
Math 724 Solutions to HW # 5 Fall 2014

1. (2.3, #2) Let K ⊂ L be fields. Let T be a ring having quotient field T and let
R = T ∩K. Prove that if T is integrally closed, then R is integrally closed.

Proof: Note that the quotient field of R, call it H, is contained in K (it may
not equal K). Let q ∈ H be integral over R. Thus q satisfies a monic polynomial
with coefficients in R. Since R ⊂ T , q is integral over T . But T is integrally
closed, so q ∈ T . Since it is in K we conclude that q ∈ R. Thus R is integrally
closed.

2. (2.3, #3) Let R, T,K and L be as in the previous problem. If R is a valuation
domain with maximal ideal M , prove that M survives in T .

Proof: Assume false and say that MT = T . Then there exists nonzero elements
m1,m2, . . . ,ms ∈ M and t1, t2, . . . , ts ∈ T such that

m1t1 +m2t2 + . . .+msts = 1.

However, since R is a valuation domain, one of the mi’s divides all the others.
Without loss of generality, assume that m1|mj for j = 2, 3, . . . , s. Thus m1 can
be factored out of the above equation (in T ). From which we obtain

m1(t
′
1 + t′2 + . . .+ t′s) = 1.

In particular m1 has an inverse in T . But m1 ∈ R = T ∩K. Since T contains
both m1 and its inverse, and since K is a field that contains m1, K also contains
m−1

1 . Hence m−1
1 ∈ R, which contradicts the fact that m1 ∈ M .

3. (2.3 #8) Let R be an integral domain, Q a prime ideal of R[x] that contracts to
0. Prove that R[x]Q is a DVR.

Proof:

Since Q contracts to 0, all the non-zero elements of R are in R[x] \ Q. So let
S = R\{0}. Then S is a multiplicatively closed subset of R[x] which is contained
in R[x] \Q. Thus R[x]Q = (R[x]S)Q′ , where Q′ is the image of Q in R[x]S. But
R[x]S = K[x] is a PID. Hence either Q′ = 0, in which case R[x]Q = KQ′ is a
field, or K[x]Q′ is a local PID, which is a DVR.



4. (2.3 #11) Prove that if every prime ideal of the domain R is invertible, then R
is Dedekind.

Proof: Since invertible ideals are finitely generated, we can conclude that all
the prime ideals are finitely generated. By an earlier Theorem, we can conclude
that all ideals are finitely generated, i.e., R is Noetherian. Let I be an arbitrary
ideal, we have to show that I is invertible, namely that II−1 = R.

First we will show that I can be written as a product of prime ideals. We know
that I ⊂ P where P is a prime ideal. We can assume that I ̸= P , otherwise we
are done. We can write I = (IP−1)P . If IP−1 is prime, then we have proved
the claim. Also note that I ⊂ IP−1, since R ⊂ P−1. Moreover the containment
is strict by what we did in class. So we can then rewrite IP−1 as a product of a
prime ideal and an ideal that is strictly larger than itself. Since R is Noetherian,
this process must stop. Thus the claim is proved and I = P1P2 · · ·Pn, each Pi

prime.

Next we show that if A and B are ideals of R, then A−1B−1 ⊆ (AB)−1. An
arbitrary element of A−1B−1 has the form

∑
xiyi, xi ∈ A−1 and yi ∈ B−1.

So if x ∈ A−1 and y ∈ B−1, it suffices to show that xy ∈ (AB)−1. Then
ABxy = (Ax)(Ay) ⊂ RR = R. So it follows that A−1B−1 ⊆ (AB)−1. Now if
I = P1P2 · · ·Pn, then I−1 ⊇ (P1)

−1(P2)
−1 · · · (Pn)

−1 by what we just said. Hence
II−1 = P1 · · ·PnI

−1 ⊇ [P1 · · ·Pn](P1)
−1(P2)

−1 · · · (Pn)
−1 = P1(P1)

−1 · · ·Pn(Pn)
−1 =

R. Thus II−1 = R, so I is invertible and we are done.


