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Primary Decomposition

The decomposition of an ideal into primary ideals is a traditional pillar of ideal
theory. It provides the algebraic foundation for decomposing an algebraic
variety into its irreducible components-although it is only fair to point out
that the algebraic picture is more complicated than naive geometry would
suggest. From another point of view primary decomposition provides a gen-
eralization of the factorization of an integer as a product of prime-powers. In
the modern treatment, with its emphasis on localization, primary decomposition
is no longer such a central tool in the theory. It is still, however, of interest in
itself and in this chapter we establish the classical uniqueness theorems.

The prototypes of commutative rings are z and the ring of polynomials
kfxr,..., x,] where k is a field; both these areunique factorization domains.
This is not true of arbitrary commutative rings, even if they are integral domains
(the classical example is the ring Z[\/=1, in which the element 6 has two
essentially distinct factorizations, 2.3 and it + r/-S;(l - /=)). However,
there is a generalized form of "unique factorization" of ideals (not of elements)
in a wide class of rings (the Noetherian rings).

A prime ideal in a ring A is in some sense a generalization of a prime num-
ber. The corresponding generalization of a power of a prime number is a
primary ideal. An ideal q in a ring A is primary if q * A and. if

xy€q => eitherxeqory" eqforsomen > 0.

In other words,

q is primary o Alq * 0 and every zero-divisor in l/q is nilpotent.

clearly every prime ideal is primary. Also the contraction of a primary
ideal is primary, for ifl A --> B and if q is a primary ideal in _8, then Alq" js
isomorphic to a subring of Blq.

Proposition 4,1. Let q be a primary ideal in a ring A. Then r(q) is the smallest
prime ideal containing q.

Proof. By (1.8) it-is enough to show that p : r(q) is prime. Let xy e r(q), then
(xy)-eq for'some m) 0, and therefore either x'€g or v^n€q for some
n > 0; i.e., either x e r(q) or y e r(q). I
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PRIMARYDECOMPOSITION 5I

If p : r(q), then q is said to be p-primary'

Examples. 1) The primary ideals in Z are (0) and (p")' where p is prime' For

these ire the only ideals in Z with prime radical, and it is immediately checked

that they are PrimarY.

2) Let, A : k[x,./], q : (x, y"'). Then Alq =- klyllj\, in which the zero-

divisors are all the muliiples of y, hence are nilpotent. Hence q is primary, and

its radical p is (x, /). W; have p2 c q c F (strict inclusions), so that a primary

ideal is not necessarily a prime-power.

3) Conversely, a prime power p" is not necessaritry primary' although its

radical is the prime idial p. For example,let A : klx, y, zll@y - z2) andlet

i,!,2 denote the images of x,y,z respectively in A' Then p : (x'Z) is prime

(iince,S.lp = 
klyl, an integral domain); we have *l : 22 e p2 but xf F'?and

y # r(p') : p; hence p2 is not primary. However, there is the following result:

Proposition 4.2. If r(a) rs maxima!, then o is primary' In particular' the

powers of a maximal ideal m are m'primary'

Proof,Letr(a):m'TheimageofminAlaisthenilradica|ofAla'henceAla
t u, ooty on. pii-. ideal, by (1.8). Hence every element of Ala is either a unit or

nilpotent, and so every zero-divisor in l/c is nilpotent' r

we are going to study presentations of an ideal as an intersection of primary

ideals. First, a couPle of lemmas:

Lemma 4.3. If q, (1 ( i ( n) arep'primary,thenq : Oi=t qtisp-primary'

Proof. r(q): r(Oi=' q) : O r(qi) : p' Let xy e q, y + q' Then for some i

*, huut xl e 4t atd y $ q1, hence x € p' since qt is primary' r

Lemma 4.4. Let q be a p'primary ideal, x an element of A' Then

i) if xeqthen(q:x): (1);

ii) if x #q then (a:x);s p'primary' and therefore r(q:x) : F;

ili) if x$P then (a:x; : o.

Proof. i) and iii) follow immediately from the definitions'

ii): if ye (q;x) then xyeq, hence (as x$ q) we have ye p' Hence q s
(q:x) g F;taking radicals, we get r(q:x) : p' Let yze(o:x) with.vdp;then

ilz e q. hence xz e q, hence z e (q : x)' r

Aprimary decomposition of an ideai o in I is an expression of rr as a finite

intersection of primary ideals' say

o: A q,. (1)

(In general such a primary decomposition need not exist; in this chapter we shall

iestiict our attention to ideals which have a primary decomposition.) If more-
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over (i) the r(q1) are all distinct, and (ii) we have Qr * Oi+,ai(l ( i < n) the
primary decomposition (1) is said to be minimal (or irredundant, or reduced, or
normal,. . .). By (4.3) we can achieve (i) and then we can omit any superfluous
terms to achieve (ii); thus any primary decomposition can be reduced to a
minimal one. We shall say that o is decomposable if it has a primary decomposi-
tion.

Theorem 4.5. (lst uniqueness theorem). Let o be a decomposable ideal and
let a: Oi=r Qr be a minimal primary decomposition of a. Let pi: r(qi)
(1 < i 4 n). Then the p, are precisely the prime ideals which occur in the set
of ideals r(a:x) (x e A), and hence are independent of the particular de-
composition of a.

Proof. For any xe,4 we have (o:x) : (O q,:") : O(q,:x), hence r(o:x) :
fli=t r(qi:x) : ('lxeqr pt by (4.4). Suppose r(o:x) is prime; then by (1.11) we
have r(c: x) : p, for some j. Hence every prime ideal of the form r(o: x) is one of
the p7. Conversely, for each i there exists x, f qu xr€ Or+, qr, since the de-
composition is minimal; and we have r(c:x,) : p,. r
Remarks. l) The above proof, coupled with the last part of (4.4), shows that
for each i there exists x, in I such that (c:x,) is p,-primary.

2) Considering Ala as an l-module, (4.5) is equivalent to saying that the pi
are precisely the prime ideals which occur as radicals of annihilators of elements
of Ala.

Example. Leta : (x',xy)inA : k[x,y].Theno : Fr oplwhereFr : (x),
Fz: (x,y). The ideal pl is primary by @.2). So the prime ideals are p!,p2.
In this example Fr c Fzi we have r(c) : Fr n Fz : pr, but s is not a primary
ideal.

The prime ideals p1 in (4.5) are said to belong to o, or to be associated with a.
The ideal o is primary if and only if it has only one associated prime ideal. The
minimal elements of the set {Fr, . . ., po} are called the minimal or isolated prime
ideals belonging to c. The others are called embedded prime ideals. In the
example above, Fz : (x,y) is embedded.

Proposition 4.6. Let a be s decomposable ideal. Then any prime ideal
p 

" 
s contains a minimal prime ideql belonging to a, dnd thus the minimal

prime ideals of a are precisely the minimal elements in the set of all prime
ideals containing a.

Proof. If p=s:f)i=.q,, then p:r(p)=Or(q):OFr. Hence by
(1.11) we have p = p, for some i; hence p contains a minimal prime ideal of o. r
Remarks. l) The names isolated and embedded come from geometry. Thus if
A : klxt..., xnfwhere k is a field, the ideal o gives rise to a variety X c k"
(see Chapter 1, Exercise 25). The minimal primes pi correspond to the irre-
ducible components of x, and the embedded primes correspond to subvarieties
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of these, i.e., varieties embedded in the irreducible components' Thus in the

example before (4.6) the variety defined by o is the line x : 0, and the embedded

ideal p, : (x, y) corresponds to the origin (0, 0)'

2) It is not true that all the primary components are independent of the

decomposition. For example (x",xl): (x) n (x,y)': (") n (x2,7) are two

distinct minimal primary decompositions. However, there are some uniqueness

properties : see (4.10).

Proposition 4.7. Let s be a decomposable ideal, let o: Ol=t qt be a
minimal primary decomposition, and let r(qt) : pr' Then

.0 p, : {xeA:(o:x) # o}.

fut particular, if the ,rr", ,Oro, is decomposable, the set D of zero-diuisors of A

is the union of the prime ideals belonging to O.

Proof. lf c is decomposable, then 0 is decomposable in Af a: namely 0 : O qt

wheie q, is the image of q, in Af a, and is primary. Hence it is enough to prove the

last statement of (4.7). By (1.15) we have D : [J,+ o r(0: x) ; from the proof of
(4.5), we have r(0:x) : )xea1 Ft 9 Ft for some 7, hence D = UT=tF, But

alsofrom(4.5)eachpiisof theformr(0:x)forsome xeA,hence U pt s D' I

Thus (the zero ideal being decomposable)
D : set of zero-divisors

: U of all Prime ideals belonging to 0;

!t : set of nilPotent elements
: O of all minimal primes belonging to 0.

Next we investigate the behavior of primary ideals under localization.

Proposition 4.8, Let s be a multiplicatiuely closed subset of A, and let q

be a P-primdrY ideal.

i) If S^P + @,then S-1q: S-rA.

ii) rs n F : @, then s-1ct r.l s-tp-primary and its contraction in A is q.

Hence primary ideals correspond to primary ideals in the correspondence

(3.1I) between ideals in S-rA and contracted ideals in A'
proof. i) If se sn p, then sne sn q for some n > 0; hence s-1q contains

s"/1. which is a unit in S -',4.
ii) If,Sn F : 6,thensesandase qimplyae q,hence Q'" : Qby(3'11)'

Also from (3.11) we have r(q') : r(s - 19) : 
's 

- tr(q) : 
's 

- 1p' The veriication

that S-1q is primary is straightforward. Finally, the contraction of a primary

ideal is primary. t

For any ideal s and any multiplicatively closed subset S in l, the contraction

in .4 of the ideal S - 1o is denoted by S(o).

)
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Proposition 4,9. Let S be a multiplicatiuely closed subset of A and let o be a
decomposable ideal. Let o : Oi= r ql be a minimal primary decomposition of
a. Let pi : r(qi) and suppose the qrnumbered so that S meets F^*t...,Fn
but not Fr, . . ,, p^. Then

S-to S -'q', S(a)

and these are minimal primary decompositions.

Proof. S-ta: Oi=, S-'q, by (3.11) : Ol!, S-'q, by (4.8), and ,9-1qi is
S-tp,-primary for i:1,...,ffi. Since the p1 are distinct, so are the S-1p,
(1 < t ( ln), hence we have a minimal primary decomposition. Contracting
both sides, we get

s(q) : (S -'s;" : A ft -.q,)" : ,A q,

by (4.8) again. r
A set ) of prime ideals belonging to o is said to be isolated if it satisfies the

following condition: if p'is a prime ideal belonging to o and p' c p for some
p e X, then .F' e X.

Let X be an isolated set of prime ideals belonging to o, and let S : A -
[_Jp." F. Then S is multiplicatively closed and, for any prime ideal p' belonging
to c. we have

p'eX +.p'^rS: Ai

F'€) * o'+ JJ F(by(l.ll)) * p'^s + s.

Hence, from (4.9), we deduce

Theorem 4.10. (2nd uniqueness theorem). Let a be a decomposable ideal, let
o : Ol=, q1 be a minimal primary decomposition of a, and let {F,., . . ., Fn,}
be an isolated set of prime ideals of a. Then Qr, A. . .n q," rs independent of
the decomposition.

In particular:

Corollary 4,11. The isolated primary components (i.e., the primary com-
ponents q, corresponding to minimal prime ideals p1) are uniquely determined
by s.

Praof of (4.10). We have Qr, 4...n q,n : S(a) where S: A - Fr, U...U Fr.,
hence depends only on c (since the pi depend only on o). I
Remark. On the other hand, the embedded primary components are in general
not uniquely determined by o. If I is a Noetherian ring, there are in fact
infinitely many choices for each embedded component (see chapter 8, Exercise 1).

m
:OQt,

l=l
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Noetherian Rings

We recall that a ring I is said to be Noetherian if it satisfies the following three
equivalent conditions :

1) Every non-empty set of ideals in ,4 has a maximal element.

2) Every ascending chain of ideals in I is stationary.

3) Every ideal in I is finitely generated.

(The equivatence of these conditions was proved in (6.1) and (6.1.)
Noetherian rings are by far the most important class of rings in commutative

algebra: we have seen some examples already in Chapter 6. In this chapter we
shall first show that Noetherian rings reproduce themselves under various
familiar operations-in particular we prove the famous basis theorem of Hilbert.
We then proceed to make a number of important deductions from the
Noetherian condition, including the existence of primary decompositions.

Proposition 7.1. If A is Noetherian and $ is a homomorphism of A onto a
ring B, then B is Noetherian.

Proof. This follows from (6.6), since -B = Af a, where o : Ker (d). r
Proposition 7.2. Let A be a subring of B; suppose that A is Noetherian and
that B is finitely generated as an A-module. Then B is Noetherian (as a ring).

Proof. By (6.5) B is Noetherian as an ,4-module, hence also as a ,B-module. r
Example. B : Z[il, the ring of Gaussian integers. By (].2) B is Noetherian.
More generally, the ring of integers in any algebraic number field is Noetherian.

Proposition 7.3. If A is Noetherian and S is any multiplicatiuely closed
subset of A, then S-1A is Noetherian.

Proof. By (3.1 l_-D and (1.17-iii) the ideals of S- 1l are in one-to-one order-
preserving correspondence with the contracted ideals of l, hence satisfy the max-
imal condition. (Alternative proof : if o is any ideal of A, then o has a finite set

of generatorsl s3! x1' . . ., xn, and it is clear that S- 1o is generated by xrf l, . . . ,
x"ll.) r

Corollary 7.4. If A is Noetherian and p is a prime ideal of A, then Ap is
Noetherian, I

80
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Theorem 7.5. (Hilbert's Basis Theorem). If A is Noetherian, then the

polynomial ring Alxl is Noetherian.

Proof. Let o be an ideal in l[x]. The leading coefficients of the polynomials in

o form an ideal I in A. Since I is Noetherian, I is finitely generated, say by

ar,..., an. For eaoh i : 1,. .., n there is a polynomial f, e A[x] of the form

f, - drx', * (lower terms). Let r: max!=1r;' The fr generate an ideal

o'c oinAfx}
Letf : ax* * (lower terms) be any element of a; we have a e I' Lf m 2 r,

writea:2T=rurar,whereure A; then/ - Zurfr*^-" is in o and has degree

< m. Proceeding in this way, we can go on subtracting elements of a' ftom f
until we get a polynomial g, say, of degree < r; that is, we have f : g * h,

where h e q'.

Let M be the r4-module generated by 1,x,. .,x'-t; then what we have

proved is that a : (o A M) + q'. Now M is a finitely generated l-module,
hence is Noetherian by (6.5), hence o a M is finitely generated (as an l-module)
by (6.2). Ifgr, . . ., gmgenerate s A M it is clear that thel and the 8j generate o'

Hence o is finitely generated and so l[x] is Noetherian. t
Remark. It is also true that,4 Noetherian => A[fxll Noetherian (l[[x]l being

the ring of formal power series in x with coefficients in l). The proof runs

almost parallel to that of (7.5) except that one starts with the terms of lowest

degree in the power series belonging to o. See also (10.27).

Corollary 7.6. If A is Noetherian so is Afx1, . ' ., xnf.

Proof. By induction on n from (7.5)' I
Corollary 7.7. Let B be a finitely-generated A-algebra. If A is Noetherian,

then so is B.
In particular) euery finitely-generated ring, and euery fnitely generated

algebra ouer a field, is Noetherian.

Proof. B is a homomorphic image of a polynomial ring Alxr, .' .' xn], which is

Noetherian by (7.6). r
Proposition 7.8. Let A c B c C be rings. Suppose thdt A is Noetherian,

that C is fnitely generated as an A-algebra und that C is either (i) fnitely
generated as a B-modute or (ii) integral ouer B. Then B is finitely generated

as an A-algebra.

Proof. ltfollows from (5.1) and (5.2) that the conditions (i) and (ii) are equiva-

lent in this situation. So we may concentrate on (i).

Let x1, . . . , x^generate C as an A-algebra, and let lt . . . , y' generate C as a

B-module. Then there exist expressions of the form

xi : Zbriyt (b,1e B)
I

lJr : 2bruYr (bvk e B)'

(l)

I

Q)
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Let Bo be the algebra generated over A by the b, and the bi,p. Since I is
Noetherian, so is -Bo by (7.7),and A ,= Bo c B.

Any element of C is a polynomial in the x, with coefficients in L Sub-
stituting (1) and making repeated use of (2) shows that each element of c is a
linear combination of the y, with coefficients in Bo, and hence C is finitely
generated as a .Bo-module. Since Bo is Noetherian, and B is a submodule of C,
it follows (by (6.5) and (6.2)) that B is finitely generated as a -Bo-modu1e. Since
Bo is finitely generated as an A-algebra, it follows that B is finitely-generated as
an l-algebra. r

Proposition 7.9. Let k be afeld, E afnitely generated k-algebra. IJ'E is a
feld then it is a finite algebraic extension of k.

Proof. Let E: klxt..",rn]. If E is not algebraic over k then we can re-
number the x1 so that x1, . ., -r" are algebraically independent over k, where
r > l, and each ofx,a1, .,r, is algebraic over the field ,F: k(xr,...,x,).
Hence E is a finite algebraic extension of F and therefore finitely generated as an
F-module. Applying (7.8) to k c- F c E, it follows that f is a finitely generated
k-algebra, say I' : kLyr, .. ., y,l. Eacb, y, is of the form f,f g,, wheref and g,
are polynomials in xr, . . ., xr.

Now there are infinitely many irreducible polynomials in the ring
k[rr, . .., x,] (adapt Euclid's proof of the existence of infinitely many prime
numbers). Hence there is air irreducible polynomial ft rvhich is prime to each
of the g, (for example, h : gtgz'. .g, f 1 would do) and the element h-r of F
could not be a polynomial in the yr. This is a contradiction. Hence E is alge-
braic over k, and therefore finite algebraic. r

Corollary 7.10. Let k be afield, A a fnitely generated k-algebra. Let m be a
maximal ideal of A. Then thefeld Alm is afnite algebraic extension of k.
In particular, if k is algebraically closed then Alm z k.

Proof. Take E : Alm in (7.9). r
(7.10) is the so-called "weak" version of Hilbert's Nullstellensatz

(: theorem of the zeros). The proof given here is due to Artin and Tate. For
its geometrical meaning, and the "strong" form of the theorem, see the Exercises
at the end of this chapter.

PRIMARY DECOMPOSITION IN NOETHERIAN RINGS

The next two lemmas show that every ideai I (l) in a Noetherien ring has a
primary decomposition.

An ideal o is said to be irreducible if

c:bnc+(o:bora:c)
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Lemma 7.11. In a Noetherian ring A euery ideal is a fnite intetsection of
irreducible ideals.

Proof. suppose not; then the set of ideals in A for which the lemma is false is

not empty, hence has a maximal element c. Since a is reducible, we have

a: bncwhereb = oandc =) a. Henceeachof b,cisafiniteintersectionof
irreducible ideals and therefore so is o: contradiction. r

Lemma 7.12. In a Noetherian ring euery irreducihle ideal is primary.

Proof. By passing to the quotient ring, it is enough to show that if the zero ideal

is irreducible then it is primary. Let xy : 0 with y + o, and consider the chain

of ideals Ann(x) c Ann(xz) s ' ' ' . By the a'c.c., this chain is stationary, i'e', we

have Ann(x") : Ann(xtr+1) : "' for some n. Itfollows that (x") n (y) : 0;

for if ae (y) then ax : 0, and if ae (x') then a : bxn,hence 6xo+1 : 0, hence

b eAnn(x"*1) : Ann(xn),hence bx" :0; thatis, a : 0. Since(0)isirreducible
and (y) * 0 we must therefore have xn : 0, and this shows that (0) is primary. r

From these two lemmas we have at once

Theorem 7.13. In a Noetherian ring A euery ideal has a primary decomposi-

tion. r
Hence all the results of Chapter 4 apply to Noetherian rings.

Proposition 7.14. In a Noetherian ring A, euery ideal fr contains a power of
its radical.

Proof. Let x1,..., xu generate r(o): say xT'ea (l < t < k). Let m :
2l=r(no - l) + 1. Then r(a)' is generated by the products xit" ';g|t $'i1h

2 r, : m; from the definition of m we must have r1 2 fli for at least one index f,

hence each such monomial lies in a, and therefore r(o)* c q- I

Corollary 7.15. In a Noetherian ring the nilradical is nilpotent.

Proof. Take c: (0) in(7.14). I
Corollary 7,16. Let A be a Noetherian ring, m a maximal ideal of A, q any

ideal of A. Then the following are equiualent:

i) q ts m-primary;
ii) r(q) : m,'
iii) m' g q s wfor some n > 0.

Proof. i) + ii) is clear; ii) + i) from (.2); i) + iii) from (7.10; iii) + ii) by

taking radicals: m : r(mn) s /(q) c r(m) : m. t
Proposition 7.17. Let a * (l) be an ideal in a Noetherian ring. Then the

prime ideals which belong to a are precisely the prime ideals which occur in the

set of ideals (a:x) (x e A).

Proof. By passing to Ala we may assume that a : 0. Let Oi=r er:0 be a
minimal primary decomposition of the zero ideal, and let pr be the radical of q1.

-,/
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Let ar : )i*iei I 0. Then from the proof of (4.5) we have r(Ann(x)) : F,
for any x + 0 in c,, so that Ann(x) c p,.

Since q, is p,-primary, by (7.14) there exists an integer m such that pl c q,,

and therefore cipf c sinFT --ctinQ,:0. Let m2l be the smallest
integer such that aiFT :0, and let x be a non-zero element in c,pi-l. Then
fr,x : 0, therefore for such an x we have Ann(x) : p,, and hence Ann(x) : p,.

Conversely, if Ann(x) is a prime ideal p, then r(Ann(x)) : p and so by (4.5)
p is a prime ideal belonging to 0. I

EXERCISES

I. Let A be a non-Noetherian ring and let X be the set of ideals in I which are not
finitely generated. Show that X has maximal elements and that the maximal
elements of X are prime ideals.

[Let o be a maximal element of X, and suppose that there exist x, y e I such that
x $ a and y S. a and xy e s. Show that there exists a finitely generated ideal
Go c o such that oo * (x) : o + (x), and that o : ao * x.(o:x). Since
(a:x) strictly contains o, it is finitely generated and therefore so is o.]

Hence a ring in which every prime ideal is finitely generated is Noetherian
(I. S. Cohen).

Let A be a Noetherian ring and let f : 2f,=o a,,x" e A[{xJ1. Prove that / is
nilpotent if and only if each a, is nilpotent.

Let a be an irreducible ideal in aring A. Then the following are equivalent:
i) o is primary;
ii) for every multiplicatively closed subset S of A we have (S-'o)" : (o:x) for

some x e,s;
iii) the sequence (a:;rn) is stationary, for every x e A.

Which of the following rings are Noetherian ?

i) Theringof rationalfunctionsof zhavingnopoleonthecircle ltl : l.
ii) The ring of power series in z with a positive radius of convergence.
iii) The ring of power series in z with an infinite radius of convergence.
iv) The ring of polynomials in z whose first A derivatives vanish at the origirr

(k being a fixed integer).
v) The ring of polynomials in z, w all of whose partial derivatives with respect

to ru vanish for z : 0.

In all cases the coefficients are complex numbers.

Let A be a Noetherian ring, B a finitely generated A-algebra, G a finite group of
l-automorphisms of B, and ,BG the set of all elements of -B which are left fixed
by every element of G. Show that BG is a finitely generated A-algebra.

If a finitely generated ring K is a field, it is a finite field.
[If K has characteristic 0, we have Z c Q c K. Since K is finitely generated
over Z it is finitely generated over Q, hence by (7.9) is a finitely generated Q-

3.


