An Esther Klein Type Coloring Theorem

Jonathan E. Beagley
Walter D. Morris
George Mason University

JMM January 9, 2013

Point Sets in General Position

- Let X be a finite set of points in \mathbb{R}^{2} in general position (no three on a line)

Point Sets in General Position

- Let X be a finite set of points in \mathbb{R}^{2} in general position (no three on a line)
- Observation: Any three points in general position form the vertex set of a triangle

Sets of Five Points in General Position

There are three order types of five points in general position in \mathbb{R}^{2}

Sets of Five Points in General Position

There are three order types of five points in general position in \mathbb{R}^{2}

These all contain the vertex set of a convex 4-gon.

Generalized Problem

Problem (Erdős-Szekeres (1935))

For any $n \geq 3$, to determine the smallest positive integer $N(n)$ such that any set of at least $N(n)$ points in general position in the plane (no three points are on a line) contains n points that are the vertices of a convex n-gon.

Erdős and Szekeres proved that $N(n)$ is finite (using Ramsey Theory) and in 1961 provided a construction of 2^{n-2} points in general position without the vertex set of a convex n-gon. It is known that $2^{n-2}+1 \leq N(n) \leq\binom{ 2 n-5}{n-2}+1$.

Convex Geometries

- Let X be a finite set, \mathscr{L} a collection of subsets of X with $\emptyset \in \mathscr{L}, X \in \mathscr{L}$ and $A \cap B \in \mathscr{L}$ whenever $A, B \in \mathscr{L}$
- $L_{\mathscr{L}}=(\mathscr{L}, \subseteq)$ is a lattice partially ordered by inclusion
- For $C \subseteq X$, define $\mathscr{L}(C)$ to be the intersection of all $A \in \mathscr{L}$ such that $C \subseteq A$
- If $\mathscr{L}(C)=C$, then C is closed or convex
- For every $C \in \mathscr{L}$, there is a $p \in X \backslash C$ such that $C \cup p \in \mathscr{L}$
- The pair (X, \mathscr{L}) where \mathscr{L} has the properties above, is called a convex geometry

Examples of Convex Geometries

- X a finite set of points in \mathbb{R}^{n} and for $A \subseteq X$,
$\mathscr{L}(A)=\operatorname{conv}(A) \cap X$
- Let T be a graph theoretic tree. $K \subseteq V(T)$ is closed if the subgraph induced by K is connected.

Copoints

- A closed subset A is a copoint if there is exactly one closed subset B such that $|B \backslash A|=1$
- The set of copoints is $M(X)$
- The unique element in $|\boldsymbol{B} \backslash \boldsymbol{A}|$ is denoted $\alpha(\boldsymbol{A})$
- We say the copoint \boldsymbol{A} is attached to $\alpha(\boldsymbol{A})$
- The copoints of a convex geometry realized by point sets in \mathbb{R}^{n} are subsets of X intersected with open half spaces bounded by a hyperplane through only one point of X

Copoints

Independence

- $B \subseteq X$ is called (convexly) independent if for all $p \in B$, $p \notin \mathscr{L}(B \backslash p)$
- For lattice of closed sets $L_{\mathscr{L}}=(\mathscr{L}, \subseteq)$, the size of the largest independent set is $b\left(L_{\mathscr{L}}\right)$
- The vertex set of a convex n-gon corresponds to an independent set of size n

Graph of Copoints

- Create a graph, $\mathcal{G}(X, \mathscr{L})$, with vertex set equal to $M(X)$ and there is an edge $A B$ if and only if $\alpha(\boldsymbol{A}) \in \boldsymbol{B}$ and $\alpha(\boldsymbol{B}) \in \boldsymbol{A}$
- Morris showed that the cliques in $\mathcal{G}(X, \mathscr{L})$ correspond to independent sets in (X, \mathscr{L})
- Beagley showed that the chromatic number of $\mathcal{G}(X, \mathscr{L})$ is related to the order dimension of $L_{\mathscr{L}}$

Graph of Copoints

Results for $\mathcal{G}(X, \mathscr{L})$

- Let X is a planar point set in general position and $\mathscr{L}(A)=\operatorname{conv}(A) \cap X$
- Morris showed that if $|X|>2^{n-2}$, then $\chi(\mathcal{G}(X, \mathscr{L})) \geq n$
- Recall, the ES conjecture is $|X|>2^{n-2}$, then $\omega(\mathcal{G}(X, \mathscr{L})) \geq n$

Different Clique and Chromatic Numbers

Different Clique and Chromatic Numbers

```
    3•
```



```
                            \bullet6
    4•
    1•
\chi ( \mathcal { G } ( X , \mathscr { L } ) ) = 5 , \omega ( \mathcal { G } ( X , \mathscr { L } ) ) = 4
```


An Esther Klein Type Theorem

Theorem (B.-Morris)

Let (X, \mathscr{L}) be a convex geometry with every two element subset closed. If $|X|=5$, then $\chi(\mathcal{G}(X, \mathscr{L})) \geq 4$.

This compares with the theorem of Esther Klein that every planar point set in general position of size 5 contains the vertex set of a convex 4-gon.

Generalized EK Type Theorem

Theorem (B.- Morris)

Let (X, \mathscr{L}) be a convex geometry and $d \geq 2$ with every d element subset closed. If $|X|=d+3$, then $\chi(\mathcal{G}(X, \mathscr{L})) \geq d+2$.

An ES Coloring Problem

Problem

For any integer $n \geq d \geq 2$, determine the smallest positive integer $K_{d}(n)$ such that any set of $K_{d}(n)$ points with every d element subset closed requires that $\chi(\mathcal{G}(X, \mathscr{L})) \geq n$.

The last theorem showed that $K_{d}(d+2)=d+3$. Two important questions can be asked about $K_{d}(n)$:
(1) Does the number $K_{d}(n)$ exist?
(2) If so, how is $K_{d}(n)$ determined as a function of n ?

General Result

- It suffices to show that $K_{2}(n)$ exists
- Let $\gamma(n)$ be the number of maximal intersecting families of subsets of an n-element set
- A famous result of Spencer states that $\gamma(n) \geq 2^{\binom{n-1}{(n-1) / 2\rfloor}}$

Theorem (B.-Morris)
$K_{2}(n)=\gamma(n)$
The proof is related to the computation of the order dimension of K_{n}

References

- Beagley, Morris. "Chromatic Numbers of Copoint Graphs of Convex Geometries", submitted
Available at http://math.gmu.edu/~jbeagley/research/CopointGraph.pdf

