CHROMATIC NUMBERS OF COPOINT GRAPHS OF CONVEX GEOMETRIES

JONATHAN E. BEAGLEY AND WALTER MORRIS

Abstract

We study the copoint graph of a convex geometry. We give a family of copoint graphs for which the ratio of the chromatic number to the clique number can be arbitrarily large. For any natural numbers $1<d<k$, we study the existence of a number $K_{d}(k)$ so that the chromatic number of the copoint graph of a convex geometry on a set of at least $K_{d}(k)$ elements, with every d-element subset closed, has chromatic number at least k. Our results are analogues of results of Erdős and Szekeres for convex geometries realizable by point sets in R^{m}, where cliques in the copoint graph correspond to subsets of points in convex position.

1. Introduction

Let X be a finite set. An alignment \mathscr{L} is a collection of subsets of X such that $\emptyset \in$ $\mathscr{L}, X \in \mathscr{L}$, and if $A, B \in \mathscr{L}$ then $A \cap B \in \mathscr{L}$. A set $C \subseteq X$ is closed or convex if $C \in \mathscr{L}$. Following Edelman and Jamison [4], we also view \mathscr{L} as a closure operator on the subsets of X, where $\mathscr{L}(A)=\bigcap\{C: C$ is closed and $A \subseteq C\}$. The closure operator \mathscr{L} is anti-exchange if for any $x, y \notin \mathscr{L}(C), x \in \mathscr{L}(C \cup y)$, then $y \notin \mathscr{L}(C \cup x)$. Equivalently, for any closed set C, with $C \neq X$, there is at least one closed set of the form $C \cup p$ for $p \notin C$. A pair (X, \mathscr{L}) where \mathscr{L} is an anti-exchange closure operator is called a convex geometry. The closed sets of a convex geometry (X, \mathscr{L}) can be partially ordered by inclusion to form a lattice, $L_{\mathscr{L}}$. A subset $A \subseteq X$ is convexly independent or independent if for all $p \in A, p \notin \mathscr{L}(A-p)$.

A set $C \in \mathscr{L}$ is a copoint if it is maximal in $X-p$ for some $p \in X$. If C is a copoint, there is exactly one set in \mathscr{L} of the form $C \cup p$ for $p \notin C$. The unique p is denoted $\alpha(C)$, and we say that the copoint C is attached to $\alpha(C)$. We will sometimes refer to a copoint C by the pair $(\alpha(C), C)$. The copoint graph of $(X, \mathscr{L}), \mathcal{G}(X, \mathscr{L})$, has as its vertex set the set of copoints of (X, \mathscr{L}), with copoints C and D adjacent if and only if $\alpha(C) \in D$ and $\alpha(D) \in C$. The definition of independent sets shows that a set $A \subseteq X$ is independent in (X, \mathscr{L}), if and

[^0]only if there is a clique in $\mathcal{G}(X, \mathscr{L})$ of copoints attached to the elements of A. Thus the clique number of $\mathcal{G}(X, \mathscr{L})$ equals the size of the largest independent set of (X, \mathscr{L}).

If X is a set of points in \mathbb{R}^{d}, and $\mathscr{L}=\{C \subseteq X: X \cap \operatorname{conv}(C)=C\}$, then (X, \mathscr{L}) is a convex geometry, called the convex geometry realized by X. One can show that if the points of a set X are in general position in \mathbb{R}^{d} and a set $A \subseteq X$ is the vertex set of a convex polytope, then A is independent in (X, \mathscr{L}). For point sets X in general position in \mathbb{R}^{2}, there is a famous conjecture of Erdős and Szekeres [6] that X contains the vertex set of a convex n-gon whenever $|X|>2^{n-2}$. Morris [13] proved that for a point set X in general position in \mathbb{R}^{2}, the chromatic number of $\mathcal{G}(X, \mathscr{L})$ is at least n whenever $|X|>2^{n-2}$. This result highlights the need to understand the relationship between the chromatic number and clique number of copoint graphs. We will present several results involving the clique and chromatic number of copoint graphs for general convex geometries. One should keep in mind, however, that convex geometries realized by point sets in \mathbb{R}^{d} form a small subset of the set of all convex geometries.

In Section 2 we answer a question posed by Beagley ([2]), giving a family of convex geometries $\left([n], \mathscr{L}_{m, n}\right)$, for positive integers $m<n$, for which $\omega(\mathcal{G}(X, \mathscr{L}))=m+1$ and $\chi(\mathcal{G}(X, \mathscr{L})) \geq\left\lceil\log _{2}(n+1)\right\rceil$. This shows that the ratio of the chromatic number of $\mathcal{G}(X, \mathscr{L})$ to the clique number of $\mathcal{G}(X, \mathscr{L})$ can be arbitrarily large. The convex geometry ($\left.[n], \mathscr{L}_{m, n}\right)$ will have the property that it is m-free, i.e. \mathscr{L} will contain every m-element subset of $[n]$. This is a property that is satisfied by convex geometries realized by point sets in general position in \mathbb{R}^{m}.

In Section 3 we investigate the effect that the d-free property alone will have on the chromatic number of $\mathcal{G}(X, \mathscr{L})$. The main results we prove are that if $1<d<k$ there exists a number $K_{d}(k)$ so that any d-free convex geometry on a set of size at least $K_{d}(k)$ will have the chromatic number of its copoint graph at least k. We also show that $K_{d}(d+2)=d+3$ for all $d>1$, analogous to a result of Esther Klein that every set of 5 planar points in general position contains the vertex set of a convex 4-gon.

To close this introductory section, we give the smallest set of points in the plane in general position for which $\omega(\mathcal{G}(X, \mathscr{L}))$ and $\chi(\mathcal{G}(X, \mathscr{L}))$ differ.

Of the 16 order types of 6 planar points in general position [1], there is only one with this property. It is given in Figure 1. The copoints are shown to the right of the point set, in the

Figure 1. A six point set and its poset of copoints
form $(\alpha(C), C)$ where $\alpha(C)$ is the point to which copoint C is attached. The copoints are partially ordered by set containment. The subgraph of $\mathcal{G}(X, \mathscr{L})$ induced by the copoints of (X, \mathscr{L}) of size bigger than 3 form the complement of a 9 -cycle. This graph has chromatic number 5 and clique number 4.

2. Construction of A Convex Geometry

Beagley [2] asked the following question: Is $\frac{\chi(\mathcal{G}(X, \mathscr{L}))}{\omega(\mathcal{G}(X, \mathscr{L}))} \leq c$ for some constant c ? We construct a family of convex geometries indexed by integers m, n with clique number of $m+1$ and chromatic number at least $\left\lceil\log _{2}(n+1)\right\rceil$.

Let n be a positive integer and $\{1,2, \ldots, n\}=[n]$. When $n=0$, then $[n]=\emptyset$. Let m be a positive integer, $m<n$, and define $\mathscr{L}_{m, n}=\{([i] \cup J)|0 \leq i \leq n, J \subseteq\{i+2, \ldots, n\},|J| \leq m\}$.

Proposition 2.1. For n, m positive integers with $m<n$, the pair ($[n], \mathscr{L}_{m, n}$) is an m-free convex geometry.

Proof. It is easy to see that $\mathscr{L}_{m, n}$ is closed under intersection and $\emptyset,[n] \in \mathscr{L}_{m, n}$. Let C be in $\mathscr{L}_{m, n}, C \neq[n]$. If $C=[i] \cup J$ with $0 \leq i \leq n, J \subseteq\{i+2, \ldots, n\},|J| \leq m$, then $C \cup\{i+1\} \in \mathscr{L}_{m, n}$, so $\left([n], \mathscr{L}_{m, n}\right)$ is a convex geometry. To see that $\left([n], \mathscr{L}_{m, n}\right)$ is m-free, note that if $|J| \leq m$ and i is the smallest element of $[n] \backslash J$, then $J=[i-1] \cup J^{\prime}$ where $\left|J^{\prime}\right| \leq m$.

For each $i \in\{1,2, \ldots, n-m\}$, define $A_{i}=\{[i-1] \cup J|J \subseteq\{i+1, i+2, \ldots, n\},|J|=m\}$ and for each $i \in\{n-m+1, n-m+2, \ldots, n\}$ let $A_{i}=\{[i-1] \cup\{i+1, i+2, \ldots, n\}\}$.

Proposition 2.2. For $i=1,2, \ldots, n, A_{i}$ is the set of copoints of $\left([n], \mathscr{L}_{m, n}\right)$ attached to i.

Proof. If $C=[i-1] \cup J \neq[n]$ for $1 \leq i \leq n, J \subseteq\{i+1, \ldots, n\},|J| \leq m$, then $C \cup\{i\}$ is in $\mathscr{L}_{m, n}$. If C is not in A_{i}, then there is an element $p \neq i$ of $[n]$ such that $C \cup\{p\}$ is in $\mathscr{L}_{m, n}$.

The size of the maximum clique in $\mathcal{G}\left([n], \mathscr{L}_{m, n}\right)$ can be found using the size of the largest independent set.

Lemma 2.3. The clique number of $\mathcal{G}\left([n], \mathscr{L}_{m, n}\right)$ is $m+1$.

Proof. Let $C \in \mathscr{L}_{m, n}$. If $|C| \leq m$, then $\mathscr{L}_{m, n}(C)=C$. So, let $|C|>m$. We can write $C=[i] \cup J$ where $0 \leq i \leq n-m, J \subseteq\{i+1, \ldots, n\},|J|=m$. Thus, $C=\mathscr{L}_{m, n}(\{i\} \cup J)$ and $|\{i\} \cup J|=m+1$. Further, $\mathcal{G}\left([n], \mathscr{L}_{m, n}\right)$ contains a $m+1$-clique consisting of the copoints of the form $[n] \backslash\{i\}$ for $i=n-m, \ldots, n$. Since every closed set C can be written as the closure of at most $m+1$ elements of $[n]$, there is no independent set of size $m+2$ and $\omega\left(\mathcal{G}\left([n], \mathscr{L}_{m, n}\right)\right)=m+1$.

To bound the chromatic number of $\mathcal{G}\left([n], \mathscr{L}_{m, n}\right)$ we make note of the following property of the set A_{i}.

Proposition 2.4. Suppose that $B \subseteq[n],|B| \leq m$, and $i<b$ for all $b \in B$. Then there exists $C \in A_{i}$ so that C contains every element of B.

Proof. Choose a copoint $C=[i-1] \cup J$ in A_{i} with $B \subseteq J$, and the result is immediate.

Corollary 2.5. Suppose that $B \subseteq[n],|B| \leq m$, and that $i<b$ for all $b \in B$. Then there exists $C \in A_{i}$ so that C is adjacent in $\mathcal{G}\left([n], \mathscr{L}_{m, n}\right)$ to every copoint D in $\bigcup_{b \in B} A_{b}$.

Proof. By the previous proposition, $b \in C$ for every $b \in B$, and because $b>i$, we have $i \in[b-1] \subseteq D$ for all $D \in A_{b}$.

We shall answer Beagley's question, using $\left([n], \mathscr{L}_{m, n}\right)$ to show that the ratio $\frac{\chi(\mathcal{G}(X \mathscr{L}))}{\omega(\mathcal{G}(X, \mathscr{L}))}$ is bounded by no constant c.

Theorem 2.6. The convex geometry $\left([n], \mathscr{L}_{m, n}\right) \operatorname{has} \omega\left(\mathcal{G}\left([n], \mathscr{L}_{m, n}\right)\right)=m+1$ and $\left\lceil\log _{2}(n+1)\right\rceil \leq$ $\chi\left(\mathcal{G}\left([n], \mathscr{L}_{m, n}\right)\right)$.

Proof. $\omega\left(\mathcal{G}\left([n], \mathscr{L}_{m, n}\right)\right)=m+1$ by Lemma 2.3.
For any proper coloring of $\mathcal{G}\left([n], \mathscr{L}_{m, n}\right)$ with c colors, let S_{i} be the set of colors used to color the copoints of $A_{i}, i=1,2, \ldots, n$. For $1 \leq i<j \leq n$, the fact that there is a copoint of A_{i} adjacent to every copoint of A_{j} means that the S_{i} are distinct and nonempty. Therefore, $n \leq 2^{c}-1$, and any proper coloring of $\mathcal{G}\left([n], \mathscr{L}_{m, n}\right)$ requires at least $\left\lceil\log _{2}(n+1)\right\rceil$ colors.

The graph for the convex geometry $\left([n], \mathscr{L}_{m, n}\right)$ has clique number that is a function of m and independent of n, while the chromatic number is at least $\left\lceil\log _{2}(n+1)\right\rceil$. Therefore the ratio $\frac{\chi\left(\mathcal{G}\left([n], \mathscr{L}_{m, n}\right)\right)}{\omega\left(\mathcal{G}\left([n], \mathscr{L}_{m, n}\right)\right)}$ can be bigger than any fixed constant c, provided n is large enough.

The precise determination of $\chi\left(\mathcal{G}\left([n], \mathscr{L}_{m, n}\right)\right)$ for $m \geq 2$ is an interesting question in its own right. Let S be a finite set. An m-nondecreasing sequence of subsets of S is a sequence $S_{1}, S_{2}, \ldots, S_{t}$ so that for any set $B \subseteq[t],|B| \leq m$, and for $j \in[t]$ with $j>b$ for all $b \in B$, we have $S_{j} \nsubseteq \bigcup_{b \in B} S_{b}$.

Lemma 2.7. The chromatic number of $\mathcal{G}\left([n], \mathscr{L}_{m, n}\right)$ is the smallest integer s for which there is an m-nondecreasing sequence of length n of subsets of an s-element set S.

Proof. For any proper coloring of $\mathcal{G}\left([n], \mathscr{L}_{m, n}\right)$ with s colors, let S_{i} be the set of colors used to color the copoints of $A_{i}, i=1,2, \ldots, n$. It follows from Corollary 2.5 and the definition of m-nondecreasing sequence of subsets of $[s]$, that $S_{1}, S_{2}, \ldots, S_{n}$ is an m-sequence of length n. Then, it is possible to color the vertices in levels $n, n-1, \ldots, 1$ successively where for any $D=[i-1] \cup J$ in A_{i} that is adjacent to the copoints in A_{j} for $j \in J$, there is a color in S_{i} that does not appear in the label of S_{j} for $j \in J$. This color can be used for the copoint D. Therefore, there is a proper coloring with s colors of $\mathcal{G}\left([n], \mathscr{L}_{m, n}\right)$.

We are confronted with the problem of determining the smallest integer s for which there is an m-nondecreasing sequence of length n of subsets of an s-element set S.

A binary covering array of strength $m+1$ is an $s \times n$ matrix A with entries in $\{0,1\}$ so that for every $s \times m+1$ submatrix B of A, every possible $0-1$ vector of length $m+1$ appears as a row of B.

Lemma 2.8. If A is an $s \times n$ binary covering array of strength $m+1$, then the columns of A are the characteristic vectors of an m-nondecreasing sequence of length n of subsets of an s-element set.

Proof. If A is an $s \times n$ binary covering array of strength $m+1$ and B is an $s \times m+1$ submatrix of A, then there is a row of B which consists of m zeroes followed by a 1 . This implies that the set with characteristic vector equal to column $m+1$ of B is not contained in the union of the sets whose characteristic vectors are the first m columns of B.

The survey paper of Lawrence et. al. [11] on covering arrays gives the result of Kleitman and Spencer [10] that there exist c_{m+1} and d_{m+1} such that the smallest integer s for which there exists an $s \times n$ binary covering array of strength $m+1$ is bounded below by ($c_{m+1}-$ $o(1)) \log n$ and above by $\left(d_{m+1}+o(1)\right) \log n$.

Corollary 2.9. There exists a constant d_{m+1} so that the chromatic number of $\mathcal{G}\left([n], \mathscr{L}_{m, n}\right)$ is at most $\left(d_{m+1}+o(1)\right) \log n$.
2.1. Order Dimension. Let $P=(X, \leq)$ be a partially ordered set. The order dimension of P, denoted $\operatorname{dim}(P)$, is the least positive integer t for which there exists a family $\mathcal{R}=\left\{L_{1}, L_{2}, \ldots, L_{t}\right\}$ of linear extensions of P so that $P=\cap \mathcal{R}$. Any family of linear extensions \mathcal{R} such that $\cap \mathcal{R}=P$ is called a realizer of P.

Let $\overrightarrow{\mathcal{G}}(X, \mathscr{L})$ be a directed graph with vertex set equal to the set of copoints of (X, \mathscr{L}) and there is a directed edge from $(\alpha(A), A)$ to $(\alpha(B), B)$ if $\alpha(B) \in A$. From this directed graph, we form a hypergraph $\mathcal{H}(X, \mathscr{L})$ on the same vertex set with $\left\{\left(\alpha\left(A_{1}\right), A_{1}\right),\left(\alpha\left(A_{2}\right), A_{2}\right), \ldots\left(\alpha\left(A_{k}\right), A_{k}\right)\right\}$ a hyperedge of $\mathcal{H}(X, \mathscr{L})$ if $\left\{\left(\alpha\left(A_{1}\right), A_{1}\right),\left(\alpha\left(A_{2}\right), A_{2}\right), \ldots\left(\alpha\left(A_{k}\right), A_{k}\right)\right\}$ is a minimal directed cycle in $\overrightarrow{\mathcal{G}}(X, \mathscr{L})$. Beagley [2] showed that the digraph $\overrightarrow{\mathcal{G}}(X, \mathscr{L})$ is isomorphic to one studied by Felsner and Trotter [7],[16] with the possible addition of vertices that do not appear in any directed cycles. It follows from the theory of order dimension that $\operatorname{dim}\left(L_{\mathscr{L}}\right)=\chi(\mathcal{H}(X, \mathscr{L}))$. The graph induced by the hyperedges of size 2 in $\mathcal{H}(X, \mathscr{L})$ is $\mathcal{G}(X, \mathscr{L})$.

Proposition 2.10. $\operatorname{dim}\left(L_{\mathscr{L}_{m, n}}\right)=\chi\left(\mathcal{G}\left([n], \mathscr{L}_{m, n}\right)\right)$

Proof. We show that $\mathcal{H}\left([n], \mathscr{L}_{m, n}\right) \cong \mathcal{G}\left([n], \mathscr{L}_{m, n}\right)$. Suppose that there is a hyperedge of size strictly more than $2,\left\{\left(\alpha\left(B_{1}\right), B_{1}\right),\left(\alpha\left(B_{2}\right), B_{2}\right), \ldots\left(\alpha\left(B_{k}\right), B_{k}\right)\right\}$ where $k>2$. There is some $i \in[k]$ such that $\alpha\left(B_{i}\right)<\alpha\left(B_{i+1}\right)$ in $[n]$, so $\alpha\left(B_{i}\right) \in B_{i+1}$. Also by definition of $\mathcal{H}\left([n], \mathscr{L}_{m, n}\right)$, we have that $\alpha\left(B_{i+1}\right) \in B_{i}$. Thus, there is an edge in $\mathcal{G}\left([n], \mathscr{L}_{m, n}\right)$ between B_{i+1} and B_{i}. So $\left\{\left(\alpha\left(B_{1}\right), B_{1}\right),\left(\alpha\left(B_{2}\right), B_{2}\right), \ldots\left(\alpha\left(B_{k}\right), B_{k}\right)\right\}$ was not a hyperedge with $k>2$.

Figure 2. The Standard Example, S_{5}
Let $f:\left(V\left(\mathcal{G}\left([n], \mathscr{L}_{1, n}\right)\right) \backslash\{1,2, \ldots, n-1\}\right) \rightarrow\binom{[n]}{2}$, where $f([i-1] \cup\{j\})=\{i, j\}$. Then f is a graph isomorphism from the subgraph of $\mathcal{G}\left([n], \mathscr{L}_{1, n}\right)$ induced by the vertices other than $\{1,2, \ldots, n-1\}$ to the shift graph of K_{n} (see [16],Chapter 8). The shift graph of K_{n} is known to have clique number 2 and chromatic number $\left\lceil\log _{2}(n)\right\rceil$.

In this construction, we have shown that the ratio between the chromatic number and the clique number of the graph $\mathcal{G}\left([n], \mathscr{L}_{m, n}\right)$ can get arbitrarily large. There is a related result about posets in a book of Trotter ([16]). The standard example, S_{n} for $n \geq 3$, is a partial order on $X=\left\{a_{1}, a_{2}, \ldots, a_{n}\right\} \cup\left\{b_{1}, b_{2}, \ldots, b_{n}\right\}$ with the relations $a_{i}<b_{j}$ if and only if $i \neq j$, for $i, j=1,2, \ldots, n$. For $i=1,2, \ldots, n, a_{i}$ is a minimal element and b_{i} is a maximal element of the partial order. Figure 2 is the Hasse diagram of the standard example S_{5}. It is known that the order dimension of S_{n} is n. However, posets with large order dimension do not require S_{n} as a subposet. Further, [16] gave examples where the ratio between the order dimension of a poset and the largest standard example becomes arbitrarily large. Proposition 2.11 shows that the independent sets of (X, \mathscr{L}) in $L_{\mathscr{L}}$ act in much the same manner as S_{n} in posets.

Proposition 2.11. Let (X, \mathscr{L}) be a convex geometry. $L_{\mathscr{L}}$ contains a subposet isomorphic to S_{k}, the standard example, if and only if $\mathcal{G}(X, \mathscr{L})$ contains a k-clique.

Proof. We label the standard example S_{k} contained in $L_{\mathscr{L}}$ in the usual way. Let p_{i} be a point in X such that $p_{i} \in\left(a_{i}-b_{i}\right)$ for $i=1,2, \ldots, k$. As $p_{i} \in a_{i}$, this means that for all $j \neq i, p_{i} \in b_{j}$. We now construct the copoint C_{i} to be a maximal subset of $X-p_{i}$ containing b_{i}. Consider the copoints C_{i} and C_{j} for $j \neq i . C_{j}$ is a copoint attached to p_{j} and C_{i} is a copoint attached to p_{i}. By definition, $p_{i} \in b_{j} \subseteq C_{j}$ and $p_{j} \in b_{i} \subseteq C_{i}$. This means that C_{i} and C_{j} are adjacent in the graph $\mathcal{G}(X, \mathscr{L})$. Since C_{i} and C_{j} are adjacent for all $i \neq j$, we have a clique of size k in $\mathcal{G}(X, \mathscr{L})$.

Conversely, let $\mathcal{G}(X, \mathscr{L})$ contain a k-clique composed of copoints $C_{1}, C_{2}, \ldots, C_{k}$ attached
to $p_{1}, p_{2}, \ldots, p_{k}$ respectively. By definition of $\mathcal{G}(X, \mathscr{L})$, this means that $p_{i} \in C_{j}$ when $i \neq j$. Thus, we let $a_{i}=\left\{p_{i}\right\}$ and $b_{i}=C_{i}$ for $i=1,2, \ldots, k$ and we have that $L_{\mathscr{L}}$ contains a subposet isomorphic to S_{k}.

Theorem 2.6 and Proposition 2.11 together show that the convex geometry ($[n], \mathscr{L}_{1, n}$) and its lattice of closed sets, $L_{\mathscr{L}_{1, n}}$, is an example of a poset that has order dimension that becomes arbitrarily large but does not contain a poset isomorphic to S_{3}. The lattice $L_{\mathscr{L}_{1, n}}$ is of order dimension k when $|X|=2^{k-1}$, which means that $\left|\mathscr{L}_{1, n}\right|=2^{2 k-3}+2^{k-1}+2^{k-2}+1$. The example given by Trotter (Example 5.3, [16]) requires a poset of size $R_{3}(k, 4)$ to have the order dimension equal to k, where $R_{3}(k, 4)$ is the Ramsey number on 3-regular hypergraphs. It is known that $R_{3}(k, 4)$ is at least $2^{c k \log (k)}$ for some constant $c[3]$. Thus the posets $L_{\mathscr{L}_{1, n}}$ perform the function of making the order dimension high at a greater economy than do the examples of [16].
2.2. Remarks. Convex geometries isomorphic to ([5], $\mathscr{L}_{1,5}$) are in the references [4] and [5]. The copoint graph for ($[5], \mathscr{L}_{1,5}$) contains an induced 5 -cycle. The convex geometry $\left([5], \mathscr{L}_{2,5}\right)$, for which the copoint graph has clique number 3 , shows that 5 elements do not force a 4-clique for general convex geometries even when every 2 -element subset is closed. Thus one would need more restrictions for combinatorial analogues of Esther Klein's result that 5 point sets in general position in the plane must contain vertex sets of convex 4 -gons. The chromatic number of $\mathcal{G}\left([5], \mathscr{L}_{2,5}\right)$, however, is 4 . This will be implied by a Theorem that we prove in the next section.

One can compute that for any m, n the total number of copoints of the convex geometry $\left([n], \mathscr{L}_{m, n}\right)$ is $\sum_{i=1}^{n}\left|A_{i}\right|=\sum_{i=1}^{n-m}\binom{n-i}{m}+\sum_{i=n-m+1}^{n} 1=\binom{n}{m+1}+m$. For the case $m=\left\lfloor\frac{n-1}{2}\right\rfloor$, we get that the total number of copoints is $\binom{n}{\left\lfloor\frac{n}{2}\right\rfloor}+\left\lfloor\frac{n-1}{2}\right\rfloor$. In the paper [9] it is stated that no examples of convex geometries with total number of copoints greater than the middle binomial coefficient for the number of elements are known.

3. Consequences of Freeness

We now introduce a new problem analogous to the Erdős - Szekeres problem: for any integer $k \geq d \geq 2$, determine the smallest positive integer $K_{d}(k)$ such that for any d-free convex geometry with $|X| \geq K_{d}(k)$ it follows that $\chi(\mathcal{G}(X, \mathscr{L})) \geq k$. There are two questions of interest related to the study of $K_{d}(k)$:

Figure 3. Lattice of Closed Sets for a Convex Geometry

1) Does the number $K_{d}(k)$ exist?
2) If so, how is $K_{d}(k)$ determined as a function of k ?

We specify $d \geq 2$ because of the following 1-free convex geometry. Let $X=[k]$, and for $S \subseteq[k]$ let $\mathscr{L}(S)=[\min (S), \max (S)] \cap X$. Figure 3 shows this convex geometry for $k=3$. It is clear that there are two chains of copoints for (X, \mathscr{L}), those containing 1 and those containing k. The graph $\mathcal{G}(X, \mathscr{L})$ has chromatic number 2 , for all k for this convex geometry, as each of the chains of copoints is an independent set in $\mathcal{G}(X, \mathscr{L})$. This convex geometry has every 1-element subset closed. Thus 1-freeness alone does not force the chromatic number of the copoint graph to increase with $|X|$.

To show that the number $K_{d}(k)$ exists for $d>1$, we focus on the question $K_{2}(k)$. It is sufficient to show $K_{2}(k)$ is finite, because d-freeness for $d>2$ implies that every 2 -element subset is also closed, because \mathscr{L} is an alignment.

Let (X, \mathscr{L}) be a 2 -free convex geometry and $\mathcal{I}=\left\{I_{1}, I_{2}, \ldots, I_{t}\right\}$ be a partition of $\mathcal{G}(X, \mathscr{L})$ into independent sets. For $x, y \in X, x \neq y$, define $S_{x y}=\{j \in[t]$: there is a copoint C with $\alpha(C)=$ $\left.y, x \in C, C \in I_{j}\right\}$. For each $x \in X$, let $D_{x}=\left\{S_{y x}: y \neq x\right\}$.

A family of subsets of $[t]$ is called intersecting if $A \cap B \neq \emptyset$ whenever $A, B \in[t]$. An intersecting family of subsets is maximal if it is contained in no other intersecting family.

Lemma 3.1. For each $x \in X, D_{x}$ is an intersecting family.

Proof. A copoint C attached to x is a maximal closed subset in $X-x$. For any $\{y, z\}$ with x, y, and z distinct $\{y, z\}$ is closed, so there is a copoint containing $\{y, z\}$ attached to x. This copoint must be in one of the independent sets I_{j}. Therefore, $j \in S_{y x} \cap S_{z x}$ and $S_{y x} \cap S_{z x} \neq \emptyset$.

Corollary 3.2. No two families D_{x} for $x \in X$ are contained in the same maximal intersecting family of $[t]$.

Proof. For $x \neq y, S_{y x}$ is contained in the complement of $S_{x y}$ in $[t]$, because \mathcal{I} is a proper coloring of $\mathcal{G}(X, \mathscr{L})$.

Results similar to Lemma 3.1 and Corollary 3.2 also appear in [8] and [12]. Moreover, in [12], Morris noted that the number $\gamma(n)$ of maximal intersecting families of subsets of an n-element set is at least $\left.2^{(\lfloor(n-1) / 2\rfloor}\right)$, which is a result of Spencer [15].

Theorem 3.3. $K_{2}(k)=\gamma(k)$

Proof. Corollary 3.2 shows that $K_{2}(k) \leq \gamma(k)$. The construction of Hoşten and Morris [8] gives a 2 -free convex geometry of convex dimension k with $\gamma(k)$ elements, for any k. Edelman and Jamison ([4]) proved that the convex dimension is bounded below by the order dimension and Beagley [2] proved that the order dimension is bounded below by $\chi(\mathcal{G}(X, \mathscr{L}))$. So, $K_{2}(k) \geq \gamma(k)$. Therefore, $K_{2}(k)=\gamma(k)$.

Corollary 3.4. $K_{d}(k)$ exists for $d \geq 2$, and $K_{d}(k) \leq 2^{\binom{k-1}{\lfloor(k-1) / 2\rfloor}}$

The computation of the numbers $K_{d}(k)$ for $d>2$ appears to be difficult, in general. We will calculate $K_{d}(d+2)$. Before we do this, we recall a result of Morris and Soltan [14] to indicate the kind of combinatorial restrictions that lead to analogous results for the clique number. The Carathéodory number of a convex geometry (X, \mathscr{L}) is the least positive integer c such that $\mathscr{L}(Y)=\cup\{\mathscr{L}(Z): Z \subseteq Y,|Z| \leq c\}$ for any $Y \subseteq X$.

Let c be the Carathéodory number of a convex geometry (X, \mathscr{L}), and suppose that every c - 1-element subset of X is closed. We say that (X, \mathscr{L}) satisfies the simplex partition property if for any set $\left\{z_{1}, z_{2}, \ldots, z_{c+2}\right\}$ of $c+2$ elements of X, the point z_{c+2} belongs to exactly one of the sets $\mathscr{L}\left(z_{1}, \ldots, z_{i-1}, z_{i+1}, \ldots, z_{c}, z_{c+1}\right), i=1, \ldots, c$. We state a result of Morris and Soltan [14].

Proposition 3.5 ([14], 5.6). Let (X, \mathscr{L}) be a $(c-1)$-free convex geometry. If (X, \mathscr{L}) has Carathéodory number c, the simplex partition property, and $|X|=c+2$, then X contains $c+1$ convexly independent points.

The analogous result for chromatic number does not require the simplex partition property or any condition on the Carathéodory number, only that every $c-1$ element subset be closed.

Theorem 3.6. $K_{c-1}(c+1)=c+2$ for $c \geq 2$.

Proof. The example from Section 2, $\left([c+1], \mathscr{L}_{c-1, c+1}\right)$, is realizable by a $(c-1)$-simplex with a point in the interior. The copoints of the form $[c+1] \backslash\{i\}$ for $i=2,3, \ldots, c+1$ form a c-clique. The remaining copoints are $[c+1] \backslash\{1, i\}$ for $i=2,3, \ldots, c+1$. For $i=2,3, \ldots, c+1$, the copoint $[c+1] \backslash\{1, i\}$ can be colored with the same color as $[c+1] \backslash\{i\}$, so $\chi\left(\mathcal{G}\left([c+1], \mathscr{L}_{c-1, c+1}\right)\right)=c$. Thus $K_{c-1}(c+1) \geq c+2$.

Let $X=\left\{q_{1}, q_{2}, p_{1}, \ldots, p_{c}\right\}$ and assume that $q_{1}, q_{2} \in \mathscr{L}\left(p_{1}, \ldots, p_{c}\right)$. Further, consider the copoints of (X, \mathscr{L}). If there is a convexly independent set of size $c+1$, we have the conclusion. So we may assume that there is no convexly independent set of size $c+1$. There are copoints $\left(p_{i}, q_{1} q_{2} p_{1} \ldots p_{i-1} p_{i+1} \ldots p_{c}\right)$ for $i=1, \ldots, c$. Also, there are copoints of the form $\left(q_{j_{i}}, q_{k_{i}} p_{1} \ldots p_{i-1} p_{i+1} \ldots p_{c}\right)$, because the set $q_{1} q_{2} p_{1} \ldots p_{i-1} p_{i+1} \ldots p_{c}$ is closed and the set $q_{k_{i}} p_{1} \ldots p_{i} \ldots p_{c}$ is not closed. We see that for $i_{1}, i_{2} \in\{1, \ldots c\}, i_{1} \neq i_{2}$, $p_{i_{1}} \in q_{k_{i_{1}}} p_{1} \ldots p_{i_{2}-1} p_{i_{2}+1} \ldots p_{c}$ and $q_{j_{i_{2}}} \in q_{1} q_{2} p_{1} \ldots p_{i-1} p_{i+1} \ldots p_{c}$, so these two copoints are adjacent. Suppose that $\chi(\mathcal{G}(X, \mathscr{L}))=c$, then the following copoints must be colored with the same color: $\left(p_{i}, q_{1} q_{2} p_{1} \ldots p_{i-1} p_{i+1} \ldots p_{c}\right),\left(q_{j_{i}}, q_{k_{i}} p_{1} \ldots p_{i-1} p_{i+1} \ldots p_{c}\right)$ for $i=1, \ldots, c$. Consider the closed set $q_{j_{1}} p_{2} \ldots p_{c}$, which is a copoint attached to $q_{k_{1}}$ because $q_{j_{1}} p_{1} p_{2} \ldots p_{c}$ is not a closed set. The copoint $\left(q_{k_{1}}, q_{j_{1}} p_{2} \ldots p_{c}\right)$ is adjacent to some copoint in each color class because $q_{k_{1}} \in q_{1} q_{2} p_{1} \ldots p_{i-1} p_{i+1} \ldots p_{c}$ and $p_{i} \in q_{j_{1}} p_{2} \ldots p_{c}$ for $i=2, \ldots c$. In addition, $q_{k_{1}} \in q_{k_{1}} p_{2} \ldots p_{c}$ and $q_{j_{1}} \in q_{j_{1}} p_{2} \ldots p_{c}$. Thus, $\chi(\mathcal{G}(X, \mathscr{L})) \geq c+1$.

References

[1] Aichholzer, O., Aurenhammer, F., Krasser, H.: Enumerating order types for small point sets with applications, Order 19 (2002), 265-281.
[2] Beagley, J: On the Order of Convex Geometries, to appear in Order
[3] Conlon, D., Fox, J., Sudakov, B.: Hypergraph Ramsey Numbers, Jour. of the Amer. Math. Soc. 23 (2010), 247-266.
[4] Edelman, P., Jamison, R.: The Theory of Convex Geometries, Geometriae Dedicata 19 (1985), 247-270.
[5] Edelman, P., Saks, M.: Combinatorial Representation and Convex Dimension of Convex Geometries, Order 5 (1988), 23-32.
[6] Erdős, P., Szekeres, G.: A combinatorial problem in geometry, Compositio Math 2 (1935), 463-470.
[7] Felsner, S., Trotter, W.: Dimension, Graph and Hypergraph Coloring, Order 17 (2000), 167-177.
[8] Hoşten, S., Morris, W.: The order dimension of the complete graph, Discrete Math. 201 (1999), 133-139.
[9] Jamison, R.: Copoints in antimatroids, Vol. II. Congr. Numer. 29 (1980), 535-544.
[10] Kleitman, D., Spencer, J.: Families of k-independent sets, Discrete Math. 6 (1973), 255-262.
[11] Lawrence, J., Kacker, R., Lei, Y., Kuhn, D., Forbes, M.: A Survey of Binary Covering Arrays, Elec. Jour. of Comb. 18 (2011)
[12] Morris, W: Convex Dimension of Locally Planar Convex Geometries, Discrete Comput. Geom. 25 (2001), 85-101.
[13] Morris, W: Coloring copoints of a planar point set, Discrete Applied Math. 154 (2006), 1742-1752.
[14] Morris, W, Soltan, V: The Erdös-Szekeres Problem on Points in Convex Position - A Survey, Bul. of the AMS 37 (2000), 437-458.
[15] Spencer, J.: Minimal scrambling sets of simple orders, Acta Math. Acad. Sci. Hung. 22 (1971), 349-353.
[16] Trotter, W.: Combinatorics and Partially Ordered Sets, Johns Hopkins University Press (1992)

Department of Mathematical Sciences, George Mason University, 4400 University Drive, FAIRfax, VA 22030

E-mail address: jbeagley@gmu.edu, wmorris@gmu.edu

[^0]: 2010 Mathematics Subject Classification. 52C10, 05C15, 06A07.

