
Math 724 Solutions to HW #1 Fall 2014

(1) (1.1 5a) Let P = (p) be a principal prime ideal and J = ∩P n. If Q is a prime
ideal properly contained in P , prove that Q ⊆ J .

Proof: The hint essentially gives this one away. Let q ∈ Q, we have to show
that q ∈ J . To do that we have to show that for all n > 0, pn divides q. Since
q ∈ P , we know that q = pq1. Since p ̸∈ Q (Q is strictly smaller than P ), we
conclude that q1 ∈ Q. Hence q1 ∈ P , so q1 = pq2. So p2 divides q. Similarly
q2 ∈ Q, so q2 = pq3. Thus p

3 divides q, etc.

(2) (1.1 5b) Show that if p is a non-zero divisor, then J = pJ .

Proof: Let j ∈ J . We want to show that j ∈ pJ . In other words, show that
j = pj′ for some j′ ∈ J . Since j ∈ P (afterall J ⊆ P ), we can write j = px
some x ∈ R. For any n > 0, j ∈ P n+1. Hence pn+1|px. Thus for some k ∈ R,
pn+1k = px. Then we have p(pnk − x) = 0. Since p is not a zero-divisor, we
have pnk−x = 0 or pnk = x. In other words, for all n > 0, pn divides x. Hence
x ∈ J (or x is our j′) and we are done.

(3) (1.1)(c) (Not a hand-in) With p as above, show that J is a prime ideal.

Proof: Suppose ab ∈ J , yet neither a ∈ J nor b ∈ J . This last statement
means that some power of p does not divide a nor b. Then we can write
a = pma1 and b = pab1 where a1 and b1 are not in P . But ab ∈ P n+m+1. Hence
pn+m+1 divides pnpma1b1. This means that p divides a1b1 - a contradiction.

(4) Let (p) and (q) be nonzero principal prime ideals of a ring R. Suppose that
(p) ⊆ (q) and that p is a nonzero divisor. Prove that (p) = (q).

Proof: Assume that the containment is strict. The hypothesis assures that
p ∈ (q) or p = aq some a ∈ R. Since p is a prime element (it generates a prime
ideal), we have p | a or p | q. But we are assuming that q ̸∈ (p). Thus a = cp for
some c ∈ R. Hence p = aq = cpq. Since p is not a zero divisor, we can cancel
the p on both sides to get 1 = cq. Hence q is a unit of R, which contradicts the
fact that (q) is a prime ideal (prime ideals are proper ideals).
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(5) ∗ Show that for an arbitrary ring A, x ∈ J(A) iff 1 − xy is a unit of A for all
y ∈ A.

Proof: If r is a non-unit of a ring, it is contained in the ideal rR. Since every
ideal is contained in a maximal ideal, we have that every non-unit is contained
in some maximal ideal.
If x ∈ J(A), then xy ∈ J(A) for every y ∈ A. Thus xy is in every maximal

ideal of A. Thus 1− xy is not in any maximal ideal of A (if 1− xy were in say
M , then also xy ∈ M , so 1 ∈ M - an impossibility). Since 1− xy is not in any
maximal ideal, it is not in any (proper) ideal. Hence it is a unit.
Conversely, suppose that 1 − xy is a unit for all y ∈ A. In addition, let M

be a maximal ideal such that x ̸∈ M . We will arrive at a contradiction. Since
M is a maximal ideal, x is a unit modulo M (A/M is a field after all). Hence
there exists y ∈ A such that xy = 1 mod M or 1− xy ∈ M . But we assumed
that 1− xy is a unit and we have the contradiction.

(6) ∗ Show that a ring is quasi-local if and only if the set of non-units of A is an
ideal.

Proof: If r is a non-unit of a ring, it is contained in the ideal rRA. Since
every ideal is contained in a maximal ideal, we have that every non-unit is
contained in some maximal ideal.
If A has a unique maximal ideal M , then all non-units are contained in M

and clearly everything in M is a non-unit. Thus the set of non-units is precisely
M .
Conversely, suppose that the set of non-units is an ideal M . This ideal is

maximal, because if you add anything toM , by definition you are adding a unit,
so the ideal blows up to R. Furthermore, if there is another maximal ideal N ,
then there exists y ∈ N \M . But again y must be a unit - contradiction with
the fact that it is in an ideal.

(7) ∗ Prove that the ring Z(3) = {a/b ∈ Q : 3 - b} is a local ring.

Proof: We know that since Z is a PID, so is R := Z(3). Hence it is Noether-
ian. We show that the set of non-units is an ideal of the ring. Let a/b, c/d be
non-units, where the fractions are reduced. This happens iff 3 divides both a
and c (otherwise b/a, d/c are in R). We also know that 3 does not divide either
b or d. Clearly if r ∈ R, then 3 still divides the numerator of r · (a/b), even
after reducing, since we can assume that 3 does not divide the denominator of
r, and 3 is a prime number.
Finally a/b + c/d = (ad + bc)/bd. Clearly 3 divides ad + bc, yet it does not

divide bd. Thus there sum is a non-unit. Hence the set of non-units is an ideal.


