(1) (2.28) Let R be a domain with $Q = \operatorname{Frac}(R)$ its quotient field. If A is an R-module, show that every element of $Q \otimes_R A$ has the form $q \otimes a$ for some $q \in Q$ and $a \in A$.

Proof. An arbitrary element of $Q \otimes_R A$ has the form

$$q_1 \otimes a_1 + q_2 \otimes a_2 + \cdots + q_n \otimes a_n, q_i \in Q$$
 and $a_i \in A$.

Then each $q_i = b_i/c_i$ for $b_i, c_i \in R$. Let c be the product of the c_i . Hence each $q_i = d_i/c$ for some $d_i \in R$. Moreover $q_i \otimes a_i = (d_i/c) \otimes a_i = (1/c)d_i \otimes a_i = (1/c) \otimes d_i a_i$. Hence $\sum q_i \otimes a_i = \sum (1/c) \otimes d_i a_i$. By the definition of tensor, $\sum (1/c) \otimes d_i a_i = (1/c) \otimes (\sum d_i a_i)$ - done.

(2) (2.29(iii)) Let m and n be positive integers and let d = (n, m). Prove that there is an isomorphism of abelian groups $\mathbb{Z}_n \otimes \mathbb{Z}_m \cong \mathbb{Z}_d$.

Proof. Consider the short exact sequence $0 \to \mathbb{Z} \xrightarrow{n} \mathbb{Z} \to \mathbb{Z}_n \to 0$, where the map n is multiplication by n. Apply $-\otimes \mathbb{Z}_m$ to get

$$\mathbb{Z} \otimes \mathbb{Z}_m \stackrel{n}{\to} \mathbb{Z} \otimes \mathbb{Z}_m \to \mathbb{Z}_n \otimes \mathbb{Z}_m \to 0$$

We know that $\mathbb{Z} \otimes \mathbb{Z}_m \cong \mathbb{Z}_m$. Moreover the first map is still multiplication by n (trace through the isomorphisms). Thus $\mathbb{Z}_n \otimes \mathbb{Z}_m \cong \mathbb{Z}_m / n\mathbb{Z}_m$, which by (ii) is isomorphic to \mathbb{Z}_d .

(3) (2.31) Assume that the following diagram commutes and that the vertical arrow are isomorphisms.

Prove that the top row is exact if and only if the bottom row is exact.

Proof. Assume that the top row is exact. We must show that f_2 is injective, g_2 is surjective, and $\ker(g_2) = \operatorname{im}(f_2)$. Let $b' \in \ker(f_2)$. Let a' be its image in A'. Thus $f_1(a')$ maps to zero in A. Since this vertical map is an isomorphism, we must have $f_1(a') = 0$. But f_1 is injective by assumption, thus a' = 0, Since the vertical map is an iso, b' = 0 and so f_2 is injective.

Let $b'' \in B''$. Let a'' be its image in A''. Since g_1 is surjective, we can pullback to an element of A. Let $a \in A$ be such that $g_1(a) = a''$. Then a has a

unique image in b in B. Since the diagram commutes, $g_2(b) = b''$. Since b'' was arbitrary, g_2 is surjective.

It is also easy to see that $\ker(g_2) = \operatorname{im}(f_2)$ (translation: this is tedious and I am tired of writing it up).

For the other direction, just put the bottom row on top. Since the vertical maps were isomorphisms, they are reversible. \Box

(4) (3.11) Prove that $\operatorname{Hom}_R(P,R) \neq \{0\}$ if P is a projective left R-module.

Proof. This will follow easily from the existence of a projective basis for P. Specifically, let $\{a_i\}$, $a_i \in P$ and $\{\varphi_i\}$, $\varphi_i \in \operatorname{Hom}(P,R)$ be a projective basis of P. Now suppose that $\operatorname{Hom}(P,R) = 0$, then each $\varphi_i = 0$. Hence for each $x \in P$, we have $x = \sum \varphi_i(x)a_i = 0$, i.e., P = 0. Done.

(5) (3.12) If P is finitely generated, prove that P is projective if and only if $1_P \in \text{im } \nu$, where $\nu : Hom_R(P,R) \otimes_R P \to Hom_R(P,P)$ is defined, for all $x \in P$, by $f \otimes x \mapsto \tilde{f}$, where $\tilde{f} : y \mapsto f(y)x$.

Proof. First suppose that P is finitely generated. We show that P has a finite projective basis. In fact it follows from the proof that P has a projective basis, but we show the proof. There exists a finitely generated free module $F = \mathbb{R}^n$ such that there exists a short exact sequence:

$$0 \to K \to F \to P \to 0$$

Since P is projective, this sequence splits. Hence $F \cong P \oplus K$. Now let $e_i \in F$ have a 1 in the i-coordinate and 0 everyplace else and let $\tilde{\varphi}_i, i = 1, \ldots, n$ be the natural projections of F onto its i-th coordinate. Let $\varphi_i \in \operatorname{Hom}(P,R)$ be the restriction of $\tilde{\varphi}$ to P and let $e_i = x_i + k_i$ where $x_i \in P$ and $k_i \in K$. Hence $\{x_i\}$ and $\{\varphi_i\}$ forms a finite projective basis of P and $\sum (\varphi_i \otimes x_i) \in \operatorname{Hom}_R(P,R) \otimes_R P$. Then we claim that $\nu(\sum (\varphi_i \otimes x_i))$ is the identity map on P, which proves this direction of the result. To see why observe that for $y \in P$ $\nu(\sum (\varphi_i \otimes x_i))(y) = \sum \varphi_i(y)x_i$. And by definition of a projective basis, this last term equals y. Thus $\nu(\sum (\varphi_i \otimes x_i)) = 1_P$, and this direction of the proof is done.

Now suppose that $1_P \in \text{im } \nu$. Say $1_P = \nu(\sum (f_i \otimes z_i)$. Hence for any $y \in P$, $y = \nu(\sum (f_i \otimes z_i)(y)$. But $\nu(\sum (f_i \otimes z_i)(y) = \sum f_i(y)x_i$, which shows that $\{x_i\}$ and $\{f_i\}$ forms a projective basis of P.