
Homological Algebra Solutions to HW #3 Spring 2015

(1) Let R = Z/pnZ, where p is a prime number. Show that R is injective as a module
over itself.

Proof: We use Baer’s criterion. First note that all ideals of R are subgroups of R.
Hence the ideals are linearly ordered and principal. Moreover each ideal is generated
by p̄k for some k < n (here p̄ denotes the image of p in R). Let f : I → R be an

R homomorphism. We have to show that f can be extended to a map f̂ : R → R.
Notice that ann(p̄k) = (p̄n−k). Thus, if a = f(p̄k), it follows that ann(a) ⊇ (p̄n−k).
In particular a is an element of the form up̄t, where u is a unit of R and t ≥ k. Thus
define f̂ on all of R by sending 1 7→ upt−k. Hence we see that every map from an
ideal of R to R extends to all of R. Thus by Baer we are done.

(2) (3.31) (i) Let P be the set of all prime numbers. Prove that
⊕

p∈P Zp is the torsion

subgroup of
∏

p∈P Zp.

Proof: The key to this problem and the next is to note that for any n ∈ Z, either n
is a unit or zero in Zp. First let t ∈

⊕
p∈P Zp. Let {p1, p2, . . . , pn} be the coordinates

where t is not zero. Let n be the product of these prime numbers. Then nt = 0.
Thus

⊕
p∈P Zp ⊆ τ(

∏
p∈P Zp). For the reverse direction. Let x ∈ τ(

∏
p∈P Zp). Then

nx = 0 some integer n. Let S = {p1, p2, . . . , pn} be the set of prime divisors of n. If
x is not in the direct sum, then there is a prime q ̸∈ S, such that the qth coordinate
of x, xq, is not zero. But then nxq ̸= 0, a contradiction. Thus we have containment
in the reverse direction - done.

(3) (3.31) (ii) Prove that M =
∏

p∈P Zp/
⊕

p∈P Zp is a divisible abelian group.

Proof: Let 0 ̸= x = (xq) ∈ M . Let n ∈ Z. Let S = {p1, p2, . . . , pn} be the set of
prime divisors of n. Notice that for q ∈ P \S, n is a unit in Zq. Let y = (yq) ∈ M be
defined coordinate wise as yq = n−1xq mod q for q ∈ P \ S, while yq = 0 otherwise
(note we do not care what happens to y at a finite number of coordinates). Thus
ny = x - done.

(4) (3.39) (i) Prove that Q is a flat but not faithfully flat Z modules.

Proof: Since Q is torsion free and Z is a PID, the fact that Q is torsion free assures
us is is flat. We also know that since it is divisible, Q ⊗ Zn = 0 for any n. Hence it
is not faithfully flat.
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(5) (3.39) (ii) Prove that an abelian group G is a faithfully flat Z module if and only if
it is torsion free and pG ̸= G for all primes p.

Proof: Assume G is faithfully flat. Then since R is a domain, G is torsion free.
The map Z → Z via multiplication by p is a monomorphism. As G is faithfully flat
(and so torsion free) we have the diagram with exact rows

0 → G⊗ Z → G⊗ Z → G⊗ Zp → 0
↓ ↓ ↓

0 → G
p→ G → G/pG → 0

where the first two horizontal maps are isomorphisms, and so the last horizontal
map is an isomorphism (five lemma). Since G is faithfully flat G ⊗ Zp ̸= 0. Hence
G/pG ̸= 0, equivalently pG ̸= G.

Conversely, let G be a torsion free abelian group such that pG ̸= G for all primes
p. Since Z is a PID, any torsion free module is flat. In particular G is flat. Hence
we only need show that G⊗M ̸= 0 for all nonzero abelian groups M . Since M ̸= 0,
M contains a nonzero cyclic abelian group H. Moreover any cyclic abelian group
maps onto the group Zp for some p a prime number. Since G is flat and pG ̸= G, it
follows from the above diagram that G ⊗ Zp ̸= 0. But then G ⊗ H maps onto the
nonzero module G ⊗ Zp (by general tensor facts). Thus G ⊗ H ̸= 0. As G is flat,
G⊗H ⊆ G⊗M , which implies that the latter module is nonzero and we are done.

(6) Let R be an integral domain. Show that an ideal I of R is invertible if and only if it
is projective as a module over R.

Proof: First suppose that I is projective. We want to show that 1 ∈ II−1. Let
{ϕk}k∈K and {ak}k∈K ⊂ I be a projective basis of I. Then, since Q := Frac(R) is an
injective R-module, each ϕk can be extended to map R → Q. But each such map is
multiplication by some qk ∈ Q (just see where 1 maps to). Thus ϕk(x) = qkx for all
x ∈ I. Hence qk ∈ I−1 for all k. Moreover, by the definition of a projective basis, it
follows that qk ̸= 0 for only finitely many k (why is that?) Thus {ϕk}k∈K is finite.
Then by definition of a projective basis for any x ∈ I we have

x = ϕ1(x)a1 + . . .+ ϕk(x)ak = xq1a1 + . . .+ xqkak

We can then factor out the x on the right side and cancel (we are in a domain after
all) to get

1 = q1a1 + q2a2 + . . .+ qkak
Since qj ∈ I−1 and aj ∈ I we are done with this direction.

For the converse, suppose that I is invertible. Say 1 = q1a1+ . . .+qkak for qj ∈ I−1

and aj ∈ I. It follows that multiplication by each qj defines a ϕj : I → R (the image
is in R, since qj ∈ I−1). It is now easy to see (check!) that the sets {ϕj} and {aj}
form a projective basis for I, which completes the proof.


