Properties of the Copoint Graph of Convex Geometries

Jonathan E. Beagley

George Mason University, Fairfax, VA, USA

March 08, 2013

Outline

(1) Introduction

- Definitions and Motivation
- Graphs of Copoints
(2) Further Developments
- Minors
- Different Clique and Chromatic Numbers
- Direct Sum of Convex Geometries

Motivating Conjecture

Problem (Erdős-Szekeres)

For any $n \geq 3$, to determine the smallest positive integer $N(n)$ such that any set of at least $N(n)$ points in general position in the plane (no three points are on a line) contains n points that are the vertices of a convex n-gon.

- In 1935, Erdős and Szekeres proved that $N(n)$ is finite and in 1961 provided a construction of 2^{n-2} points in general position without the vertex set of a convex n-gon
- Erdős and Szekeres conjectured that $N(n)=2^{n-2}+1$

Convex Geometries

- Let X be a finite set, \mathscr{L} a collection of subsets of X with $\emptyset \in \mathscr{L}, X \in \mathscr{L}$ and $A, B \in \mathscr{L}$ implies that $A \cap B \in \mathscr{L}$
- For every $C \in \mathscr{L}$, there is a $p \in X \backslash C$ such that $C \cup p \in \mathscr{L}$
- The pair (X, \mathscr{L}) where \mathscr{L} has the properties above, is called a convex geometry
- For $C \subseteq X$, define $\mathscr{L}(C)$ to be the intersection of all $A \in \mathscr{L}$ such that $C \subseteq A$
- If $\mathscr{L}(C)=C$, then C is closed or convex
- $L_{\mathscr{L}}=(\mathscr{L}, \subseteq)$ is a lattice partially ordered by inclusion

Examples of Convex Geometries

- X a finite set of points in \mathbb{R}^{n}, and for $A \subseteq X$, $\mathscr{L}(A)=\operatorname{conv}(A) \cap X$
- Let T be a tree, $K \subseteq V(T)$ is closed if the induced subgraph on K is connected

Copoints

- A closed subset A is a copoint if there is exactly one closed subset B such that $|B \backslash A|=1$
- The copoints are the meet-irreducible elements of $L_{\mathscr{L}}$
- The set of copoints ordered by inclusion is called $M(X, \mathscr{L})$
- The unique element in $|\boldsymbol{B} \backslash \boldsymbol{A}|$ is denoted $\alpha(\boldsymbol{A})$
- We say the copoint \boldsymbol{A} is attached to $\alpha(\boldsymbol{A})$

Copoints

Graph of Copoints

- Create a graph, $\mathcal{G}(X, \mathscr{L})$, with vertex set equal to $M(X, \mathscr{L})$ and there is an edge $A B$ if and only if $\alpha(A) \in B$ and $\alpha(B) \in A$
- Morris (2006) showed that the cliques in $\mathcal{G}(X, \mathscr{L})$ correspond to convexly independent sets in (X, \mathscr{L})
- B. (to appear in Order) showed that the chromatic number of $\mathcal{G}(X, \mathscr{L})$ is a lower bound for the order dimension of $L_{\mathscr{L}}$, $\operatorname{dim}\left(L_{\mathscr{L}}\right)$

Graph of Copoints

- Create a graph, $\mathcal{G}(X, \mathscr{L})$, with vertex set equal to $M(X, \mathscr{L})$ and there is an edge $A B$ if and only if $\alpha(\boldsymbol{A}) \in B$ and $\alpha(B) \in \boldsymbol{A}$
- Morris (2006) showed that the cliques in $\mathcal{G}(X, \mathscr{L})$ correspond to convexly independent sets in (X, \mathscr{L})
- B. (to appear in Order) showed that the chromatic number of $\mathcal{G}(X, \mathscr{L})$ is a lower bound for the order dimension of $L_{\mathscr{L}}$, $\operatorname{dim}\left(L_{\mathscr{L}}\right)$
- Question: Does $\chi(\mathcal{G}(X, \mathscr{L}))=\operatorname{dim}\left(L_{\mathscr{L}}\right)$ for all convex geometries (X, \mathscr{L}) ?

Graph of Copoints

Results for Planar Point Sets in General Position

- Let X be a planar point set in general position and $\mathscr{L}(A)=\operatorname{conv}(A) \cap X$
- Morris showed that if $|X|>2^{n-2}$, then $\chi(\mathcal{G}(X, \mathscr{L})) \geq n$
- Recall, the ES conjecture is $|X|>2^{n-2}$, implies $\omega(\mathcal{G}(X, \mathscr{L})) \geq n$

Not every Graph is a Copoint Graph

Theorem (B.)

There is no convex geometry (X, \mathscr{L}) such that $\mathcal{G}(X, \mathscr{L})$ is equal to a cycle on 6 or more vertices

Let $|X|=n$, then there must be two copoints of size $n-1$ otherwise $\mathcal{G}(X, \mathscr{L})$ is disconnected. Call these two copoints A and B.

Proof of Theorem

We can say, $\alpha(A)=n$ and $\alpha(B)=n-1$

Proof of Theorem

There are two more copoints, A_{1} and B_{1} with adjacent to A and B respectively

Proof of Theorem

Suppose $\alpha\left(A_{1}\right) \neq \alpha\left(B_{1}\right)$:

Proof of Theorem

Suppose $\alpha\left(\boldsymbol{A}_{1}\right) \neq \alpha\left(B_{1}\right)$:

Proof of Theorem

Suppose $\alpha\left(\boldsymbol{A}_{1}\right) \neq \alpha\left(B_{1}\right)$:

So, $\alpha\left(A_{1}\right)=\alpha\left(B_{1}\right)=n-2$.

Proof of Theorem

There are two more copoints, A_{2}, B_{2} that are subsets of $\{12 \ldots n-2\}$.

Proof of Theorem

There are two more copoints, A_{2}, B_{2} that are subsets of $\{12 \ldots n-2\}$.

Proof of Theorem

There is a copoint of size $n-3$ containing A_{2}, call this copoint C.

Proof of Theorem

\boldsymbol{C} does not contain $n, n-1$, and $\alpha(C)$. This means that $\alpha(C) \in A_{1}$ and $\alpha(C) \in B_{1}$. But $n-2 \in A_{2} \subseteq C$, so:

Proof of Theorem

\boldsymbol{C} does not contain $n, n-1$, and $\alpha(C)$. This means that $\alpha(C) \in A_{1}$ and $\alpha(C) \in B_{1}$. But $n-2 \in A_{2} \subseteq C$, so:

This contains a cycle of size 5 . So, there is no convex geometry with $\mathcal{G}(X, \mathscr{L})$ equal to a cycle of size 6 or more.

Restriction

- Let (X, \mathscr{L}) be a convex geometry and $Y \subseteq X$
- The restriction of \mathscr{L} to Y, is the alignment $\left.\mathscr{L}\right|_{Y}=\{C \cap Y \mid C \in \mathscr{L}\}$
- The pair $\left(Y,\left.\mathscr{L}\right|_{Y}\right)$ is a convex geometry.

Restriction and the Copoint Graph

Theorem (B.)

Let (X, \mathscr{L}) be a convex geometry with copoint graph $\mathcal{G}(X, \mathscr{L})$. For all $p \in X$,
$\chi\left(\mathcal{G}\left(X-p,\left.\mathscr{L}\right|_{X-p}\right)\right)+1 \geq \chi(\mathcal{G}(X, \mathscr{L})) \geq \chi\left(\mathcal{G}\left(X-p,\left.\mathscr{L}\right|_{X-p}\right)\right)$.
To prove this, we construct graph homomorphisms between $\mathcal{G}\left(X-p,\left.\mathscr{L}\right|_{X-p}\right)$ and $\left.\mathcal{G}(X, \mathscr{L})\right|_{X-p}$.
Also note that $A_{p}=\{C \in \mathscr{L}: C$ is a copoint attached to $p\}$ is an independent set in $\mathcal{G}(X, \mathscr{L})$.

Contraction

- Let (X, \mathscr{L}) be a convex geometry and $Y \subseteq X$ with $Y \in \mathscr{L}$
- The contraction of \mathscr{L} with respect to Y, is the alignment $\mathscr{L} / Y=\{C \subseteq X-Y \mid C=\mathscr{L}(D \cup Y)-Y$ for some $D \subseteq X-Y\}$
- The pair $(X-Y, \mathscr{L} / Y)$ is a convex geometry.

Contraction and the Copoint Graph

Theorem (B.)

Let (X, \mathscr{L}) be a convex geometry with $p \in X, p \in \mathscr{L}$.
$\mathcal{G}(X-p, \mathscr{L} / p)$ is isomorphic to the subgraph of $\mathcal{G}(X, \mathscr{L})$ induced by the set copoints containing p. Also,
$\chi(\mathcal{G}(X, \mathscr{L})) \geq \chi(\mathcal{G}(X-p, \mathscr{L} / p))$.
To prove this, we construct a graph isomorphism between $\mathcal{G}(X-p, \mathscr{L} / p)$ and the induced subgraph of $\mathcal{G}(X, \mathscr{L})$ on the copoints that contain p.

Different Clique and Chromatic Numbers

Different Clique and Chromatic Numbers

```
    3•
```



```
                            \bullet6
    4•
    1•
\chi ( \mathcal { G } ( X , \mathscr { L } ) ) = 5 , \omega ( \mathcal { G } ( X , \mathscr { L } ) ) = 4
```


Different Clique and Chromatic Numbers

We computed the chromatic number and clique number for every point set of size 9 or less points in general position from Oswin Aichholzer's Database (http://www.ist.tugraz.at/staff/aichholzer/research/rp/triangulations/ordertypes/)

n	\# of Order Types	With Distinct Chromatic and Clique Number
3	1	0
4	2	0
5	3	0
6	16	1
7	135	8
8	3315	85
9	158817	7949

All point sets have $\chi(\mathcal{G}(X, \mathscr{L}))-\omega(\mathcal{G}(X, \mathscr{L})) \in\{0,1\}$.

Question

- There exist planar point sets X in general position with $\chi(\mathcal{G}(X, \mathscr{L}))>\omega(\mathcal{G}(X, \mathscr{L}))$
- Is it possible to construct, for every positive integer m, a planar point set X such that $\chi(\mathcal{G}(X, \mathscr{L}))-\omega(\mathcal{G}(X, \mathscr{L}))>m$?

Question

- There exist planar point sets X in general position with $\chi(\mathcal{G}(X, \mathscr{L}))>\omega(\mathcal{G}(X, \mathscr{L}))$
- Is it possible to construct, for every positive integer m, a planar point set X such that $\chi(\mathcal{G}(X, \mathscr{L}))-\omega(\mathcal{G}(X, \mathscr{L}))>m$?
- Possible to do for a convex geometry.

Direct Sum of Convex Geometries

Definition

Let $\left(X_{1}, \mathscr{L}_{1}\right)$ and $\left(X_{2}, \mathscr{L}_{2}\right)$ be convex geometries, we define $\left(X_{1}, \mathscr{L}_{1}\right) \oplus\left(X_{2}, \mathscr{L}_{2}\right)=(X, \mathscr{L})$ to be the direct sum of convex geometries where $X=X_{1} \sqcup X_{2}$ and $\mathscr{L}(C)=\mathscr{L}_{1}\left(C_{X_{1}}\right) \sqcup \mathscr{L}_{2}\left(C_{X_{2}}\right)$ where $C_{X_{i}}=C \cap X_{i}$.

Proposition (B.)

Let $\left(X_{1}, \mathscr{L}_{1}\right),\left(X_{2}, \mathscr{L}_{2}\right)$ be convex geometries and
$(X, \mathscr{L})=\left(X_{1}, \mathscr{L}_{1}\right) \oplus\left(X_{2}, \mathscr{L}_{2}\right)$. Then, $\mathcal{G}(X, \mathscr{L})=\mathcal{G}\left(X_{1}, \mathscr{L}_{1}\right) \vee \mathcal{G}\left(X_{2}, \mathscr{L}_{2}\right)$

Direct Sum of Convex Geometries

$$
\omega(\mathcal{G}(X, \mathscr{L}))=2, \chi(\mathcal{G}(X, \mathscr{L}))=3
$$

Direct Sum of Convex Geometries

Proposition (B.)

For all integers $m \geq 0$, there exists a convex geometry (X, \mathscr{L}) such that $\chi(\mathcal{G}(X, \mathscr{L}))-\omega(\mathcal{G}(X, \mathscr{L}))>m$.

- We take the direct sum of the convex geometry on the previous slide m times.
- $\chi(\mathcal{G}([n], \mathscr{L}))-\omega(\mathcal{G}([n], \mathscr{L}))=\frac{n}{4}$
- This compares to a construction of B.-Morris where $\frac{\chi(\mathcal{G}([n], \mathscr{L}))}{\omega(\mathcal{G}([n], \mathscr{L}))}=\frac{\left\lceil\log _{2}(n+1)\right\rceil}{2}$

Questions?

