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My research area is in the area of combinatorics with a focus on discrete geometry. My work reflects

the interplay of graph theory with discrete geometry. I have had the good fortune to gain research

experience in a number of disciplines, not only as a graduate student but also as an undergraduate at two

Research Experience for Undergraduates (REUs).

1 Convex Geometries

My motivation is inspired by a problem of Erdős and Szekeres: for any n ≥ 3, to determine the

smallest positive integer N(n) such that any set of at least N(n) points in general position (no three on a

line) in the plane contains n points that are the vertices of a convex n-gon. Morris and Soltan [13] surveyed

known results related to this problem. It has been established that N(n) exists and N(n) > 2n−2 and

conjectured that N(n) = 2n−2 + 1 by Erdős and Szekeres ([7],[8]). It is currently known that

N(n) ≤
(
2n−5
n−2

)
+ 1, due to Tóth and Valtr ([17]).

Let X be a finite set and L be a collection of subsets of X with the properties: ∅ ∈ L , X ∈ L ,

and A ∩B ∈ L whenever A,B ∈ L . Then L is called an alignment of X. Following the example of

Edelman and Jamison ([5]), L is also viewed as a closure operator. For any subset A of X, define the

closure of A, L (A), be the intersection of all C ∈ L such that A ⊆ C. The subsets in L or equivalently

those subsets of X of the form L (A) for some subset A of X are called closed or convex. The closure

operator L is anti-exchange if given any set C ∈ L and two distinct points p and q in X, neither in C,

then q ∈ L (C ∪ p) implies that p /∈ L (C ∪ q).

Definition 1.1. Let X be a finite set. A pair (X,L ) is a convex geometry if:

1) L is an alignment of X,

2) L is anti-exchange.

Edelman and Jamison [5] presented several equivalent definitions of convex geometries.

For an alignment (X,L ) denote by LL = (L ,⊆) the partial order on L by containment. This

partial order is a lattice where A ∧B = A ∩B and A ∨B = L (A ∪B). A closed subset of a convex

geometry, A ∈ L , is a copoint if there is exactly one B ∈ L such that |B −A| = 1. Copoints are the

meet-irreducible elements of LL . The unique element in B −A is denoted α(A). It is said that the copoint

A is attached to α(A). The set of copoints partially ordered by inclusion is denoted M(X). The set B ⊆ X

is independent if for all p ∈ B, p /∈ L (B − p). The size of the largest independent set is denoted by b(LL ).
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Figure 1: The lattice of closed sets for a non-atomic convex geometry

Definition 1.2. Let X be a finite set of points in R2. The convex geometry (X,L ) realized by X is

defined by L (A) = conv(A) ∩X for all A ⊆ X.

The order dimension of a poset, P = (X,≤) is the least positive integer t for which there exists a

family R = {L1, L2, . . . , Lt} of linear extensions of P so that P = ∩R. Any family of linear extensions R

such that ∩R = P is called a realizer of P . For a poset P denote the order dimension of P by dim(P ). For

any convex geometry, dim(LL ) ≥ b(LL ) with strict inequality possible ([6]). Figure 1 is the lattice of

closed sets of such an example with dim(LL ) = 3 and b(LL ) = 2.

Given two disjoint planar point sets L and M , a composition of L and M is defined to be a point

set of L together with a translation of M in which

1) every point of M has greater first coordinate than the first coordinates of points of L,

2) the slope of any line connecting a point of L to a point of M is greater than the slope of any line

connecting two points of L or two points of M .

Erdős and Szekeres [8] describe a construction of large point sets without large subsets in convex

position. I describe these point sets with the notation of [12]. For all positive integers, k, I first define

ES(0, k) and ES(k, 0) to be singletons. For i ≥ 1, j ≥ 1 define ES(i, j) to be a composition of ES(i− 1, j)

and ES(i, j − 1).

The extended Erdős-Szekeres point set XES(k) is a composition of ES(0, k), ES(1, k − 1), · · · ,

ES(k, 0) where the compositions are performed in order from left to right. The number of points in

XES(k) is 2k. The size of the largest independent set in XES(k) is k + 1 ([12]). I was able to show that

this is also the order dimension of the lattice of closed sets for XES(k) ([1]). Moreover, any planar point

set in general position with more points, must have a larger order dimension.

Theorem 1.3. ([1]) If X is a planar point set in general position and dim(X) = k, then |X| ≤ 2k−1.

Theorem 1.3 was proven by coloring a graph of Morris ([12]) and relating it to the graph studied by

Felsner and Trotter([9]). Morris’ graph, G(X,L ), has vertex set equal to the set of copoints of the convex
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geometry and there is an edge between two copoints A and B if and only if α(A) ∈ B and α(B) ∈ A.

Felsner and Trotter were concerned with posets while Morris’ work was on convex geometries

realized by planar point sets in general position. Taking the work of these authors together, one can ask

many interesting and deep questions.

Question 1.4. χ(G(X,L )) = dim(LL ) for all examples studied. Is this true in general or is it possible to

find a counterexample?

Question 1.5. Is there some fixed constant c such that c ≥ χ(G(X,L ))
ω(G(X,L ))? If c < 2, then it would improve the

bound of Tóth and Valtr.

Question 1.5 has been partially solved in joint work with Walter Morris ([2]). For abstract convex

geometries, there is no such constant. However, for convex geometries realized by planar point sets in

general position, this is still open.

While investigating Question 1.5, a new related problem to the Erdős-Szekeres problem arose. It

starts with the following theorem:

Theorem 1.6. ([2]) Let (X,L ) be a convex geometry with every two element subset closed. If |X| = 5,

then χ(G(X,L )) ≥ 4.

The Carathéodory number of a convex geometry (X,L ) is the least positive integer c such that

L (Y ) = ∪{L (Z) : Z ⊆ Y, |Z| ≤ c} for any Y ⊆ X. A set Y ⊆ X is said to be in nice position if any c

points of Y are convexly independent. It is a simple exercise to show that every subset of size c− 1 or less

of Y is a closed set. Such a convex geometry is said to be (c− 1)− free. In light of Theorem 1.6, and

extending a lemma of Morris and Soltan ([13]) there is also the following result.

Theorem 1.7. ([2]) Let (X,L ) be a convex geometry with Carathéodory number c and Y ⊆ X a subset in

nice position such that |Y | = c+ 2. Then χ(G(Y,L |Y )) ≥ c+ 1.

So, we pose the following problem:

Problem 1.8. For any integer n ≥ d ≥ 2, determine the smallest positive integer Kd(n) such that any

d-free convex geometry of Kd(n) points requires that χ(G(X,L )) ≥ n.

Problem 1.8 can be completely solved when restricted to those convex geometries realized by planar

point sets, Kp
2 (n) = 2n−2 + 1. Another case where the this problem has been solved is when d = 2, this

problem closely resembles the order dimension of the Kn ([10]). A family of subsets of [t] is called

intersecting if A ∩B 6= ∅ whenever A,B ∈ [t]. An intersecting family of subsets is maximal if it is

contained in no other intersecting family. Let γ(n) denote the number of maximal intersecting families of

subsets of an n-element set. It is a well known result that γ(n) is at least 2( n−1
b(n−1)/2c) ([15]).

Theorem 1.9. ([2]) K2(n) = γ(n)
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Figure 2: An eight point set in general position

If d > 2, then a d-free convex geometry is necessarily 2-free as well. This gives us the general corollary.

Corollary 1.10. ([2]) If d ≥ 2, then Kd(n) is finite and Kd(n) ≤ 2( n−1
b(n−1)/2c)

It is also possible to improve the results of Theorem 1.3 by studying the linear relaxation of

chromatic number as defined by Scheinerman and Ullman [14], the fractional chromatic number, denoted

χf (G). This is important because there are examples where χ(G(X,L )) > ω(G(X,L )). The graph of the

point set in Figure 2 has chromatic number 5, fractional chromatic number 4.5, and clique number 4.

Question 1.11. Let X be a planar point set in general position. If χf (G(X,L )) = k, is then |X| ≤ 2k−1?

Beyond the problem of Erdős and Szekeres, there are many other problems in extremal

combinatorial geometry that are the subject of wide interest. The book of Brass, Moser, and Pach ([3]) is

filled with such problems with many references. Among these are the crossing number of a graph, the

number of incidences between n points and m lines, number of k-edges and k-sets, Sylvester’s problem of

ordinary lines, and generalizations to higher dimensions.

Question 1.12. Is it possible to study other problems in combinatorial geometry by use of parameters of

the graphs G(X,L ) for appropriate choices of the convex geometry (X,L )? If not a convex geometry, an

appropriate poset P and the graph of Felsner and Trotter?

Székely ([16]) has used graphs on a number of occasions to improve known results in discrete

geometry.

2 Undergraduate Research

Many problems in discrete geometry are understandable and relatable to undergraduate students without

an extensive or wide background. As with many combinatorial problems, the techniques used to create

solutions or counter-examples are often elegant and can be thought of by anyone with a fresh approach.
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Indeed, recently, some REU students ([11]) were able to construct a counterexample to a conjecture of

Székely and de Caen ([4]).

There are many questions about the graph G(X,L ) that I believe can be understood and worked

on by undergraduates. Since this graph is new and mostly understudied, there are many fundamental

properties that undergraduates would be able to understand. These properties may lead toward eventually

shrinking the gap between the results for the chromatic number of G(X,L ) and the clique number of

G(X,L ).
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[13] Morris, W, Soltan, V: The Erdős-Szekeres Problem on Points in Convex Position - A Survey, Bul. of

the AMS 37 (2000), 437-458.

[14] Scheinerman, E., Ullman, D.: Fractional graph theory, Wiley-Interscience (1997)

5



[15] Spencer, J.: Minimal scrambling sets of simple orders, Acta Math. Acad. Sci. Hung. 22 (1971),

349-353.
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[17] Tóth, G, Valtr, P: The Erdős-Szekeres Theorem: Upper Bounds and Related Results, In: Goodman,

J.E., Pach, J., Welzl, E. (eds.) Combinatorial and Computational Geometry. MSRI Publications, vol.

52, 557-568. Cambridge University Press, Cambridge (2005)

[18] Trotter, W.: Combinatorics and Partially Ordered Sets, Johns Hopkins University Press (1992)

6


	Convex Geometries
	Undergraduate Research

