
Valuation rings

Theorem 1. Let R be a commutative domain with quotient field K. Then
the following conditions on R are equivalent:

(1) For any q ∈ K either q ∈ R or q−1 ∈ R.
(2) Let a, b ∈ R be non-zero elements. Then either a|b or b|a (in R).
(3) The set of ideals of R are linearly ordered.

EXERCISE 1 - Prove Theorem 1.

Definition Any ring satisfying the above conditions is called a valuation
ring.

Theorem 2. A valuation ring is integrally closed.

Proof. Let V be a valuation ring. We will use condition 1 of Theorem 1. Let
K = Frac(V ) and let u ∈ K be integral over V . Then

un + an−1u
n−1 + . . .+ a0 = 0 ∗

for some ai ∈ V . We may as well assume that u ̸∈ V . Thus by condition 1 of
Theorem 1, we have that u−1 ∈ V and it is not a unit of V . Thus u−1 ∈ M
the unique maximal ideal of V . Multiply ∗ by u−n and we get

1 + an−1u
−1 + . . .+ a0u

−n = 0

Since u−1 ∈ M , by rearranging terms, we see that 1 ∈ M , a contradiction.
Thus u ∈ V . Done �

Finding valuation rings

Let G be an abelian group under addition which is totally ordered by ≤. It
is called an ordered group if the axiom

x ≥ y, z ≥ t ⇒ x+ z ≥ y + t

is satisfied. This axiom implies
(1) x > 0, y ≥ 0 ⇒ x+ y > 0 and
(2) x ≥ y ⇒ −y ≥ −x

Examples of ordered groups:

(1) Z,Q,R under addition with the usual ordering.
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(2) the product Zn of n copies of Z with lexicographic ordering, that is

(a1, a2, . . . , an) < (b1, b2, . . . , bn) ⇔

for some i, b1 = a1, b2 = a2, . . . , bi = ai and bi+1 > ai+1

(3) Let G1, G2, . . . , Gn be any set of ordered groups. Then using the lexi-
cographic ordering as above makes G1 ×G2 × · · · ×Gn into an ordered
group.

We make G ∪ {∞} into an ordered set by declaring ∞ to be bigger than
any element of G. We also make the convention that g + ∞ = ∞ for all
g ∈ G ∪ {∞}. The positive elements of G, are those g ∈ G, such that g > 0.

Definition. Let K be a field. A map υ : K → G∪{∞} is called a valuation
if it satisfies the following conditions for all x, y ∈ K.

(1) υ(xy) = υ(x) + υ(y)
(2) υ(x+ y) ≥ min{υ(x), υ(y)}
(3) υ(x) = ∞ ⇔ x = 0

Note: The following statements follow from the definition of a valuation.
Let υ and K be as above, Then

(1) υ(1) = 0
(2) v(x−1) = −v(x), for all x ∈ K.

If we let K∗ denote the non-zero elements of K, then by (1) υ defines a group
homomorphism K∗ → G. The image of this map is an ordered subgroup of G
called the value group of υ.

Theorem 3. Let K and υ be as above. Let Rυ = {x ∈ K|υ(x) ≥ 0} and
Mυ = {x ∈ K|υ(x) > 0}. Then the following statements hold:

(1) Rv is a ring, in fact a valuation ring.
(2) Mv is an ideal of Rv, in fact the maximal ideal of Rυ.
(3) The set U = {x ∈ K|υ(x) = 0} is precisely the set of units of Rv.

EXERCISE 2 - Prove Theorem 3.

Example 1: Fix p ∈ Z a prime number. For a ∈ Z let np(a) be the highest
power of p that divides a. Let Q be the field of rational numbers and define
υp : Q → Z ∪ {∞} via vp(a/b) = np(a)− np(b). Then np is a valuation on Q.

EXERCISE 3 - Describe the ring Rvp .



We see that any ring derived from a valuation on a field as above is a valu-
ation ring. Next we show the converse, namely every valuation ring is derived
from a valuation on its quotient field.

Theorem 4. Let R satisfy the equivalent conditions of Theorem 1. Then
R = Rυ for some valuation υ on the quotient field of R.

Proof. Let K denote the quotient field of R. We first need an ordered group to
serve as the value group. Consider the set G of cyclic R-submodules of K (i.e.,
submodules of K of the form qR for some q ∈ K). Let x, y ∈ K. We define a
(multiplicative) binary operation on this set on this set via (xR)∗ (yR) = xyR.
This makes G into an abelian group with identity element R; the inverse of
xR is x−1R). We put an ordering on G by taking the reverse ordering under
inclusion! Thus we define xR ≤ yR if and only if yR ⊆ xR. Since R satisfies the
equivalent conditions of Theorem 3, this puts a total ordering on the elements
of G (any two cyclic submodules are comparable, since either x/y or y/x is
in R. Thus either (x/y)R ⊆ R or (y/x)R ⊆ R). It is not difficult to check
that this satisfies the axiom needed to make G an ordered group. That is if
xR ≥ yR, zR ≥ tR, then (xR)(zR) ≥ (yR)(tR)). Since ordering is determined
by containment, this is easy. The valuation mapping υ from K to G ∪ {∞}
is the obvious one, namely υ(x) = xR, for x ̸= 0, while υ(0) = ∞. It is
straightforward to show that this mapping satisfies the three conditions. �

EXERCISE 5 - Show that R = Rυ.

A dimension 2 example

Let k be any field and let K be the quotient field of k[x, y]. Let G = Z2

with the lexicographic ordering. We will define a valuation on K as follows.
First define υ on the monomials of K by sending yixj 7→ (i, j) (note x 7→ (0, 1),
the minimal positive element of G). Extend this to all polynomials in x, y by
sending f 7→ min{υ(Z)} where Z runs through all monomials in the terms of
f (remember, the image of υ is the ordered group G). Finally, we extend υ to
all of K by defining υ(f/g) = υ(f)− υ(g), for polynomials f and g. Then υ is
a valuation on K. The ring Rυ is difficult to describe precisely. However, we
can say the following:

Theorem 5. The ring Rυ above has exactly two non-zero prime ideals which
are:

(1) Mυ = {h = f/g ∈ K : υ(h) = υ(f) − υ(g) ≥ (0, 1)}. Furthermore
Mυ = (x); and

(2) P = {h = f/g ∈ Rv : υ(h) = υ(f) − υ(g) ≥ (0, n), for all integers n}.
This ideal is infinitely generated.



Note (1,m) > (0, n) for any integers (positive or negative) m and n.

Proof. (1) Since (0, 1) is the minimal positive element, Mυ is as described.
(Note, if G does not have a minimal positive element, for example if G = Q,
then Mυ is not principal.) To see that Mυ is generated by x, let h ∈ Mυ. Thus
υ(h) > 0, and so υ(h) ≥ (0, 1). Hence υ(h/x) ≥ 0. Hence h/x ∈ Rυ. Thus
h = x(h/x) ∈ (x). Since the reverse inclusion is clear, we have that Mυ = (x).

(2) First we show that P is a prime ideal. Suppose that f, g ∈ Rυ and that
neither f nor g is in P . Then by definition, there exists integers n,m such
that υ(f) < (0, n) and υ(g) < (0,m). We may assume that n ≥ m. Thus
υ(fg) = υ(f) + υ(g) < (0, 2n). Hence fg ̸∈ P , which proves that P is prime.

Before we show that P is not finitely generated, we make the observation
that if g ∈ Rv is in the ideal generated by the elements g1, . . . , gn, then from
the definition of a valuation, υ(g) ≥ inf{υ(g1), . . . υ(gn)}. Now suppose that P
is generated by the elements {g1, . . . , gn}. Without loss of generality we may
assume that υ(g1) = inf{υ(g1), . . . , υ(gn)}. Since υ(g1) > (0, n) all integers n,
we have that υ(g1/x) > (0, n) for all integers n. Thus g1/x ∈ P . However,
υ(g1/x) < υ(g1). Therefore, by our choice of g1 it is clear from our observation
that g1/x ̸∈ (g1, . . . , gn) - a contradiction. Thus P is infinitely generated. �

Clearly the ring Rυ above is not Noetherian. In fact one can show that a
valuation ring R is Noetherian if and only if the value group of R is Z. In
which case the ring is a local PID.


