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A Problem of Planar Point Sets
Convex Geometries
Graphs of Copoints

Point Sets in General Position

Let X be a finite set of points in R2 in general position (no
three on a line)

Observation: Any three points in general position form the
vertex set of a triangle
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Sets of Five Points in General Position

There are three order types of five points in general position in R2

These all contain the vertex set of a convex 4-gon.
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Generalized Problem

Problem (Erdős-Szekeres (1935))

For any n ≥ 3, to determine the smallest positive integer N(n)
such that any set of at least N(n) points in general position in the
plane (no three points are on a line) contains n points that are the
vertices of a convex n-gon.

Erdős and Szekeres proved that N(n) is finite (using Ramsey
Theory) and in 1961 provided a construction of 2n−2 points in
general position without the vertex set of a convex n-gon.
It is known that 2n−2 + 1 ≤ N(n) ≤

(2n−5
n−2

)
+ 1.
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Convex Geometries

Let X be a finite set, L a collection of subsets of X with
∅ ∈ L , X ∈ L and A ∩ B ∈ L whenever A,B ∈ L

LL = (L ,⊆) is a lattice partially ordered by inclusion

For C ⊆ X , define L (C) to be the intersection of all A ∈ L
such that C ⊆ A

If L (C) = C, then C is closed or convex

For every C ∈ L , there is a p ∈ X\C such that C ∪ p ∈ L

The pair (X ,L ) where L has the properties above, is called
a convex geometry
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Examples of Convex Geometries

X a finite set of points in Rn and for A ⊆ X ,
L (A) = conv(A) ∩ X
Let T be a graph theoretic tree. K ⊆ V (T ) is closed if the
subgraph induced by K is connected.
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Copoints

A closed subset A is a copoint if there is exactly one closed
subset B such that |B\A| = 1

The set of copoints is M(X )

The unique element in |B\A| is denoted α(A)

We say the copoint A is attached to α(A)

The copoints of a convex geometry realized by point sets in
Rn are subsets of X intersected with open half spaces
bounded by a hyperplane through only one point of X
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Independence

B ⊆ X is called (convexly) independent if for all p ∈ B,
p /∈ L (B\p)
For lattice of closed sets LL = (L ,⊆), the size of the largest
independent set is b(LL )

The vertex set of a convex n-gon corresponds to an
independent set of size n
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Graph of Copoints

Create a graph, G(X ,L ), with vertex set equal to M(X ) and
there is an edge AB if and only if α(A) ∈ B and α(B) ∈ A

Morris showed that the cliques in G(X ,L ) correspond to
independent sets in (X ,L )

Beagley showed that the chromatic number of G(X ,L ) is
related to the order dimension of LL
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Results for G(X ,L )

Let X is a planar point set in general position and
L (A) = conv(A) ∩ X

Morris showed that if |X | > 2n−2, then χ(G(X ,L )) ≥ n

Recall, the ES conjecture is |X | > 2n−2, then ω(G(X ,L )) ≥ n
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Different Clique and Chromatic Numbers
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χ(G(X ,L )) = 5, ω(G(X ,L )) = 4
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Theorem (B.-Morris)

Let (X ,L ) be a convex geometry with every two element subset
closed. If |X | = 5, then χ(G(X ,L )) ≥ 4.

This compares with the theorem of Esther Klein that every planar
point set in general position of size 5 contains the vertex set of a
convex 4-gon.

An Esther Klein Type Coloring Theorem



Introduction
An Esther Klein Type Result

An Esther Klein Type Theorem

Generalized EK Type Theorem

Theorem (B.- Morris)

Let (X ,L ) be a convex geometry and d ≥ 2 with every d element
subset closed. If |X | = d + 3, then χ(G(X ,L )) ≥ d + 2.
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An ES Coloring Problem

Problem
For any integer n ≥ d ≥ 2, determine the smallest positive integer
Kd(n) such that any set of Kd(n) points with every d element
subset closed requires that χ(G(X ,L )) ≥ n.

The last theorem showed that Kd(d + 2) = d + 3. Two important
questions can be asked about Kd(n):

1 Does the number Kd(n) exist?
2 If so, how is Kd(n) determined as a function of n?
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General Result

It suffices to show that K2(n) exists

Let γ(n) be the number of maximal intersecting families of
subsets of an n-element set

A famous result of Spencer states that γ(n) ≥ 2(
n−1

b(n−1)/2c)

Theorem (B.-Morris)

K2(n) = γ(n)

The proof is related to the computation of the order dimension of
Kn
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