
Math 724 Solutions to HW # 4 Fall 2014

1. (1.6, #6) Let R be an integrally closed domain with integral closure T and S a multi-
plicatively closed set in R. Prove that the integral closure of RS is TS .

Proof: Let R, T and S be as given. Let t/s ∈ TS , (so t ∈ T and s ∈ S). Then there
exists ai ∈ R such that
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Clearly each ai
sn−i ∈ RS . Thus t/s is integral over RS . Since t/s was arbitrary, we have

that TS is integral over RS . Moreover by Theorem 51 TS is integrally closed. hence it
is the integral closure of RS .

2. (1.6 #27) Let R be an integral domain with quotient field K. Suppose that every ring
between R and K is integrally closed. Prove that R is Prüfer.

Proof: To show that R is Prüfer it suffices to show that RM is a valuation ring for each
maximal ideal M . Also note that every overring of RM is also an overring of R, and so
integrally closed. Hence after localizing we may assume without loss of generality that
R is also local. Let u ∈ K. We must show that either u or u−1 is in R. By assumption
R[u2] is integrally closed and clearly u is integral over R[u2]. Thus u ∈ R[u2]. Hence
we have that u is a polynomial over R in u2, that is

u = an(u
2)n + an−1(u

2)n−1 + · · ·+ a0

where ai ∈ R. On the RHS non of the exponents of u is a 1. Thus by bringing over u
to the other side, we see that u satisfies a polynomial over R with one coefficient equal
to −1, which is clearly a unit of R. Thus we may apply Theorem 67 which states that
either u or u−1 is in R. Since u was an arbitrary element of K, we can conclude that
R is a valuation ring, which finishes the proof.



3. (1.6 #35) Let R ⊆ T be domains with T algebraic over R and R integrally closed in
T . Prove that T is contained in Frac(R).

Proof: Let R and T be as given. Let u ∈ T , we have to show that u = a/b or
equivalently bu = a for some a, b ∈ R. By assumption u is the root of some polynomial
over R (just not monic). Say

anu
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n−1 + · · ·+ a1u+ a0 = 0

where ai ∈ R. Multiply this equation by an−1
n to get
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Hence anu ∈ T is in fact integral over R. But R is integrally closed in T . Thus
anu = b ∈ R, which proves the result.

4. (Other hand-in) Let R ⊂ T where T is integral over R. Show

(a) If u ∈ R is a unit of T , then u is a unit of R.

Proof: Suppose that u is not a unit of R. Then u is contained in a maximal ideal
P of R. Since T is integral over R, we know that LO is satisfied. Thus there is
a prime ideal Q of T such that Q ∩ R = P . Hence u ∈ Q. But this is impossible
since u, as a unit of T , can not be in any ideal of T .

(b) The Jacobson radical of R is the contraction of the Jacobson radical of T .

Proof: Let M be any maximal ideal of R. By LO there exists a prime ideal Q
of T such that Q ∩R = M . We also know by a Theorem in class that since M is
maximal in R, Q must be maximal in T . Thus every maximal ideal of R is the
contraction of a maximal ideal of T . By the same Theorem, every maximal ideal
of T contracts to a maximal ideal of R. Hence it is clear that the Jacobson radical
of R is the contraction of the Jacobson radical of T .


