
Math 629 Solutions to HW #2 Spring 2015

(1) (2.28) Let R be a domain with Q = Frac(R) its quotient field. If A is an R-
module, show that every element of Q⊗R A has the form q⊗ a for some q ∈ Q
and a ∈ A.

Proof. An arbitrary element of Q⊗R A has the form

q1 ⊗ a1 + q2 ⊗ a2 + · · ·+ qn ⊗ an, qi ∈ Q and ai ∈ A.

Then each qi = bi/ci for bi, ci ∈ R. Let c be the product of the ci. Hence each
qi = di/c for some di ∈ R. Moreover qi ⊗ ai = (di/c) ⊗ ai = (1/c)di ⊗ ai =
(1/c) ⊗ diai. Hence

∑
qi ⊗ ai =

∑
(1/c) ⊗ diai. By the definition of tensor,∑

(1/c)⊗ diai = (1/c)⊗ (
∑

diai) - done. �

(2) (2.29(iii)) Let m and n be positive integers and let d = (n,m). Prove that there
is an isomorphism of abelian groups Zn ⊗ Zm

∼= Zd.

Proof. Consider the short exact sequence 0 → Z n→ Z → Zn → 0, where the
map n is multiplication by n. Apply −⊗ Zm to get

Z⊗ Zm
n→ Z⊗ Zm → Zn ⊗ Zm → 0

We know that Z⊗ Zm
∼= Zm. Moreover the first map is still multiplication by

n (trace through the isomorphisms). Thus Zn ⊗ Zm
∼= Zm/nZm, which by (ii)

is isomorphic to Zd. �

(3) (2.31) Assume that the following diagram commutes and that the vertical arrow
are isomorphisms.

0 → A′ f1→ A
g1→ A′′ → 0

↓ ↓ ↓
0 → B′ f2→ B

g2→ B′′ → 0

Prove that the top row is exact if and only if the bottom row is exact.

Proof. Assume that the top row is exact. We must show that f2 is injective, g2
is surjective, and ker(g2) = im(f2). Let b

′ ∈ ker(f2). Let a
′ be its image in A′.

Thus f1(a
′) maps to zero in A. Since this vertical map is an isomorphism, we

must have f1(a
′) = 0. But f1 is injective by assumption, thus a′ = 0, Since the

vertical map is an iso, b′ = 0 and so f2 is injective.
Let b′′ ∈ B′′. Let a′′ be its image in A′′. Since g1 is surjective, we can

pullback to an element of A. Let a ∈ A be such that g1(a) = a′′. Then a has a
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unique image in b in B. Since the diagram commutes, g2(b) = b′′. Since b′′ was
arbitrary, g2 is surjective.
It is also easy to see that ker(g2) = im(f2) (translation: this is tedious and I

am tired of writing it up).
For the other direction, just put the bottom row on top. Since the vertical

maps were isomorphisms, they are reversible. �

(4) (3.11) Prove that HomR(P,R) ̸= {0} if P is a projective left R-module.

Proof. This will follow easily from the existence of a projective basis for P .
Specifically, let {ai}, ai ∈ P and {φi}, φi ∈ Hom(P,R) be a projective basis of
P . Now suppose that Hom(P,R) = 0, then each φi = 0. Hence for each x ∈ P ,
we have x =

∑
φi(x)ai = 0, i.e., P = 0. Done. �

(5) (3.12) If P is finitely generated, prove that P is projective if and only if 1P ∈
im ν, where ν : HomR(P,R)⊗R P → HomR(P, P ) is defined, for all x ∈ P , by

f ⊗ x 7→ f̃ , where f̃ : y 7→ f(y)x.

Proof. First suppose that P is finitely generated. We show that P has a finite
projective basis. In fact it follows from the proof that P has a projective basis,
but we show the proof. There exists a finitely generated free module F = Rn

such that there exists a short exact sequence:

0 → K → F → P → 0

Since P is projective, this sequence splits. Hence F ∼= P ⊕K. Now let ei ∈ F
have a 1 in the i-coordinate and 0 everyplace else and let φ̃i, i = 1, . . . , n be
the natural projections of F onto its i-th coordinate. Let φi ∈ Hom(P,R)
be the restriction of φ̃ to P and let ei = xi + ki where xi ∈ P and ki ∈ K.
Hence {xi} and {φi} forms a finite projective basis of P and

∑
(φi ⊗ xi) ∈

HomR(P,R) ⊗R P . Then we claim that ν(
∑

(φi ⊗ xi)) is the identity map on
P , which proves this direction of the result. To see why observe that for y ∈ P
ν(
∑

(φi ⊗ xi))(y) =
∑

φi(y)xi. And by definition of a projective basis, this
last term equals y. Thus ν(

∑
(φi ⊗ xi)) = 1P , and this direction of the proof is

done.
Now suppose that 1P ∈ im ν. Say 1P = ν(

∑
(fi ⊗ zi). Hence for any y ∈ P ,

y = ν(
∑

(fi ⊗ zi)(y). But ν(
∑

(fi ⊗ zi)(y) =
∑

fi(y)xi, which shows that {xi}
and {fi} forms a projective basis of P . �


