
Math 724 Solutions to HW # 3 Fall 2014

1. (1.4, #6) Let R be a ring with no non-zero nilpotent elements, and let P be a minimal
prime ideal in R. Prove that RP is a field.

Proof: To show that a ring is a field it suffices to show that the ring has a unique
prime ideal and that it has no non-zero nilpotent elements. The reason that this is
true is that since it has a unique prime ideal M (which is necessarily a maximal ideal),
that ideal is the radical of the ring and so it consists of nilpotent elements. But by the
second assumption, we then have M = 0. Hence 0 is a maximal ideal.

We know that there is a bijection between prime ideals of RP and prime ideals of R
contained in P . Thus PRP is the unique prime ideal of RP . Moreover I claim that RP

has no non-zero nilpotent elements. For suppose that 0 ̸= a ∈ RP is nilpotent. Then
an = 0 some n > 1. By the definition of localization, there exists β, γ ∈ R such that
in RP we have a = b/c, where b, c denote the images of β, γ respectively in RP . Thus
bn = 0 and this means that back in R there exists s ∈ R \ P such that βns = 0. Thus
(βs)n = 0 and so by our assumption βs = 0. Hence b = 0 (in RP ) and so a = 0. This
proves the claim and so by the first statement it also proves the result.

2. (1.5 #1) Let Q be a prime ideal of R[x] contracting to P in R. Prove that Q is a
G-ideal if and only if P is a G-ideal of R and Q properly contains PR[x].

Proof: (⇒) Suppose that Q is a G-ideal. Then there exists a maximal ideal M of
R[x][y] = R[x, y] that contracts to Q (Theorem 27). Thus M ∩ R = P . By the
generalization of Theorem 27 that we showed in an earlier homework, P is a G-ideal.
Clearly PR[x] ⊆ Q. If they are equal, then R/PR[x] ∼= (R/P )[x] is a G-domain. But
this contradicts Theorem 21 which states that if you adjoin an indeterminate to any
ring, what you get is NOT a G-domain.

(⇐) Let P be a G-ideal of R and assume that Q properly contains PR[x]. To show
that Q is a G-ideal, it suffices to show that there exists a u ∈ R[x] \Q such that u ∈ Q′

for every prime ideal Q′ of R[x] that properly contains Q (Theorem 19). Since P is a
G-ideal, there exists u ∈ R \ P such that u ∈ P ′ for prime ideal P ′ of R that properly
contains P . We have the chain PR[x] ⊂ Q ⊂ Q′ of three distinct prime ideals of R[x].
Notice that Q′ cannot contract to P since there cannot be a chain of three primes of
R[x] that contract to the same prime of R (Theorem 37). Hence Q′∩R strictly contains
P and so u ∈ Q′ ∩R ⊂ Q′. Thus u is in every prime ideal of R[x] that strictly contains
Q.



3. (1) Let I be a decomposable ideal of R and let P be a maximal element of the set
{(I : x)} for x ̸∈ I. Show that P is prime.

Proof: Let P = (I : y) be maximal in the set above. Suppose that ab ∈ P , but b ̸∈ P .
We must show that a ∈ P . Since b ̸∈ P , by ̸∈ I. Additionally, as Py ⊆ I, we must
have Pby ⊆ I. In other words P ⊆ (I : by). But P is a maximal element of this
set. Hence P = (I : by). On the other hand by assumption aby ∈ I (ab ∈ P ). Thus
a ∈ (I : by) = P .

4. (2) Let I be an ideal of R and let S = 1 + I. First show that S is a multiplicatively
closed set, and then show that IS is contained in the Jacobson radical of RS (J(RS)).

Proof: It is straightforward to show that S is a multiplicatively closed set. For the
second part note that IS consists of all elements of RS whose numerator is an element
of the (image) of I. Since the image of I generates the ideal IS , it suffices to show
that this image is contained in J(RS). Recall that in any ring, an element x is in the
Jacobson radical iff 1− rx is a unit of the ring for all r in the ring. Back to our case.
Let i ∈ I and r ∈ r and s ∈ S. We must show that 1 + ( i1)(

r
s) =

s+ir
s is a unit of RS .

But s = 1+ t for some t ∈ I. Hence the numerator of the element is s+ ir = 1+ t+ ir.
Since t+ ir ∈ I, it follows that the numerator is an element of S and whence a unit of
RS . Thus the whole fraction is a unit and we are done.


