Homework (Fall 2014) # 3 Due Wednesday, Oct. 8 Problems with a * are for Hand-in

From Kaplansky:

Sec. 1.4 - 2, 3, 6^* (This proof should be short)

Sec. 1.5 - 1* (This one is a bit tricky, but short if done right)

- * 1. Let I be a decomposable ideal in a ring R and let P be a maximal element of the set (I:x), where $x \in R$ and $x \notin I$. Show that P is a prime ideal and hence is an associated prime of I. (Some questions to ponder: Why can we not use Zorn's Lemma to show that there are always maximal elements in the set of ideals of the form (I:x)? Why does Noetherian come in handy at this point?)
- * 2. Let I be an ideal of R, and let S = 1 + I (i.e., $S = \{1 + a | a \in I\}$). First show that S is a multiplicatively closed set and then show that I_S is contained in the Jacobson radical of R_S .
 - 3. Suppose that for each prime ideal P of R, R_P has no non-zero nilpotent elements. Show that R has no non-zero nilpotent elements. If each R_P is an integral domain, is R necessarily an integral domain? (You don't have to answer this last question, just think about it.)
 - 4. If $\sqrt{I} = I$, show that I has no embedded primes.
 - 5. In the polynomial ring $\mathbb{Z}[x]$, let I = (4, x). Show that I is M-primary, where M = (2, x). Furthermore, show that I is not a power of M.
 - 6. Let R = K[x, y, z] where K is a field. Let $P_1 = (x, y), P_2 = (y, z), M = (x, y, z)$; P_1 and P_2 are prime ideals and M is a maximal ideal (you don't have to prove this). Let $I = P_1P_2$, then $I = P_1 \cap P_2 \cap M^2$ (you don't have to prove this). Show that this is a reduced primary decomposition of I.
 - 7. For any prime ideal P of R, let $\tau_P(R)$ denote the kernel of the map $R \to R_P$. Prove that
 - (i) $\tau_P(R) \subseteq P$.
 - (ii) $\sqrt{\tau_P(R)} = P \Leftrightarrow P$ is a minimal prime of R.