
Homological Algebra Solutions to HW #4 Spring 2015

(1) Let R → T be a ring homomorphism. Let M be a flat left R-module. Show
that T ⊗R M is a flat left T -module.

Proof. First note that if A is any right T -module, then A ⊗T (T ⊗R M) ∼=
(A ⊗T T ) ⊗R M ∼= A ⊗R M . Now consider the following short exact sequence
of right T -modules:

0 → A → B → C → 0

Apply �⊗T (T ⊗R M) to the sequence. Using the isomorphism from the first
sentence, we get

0 → A⊗R M → B ⊗R M → C ⊗R M → 0

which is exact since by assumption M is a flat left R-module. Hence T ⊗R M
is a flat (left) T -module. �

(2) Let p be a prime integer and set Z(p∞) := {a/pn + Z ∈ Q/Za ∈ Z}. Then
this is a Z submodule of Q/Z (you do not need to show this, though it is
easy). Show that Z(p∞) is an injective R-module. Hint: It suffices to show
that Z(p∞) is a divisible module, since Z is a PID. To that end, let t ∈ Z and
x := a/pn + Z ∈ Z(p∞). To show that x is divisible by t, write t = bps where
b is relatively prime to p. It suffices to show that b and ps separately “divide”
each element of the group. Clearly the latter element does. Then use the fact
that b is relatively prime to pn to show it “divides” a/pn + Z.

Proof. My hint mostly gives this one away. Let a/pn + Z be an arbitrary
element of Z(p∞) and let t ∈ Z. Write t = bps where b is relatively prime
to p. It will suffice to show that there exists c/pm + Z ∈ Z(p∞) such that
b(c/pm + Z) = a/pn+s + Z ∗.
Since b and pn+s are relatively prime, there exists x, y ∈ Z such that xb +

ypn+s = 1. Dividing both sides by pn+s, we get

xb

pn+s
+ y =

1

pn+s
.

Now multiply both sides by a and rearrange and we get

axb

pn+s
− a

pn+s
= −ya

Thus the RHS is an integer. Therefore the equation in ∗ will be satisfied if we
let c = xb and m = n+ s. �
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(3) Let M1 ⊂ M2 ⊂ . . . ⊂ Mn ⊂ . . . be an ascending chain of submodules of M .
Prove that

lim
→

Mi =
∪

Mi.

Proof. We will show that
∪
Mi satisfies the universal mapping property. We

may as well assume that M =
∪
Mi. Clearly for each i ∈ N, there is a map

Mi → M , namely inclusion, that makes all the necessary diagrams commute.
Suppose that there is a module X and maps fi : Mi → X for each i ∈ N, where
all the triangles

Mj
fj−→ X

↑ ↗
Mi

commute, when i < j.
We need to define a map f : M → X that makes all the appropriate maps

commute. Let m ∈ M . Thus m ∈ Mi for some i. Set f(m) = fi(m). Since all
the above triangles commute, this map is well defined (i.e., it does not matter
which i ∈ N is chosen, as long as m ∈ Mi). Clearly this f works.

�
(4) Let k be a field and let J be the ideal (x) in k[x]. Consider the inverse system

in the category of commutative rings given by {Rn := k[x]/Jn, φji} where for
j > i, φji : k[x]/J j → k[x]/J i is the canonical projection (note: J j ⊂ J i).
Prove that

lim
←

Rn = k[[x]], the power series ring.

Note that in fact, k can be any commutative ring

Proof. First we define a map fn : k[[x]] → Rn, by taking the natural projection
of k[[x]] onto k[[x]]/xnk[[x]] ∼= Rn for each n. Now suppose that there is a
ring T and ring maps gn : T → Rn for each n. We have to construct a ring
homomorphism g : T → k[[x]] such that for each n, fn ◦ g = gn.
Let t ∈ T . Then g(t) =

∑∞
i=0 aix

i must be a power series in x over k.
For each i we define ai to be the lead coefficient of gi+1(t) ∈ Ri+1. Since
φmn ◦ gn = gm whenever m > n, g is well defined. It is easy to check that
g(t + t′) = g(t) + g(t′). To see that g(tt′) = g(t)g(t′) is a little more work
to write down, but it follows from the fact that each coefficient of g(t)g(t′) is
defined by a finite set of coefficients of each of g(t) and g(t′).
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