions. [

EXERCISE 5 - Show that R = R,,.

A dimension 2 example

Let k be any field and let K be the quotient field of k[z,y]. Let G = Z?
with the lexicographic ordering. We will define a valuation on K as follows.
First define v on the monomials of K by sending y'z? +— (4, j) (note z — (0,1),
the minimal positive element of GG). Extend this to all polynomials in x,y by
sending f — min{v(Z)} where Z runs through all monomials in the terms of
f (remember, the image of v is the ordered group ). Finally, we extend v to
all of K by defining v(f/g) = v(f) —v(g), for polynomials f and g. Then v is
a valuation on K. The ring R, is difficult to describe precisely. However, we
can say the following:

Theorem 5. The ring R,, above has exactly two non-zero prime ideals which
are:
(1) M, ={h = f/g € K : v(h) = v(f) —v(g) > (0,1)}. Furthermore
M, = (z); and
(2) P={h=f/g € R,:v(h) =v(f)—v(g) > (0,n), for all integers n}.
This ideal is infinitely generated.



Note (1,m) > (0,n) for any integers (positive or negative) m and n.

Proof. (1) Since (0,1) is the minimal positive element, M, is as described.
(Note, if G does not have a minimal positive element, for example if G = Q,
then M, is not principal.) To see that M, is generated by z, let h € M,,. Thus
v(h) > 0, and so v(h) > (0,1). Hence v(h/x) > 0. Hence h/z € R,. Thus
h = x(h/x) € (z). Since the reverse inclusion is clear, we have that M, = (z).
(2) First we show that P is a prime ideal. Suppose that f,g € R, and that
neither f nor g is in P. Then by definition, there exists integers n, m such
that v(f) < (0,n) and v(g) < (0,m). We may assume that n > m. Thus
v(fg) =v(f)+v(g) < (0,2n). Hence fg ¢ P, which proves that P is prime.
Before we show that P is not finitely generated, we make the observation
that if g € R, is in the ideal generated by the elements gy, ..., g,, then from
the definition of a valuation, v(g) > inf{v(g1),...v(g,)}. Now suppose that P
is generated by the elements {gi,...,g,}. Without loss of generality we may
assume that v(g) = inf{v(g1),...,v(gn)}. Since v(gy) > (0,n) all integers n,
we have that v(gi/z) > (0,n) for all integers n. Thus ¢;/x € P. However,
v(g1/x) < v(g1). Therefore, by our choice of g it is clear from our observation
that g1/z & (g1, ...,9,) - a contradiction. Thus P is infinitely generated. [

Clearly the ring R, above is not Noetherian. In fact one can show that a
valuation ring R is Noetherian if and only if the value group of R is Z. In
which case the ring is a local PID.



