Properties of the Copoint Graph of Convex Geometries

Jonathan E. Beagley

George Mason University, Fairfax, VA, USA

March 08, 2013

Copoint Graph of Convex Geometries

Outline

Introduction

- Definitions and Motivation
- Graphs of Copoints

2 Further Developments

- Minors
- Different Clique and Chromatic Numbers
- Direct Sum of Convex Geometries

Definitions and Motivation Graphs of Copoints

Motivating Conjecture

Problem (Erdős-Szekeres)

For any $n \ge 3$, to determine the smallest positive integer N(n) such that any set of at least N(n) points in general position in the plane (no three points are on a line) contains n points that are the vertices of a convex n-gon.

- In 1935, Erdős and Szekeres proved that N(n) is finite and in 1961 provided a construction of 2ⁿ⁻² points in general position without the vertex set of a convex n-gon
- Erdős and Szekeres conjectured that $N(n) = 2^{n-2} + 1$

Convex Geometries

- Let *X* be a finite set, \mathscr{L} a collection of subsets of *X* with $\emptyset \in \mathscr{L}$, $X \in \mathscr{L}$ and $A, B \in \mathscr{L}$ implies that $A \cap B \in \mathscr{L}$
- For every $C \in \mathscr{L}$, there is a $p \in X \setminus C$ such that $C \cup p \in \mathscr{L}$
- The pair (*X*, *L*) where *L* has the properties above, is called a *convex geometry*
- For C ⊆ X, define L(C) to be the intersection of all A ∈ L such that C ⊆ A
- If $\mathscr{L}(C) = C$, then C is *closed* or *convex*
- $L_{\mathscr{L}} = (\mathscr{L}, \subseteq)$ is a lattice partially ordered by inclusion

Introduction Definitions and Motivation Further Developments Graphs of Copoints

Examples of Convex Geometries

- X a finite set of points in \mathbb{R}^n , and for $A \subseteq X$, $\mathscr{L}(A) = \operatorname{conv}(A) \cap X$
- Let T be a tree, K ⊆ V(T) is closed if the induced subgraph on K is connected

Copoints

- A closed subset A is a *copoint* if there is exactly one closed subset B such that |B\A| = 1
- The copoints are the meet-irreducible elements of $L_{\mathscr{L}}$
- The set of copoints ordered by inclusion is called $M(X, \mathcal{L})$
- The unique element in $|B \setminus A|$ is denoted $\alpha(A)$
- We say the copoint A is attached to $\alpha(A)$

Definitions and Motivation Graphs of Copoints

Copoints

Copoint Graph of Convex Geometries

(日)

æ

Graph of Copoints

- Create a graph, G(X, ℒ), with vertex set equal to M(X, ℒ) and there is an edge AB if and only if α(A) ∈ B and α(B) ∈ A
- Morris (2006) showed that the cliques in G(X, L) correspond to convexly independent sets in (X, L)
- B. (to appear in Order) showed that the chromatic number of G(X, L) is a lower bound for the *order dimension* of L_L, dim(L_L)

Graph of Copoints

- Create a graph, G(X, ℒ), with vertex set equal to M(X, ℒ) and there is an edge AB if and only if α(A) ∈ B and α(B) ∈ A
- Morris (2006) showed that the cliques in G(X, L) correspond to convexly independent sets in (X, L)
- B. (to appear in Order) showed that the chromatic number of G(X, L) is a lower bound for the order dimension of L_L, dim(L_L)
- Question: Does χ(G(X, ℒ)) = dim(L_ℒ) for all convex geometries (X, ℒ)?

Definitions and Motivation Graphs of Copoints

Graph of Copoints

Copoint Graph of Convex Geometries

イロト イヨト イヨト イヨト

æ

Results for Planar Point Sets in General Position

- Let X be a planar point set in general position and $\mathscr{L}(A) = \operatorname{conv}(A) \cap X$
- Morris showed that if $|X| > 2^{n-2}$, then $\chi(\mathcal{G}(X, \mathscr{L})) \ge n$
- Recall, the ES conjecture is |X| > 2^{n−2}, implies ω(G(X, ℒ)) ≥ n

3

Introduction Definitions and Motiva Further Developments Graphs of Copoints

Not every Graph is a Copoint Graph

Theorem (B.)

There is no convex geometry (X, \mathcal{L}) such that $\mathcal{G}(X, \mathcal{L})$ is equal to a cycle on 6 or more vertices

Let |X| = n, then there must be two copoints of size n - 1 otherwise $\mathcal{G}(X, \mathscr{L})$ is disconnected. Call these two copoints *A* and *B*.

・ロト ・ 四ト ・ ヨト ・ ヨト ・

Definitions and Motivation Graphs of Copoints

Proof of Theorem

We can say, $\alpha(A) = n$ and $\alpha(B) = n - 1$

Copoint Graph of Convex Geometries

・ロト ・ 四ト ・ ヨト ・ ヨト ・

æ

Definitions and Motivation Graphs of Copoints

Proof of Theorem

There are two more copoints, A_1 and B_1 with adjacent to A and B respectively

Definitions and Motivation Graphs of Copoints

Proof of Theorem

Suppose $\alpha(A_1) \neq \alpha(B_1)$:

Copoint Graph of Convex Geometries

イロト イヨト イヨト イヨト

æ

Definitions and Motivation Graphs of Copoints

Proof of Theorem

Suppose $\alpha(A_1) \neq \alpha(B_1)$:

Copoint Graph of Convex Geometries

ヘロト ヘヨト ヘヨト ヘヨト

Definitions and Motivation Graphs of Copoints

Proof of Theorem

Suppose $\alpha(A_1) \neq \alpha(B_1)$:

So, $\alpha(A_1) = \alpha(B_1) = n - 2$.

Definitions and Motivation Graphs of Copoints

Proof of Theorem

There are two more copoints, A_2 , B_2 that are subsets of $\{12 \dots n-2\}$.

< ロ > < 部 > < き > < き

Definitions and Motivation Graphs of Copoints

Proof of Theorem

There are two more copoints, A_2 , B_2 that are subsets of $\{12 \dots n-2\}$.

< ロ > < 部 > < き > < き

Definitions and Motivation Graphs of Copoints

Proof of Theorem

There is a copoint of size n - 3 containing A_2 , call this copoint *C*.

< ロト < 同ト < ヨト < ヨト

Definitions and Motivation Graphs of Copoints

Proof of Theorem

C does not contain *n*, *n* – 1, and $\alpha(C)$. This means that $\alpha(C) \in A_1$ and $\alpha(C) \in B_1$. But $n - 2 \in A_2 \subseteq C$, so:

Definitions and Motivation Graphs of Copoints

Proof of Theorem

C does not contain *n*, *n* – 1, and $\alpha(C)$. This means that $\alpha(C) \in A_1$ and $\alpha(C) \in B_1$. But $n - 2 \in A_2 \subseteq C$, so:

This contains a cycle of size 5. So, there is no convex geometry with $\mathcal{G}(X, \mathscr{L})$ equal to a cycle of size 6 or more.

Copoint Graph of Convex Geometries

Minors Different Clique and Chromatic Numbers Direct Sum of Convex Geometries

Restriction

- Let (X, \mathscr{L}) be a convex geometry and $Y \subseteq X$
- The restriction of \mathscr{L} to *Y*, is the alignment $\mathscr{L}|_{Y} = \{C \cap Y | C \in \mathscr{L}\}$
- The pair $(Y, \mathcal{L}|_Y)$ is a convex geometry.

・ロト ・四ト ・ヨト・ヨト・

Minors Different Clique and Chromatic Numbers Direct Sum of Convex Geometries

Restriction and the Copoint Graph

Theorem (B.)

Let (X, \mathscr{L}) be a convex geometry with copoint graph $\mathcal{G}(X, \mathscr{L})$. For all $p \in X$, $\chi(\mathcal{G}(X - p, \mathscr{L}|_{X-p})) + 1 \ge \chi(\mathcal{G}(X, \mathscr{L})) \ge \chi(\mathcal{G}(X - p, \mathscr{L}|_{X-p})).$

To prove this, we construct graph homomorphisms between $\mathcal{G}(X - p, \mathcal{L}|_{X-p})$ and $\mathcal{G}(X, \mathcal{L})|_{X-p}$. Also note that $A_p = \{C \in \mathcal{L} : C \text{ is a copoint attached to } p\}$ is an independent set in $\mathcal{G}(X, \mathcal{L})$.

Minors Different Clique and Chromatic Numbers Direct Sum of Convex Geometries

Contraction

- Let (X, \mathscr{L}) be a convex geometry and $Y \subseteq X$ with $Y \in \mathscr{L}$
- The contraction of \mathscr{L} with respect to Y, is the alignment $\mathscr{L}/Y = \{C \subseteq X Y | C = \mathscr{L}(D \cup Y) Y \text{ for some } D \subseteq X Y\}$
- The pair $(X Y, \mathcal{L}/Y)$ is a convex geometry.

Minors Different Clique and Chromatic Numbers Direct Sum of Convex Geometries

Contraction and the Copoint Graph

Theorem (B.)

Let (X, \mathscr{L}) be a convex geometry with $p \in X$, $p \in \mathscr{L}$. $\mathcal{G}(X - p, \mathscr{L}/p)$ is isomorphic to the subgraph of $\mathcal{G}(X, \mathscr{L})$ induced by the set copoints containing p. Also, $\chi(\mathcal{G}(X, \mathscr{L})) \ge \chi(\mathcal{G}(X - p, \mathscr{L}/p)).$

To prove this, we construct a graph isomorphism between $\mathcal{G}(X - p, \mathcal{L}/p)$ and the induced subgraph of $\mathcal{G}(X, \mathcal{L})$ on the copoints that contain *p*.

Minors Different Clique and Chromatic Numbers Direct Sum of Convex Geometries

Different Clique and Chromatic Numbers

ヘロト 人間 ト 人間 ト 人間 トー

크

Minors Different Clique and Chromatic Numbers Direct Sum of Convex Geometries

Different Clique and Chromatic Numbers

$$\chi(\mathcal{G}(X,\mathscr{L})) = 5, \omega(\mathcal{G}(X,\mathscr{L})) = 4$$

ヘロト 人間 ト 人間 ト 人間 トー

크

Different Clique and Chromatic Numbers

We computed the chromatic number and clique number for every point set of size 9 or less points in general position from Oswin Aichholzer's Database (http://www.ist.tugraz.at/staff/aichholzer/research/rp/triangulations/ordertypes/)

n	# of Order Types	With Distinct Chromatic and Clique Number
3	1	0
4	2	0
5	3	0
6	16	1
7	135	8
8	3315	85
9	158817	7949

All point sets have $\chi(\mathcal{G}(X, \mathscr{L})) - \omega(\mathcal{G}(X, \mathscr{L})) \in \{0, 1\}.$

Minors Different Clique and Chromatic Numbers Direct Sum of Convex Geometries

Question

- Is it possible to construct, for every positive integer *m*, a planar point set *X* such that χ(G(X, ℒ)) − ω(G(X, ℒ)) > m?

・ロト ・ 四ト ・ ヨト ・ ヨト ・

Minors Different Clique and Chromatic Numbers Direct Sum of Convex Geometries

Question

- Is it possible to construct, for every positive integer *m*, a planar point set *X* such that χ(G(X, ℒ)) − ω(G(X, ℒ)) > m?
- Possible to do for a convex geometry.

ヘロト 人間 ト 人間 ト 人間 トー

Minors Different Clique and Chromatic Numbers Direct Sum of Convex Geometries

Direct Sum of Convex Geometries

Definition

Let (X_1, \mathscr{L}_1) and (X_2, \mathscr{L}_2) be convex geometries, we define $(X_1, \mathscr{L}_1) \oplus (X_2, \mathscr{L}_2) = (X, \mathscr{L})$ to be the *direct sum* of convex geometries where $X = X_1 \sqcup X_2$ and $\mathscr{L}(C) = \mathscr{L}_1(C_{X_1}) \sqcup \mathscr{L}_2(C_{X_2})$ where $C_{X_i} = C \cap X_i$.

Proposition (B.)

Let $(X_1, \mathscr{L}_1), (X_2, \mathscr{L}_2)$ be convex geometries and $(X, \mathscr{L}) = (X_1, \mathscr{L}_1) \oplus (X_2, \mathscr{L}_2)$. Then, $\mathcal{G}(X, \mathscr{L}) = \mathcal{G}(X_1, \mathscr{L}_1) \lor \mathcal{G}(X_2, \mathscr{L}_2)$

・ロト ・ 日 ・ ・ ヨ ト ・ ヨ ト ・ ヨ

Minors Different Clique and Chromatic Numbers Direct Sum of Convex Geometries

Direct Sum of Convex Geometries

$$\omega(\mathcal{G}(X,\mathscr{L}))$$
 = 2, $\chi(\mathcal{G}(X,\mathscr{L}))$ = 3

Copoint Graph of Convex Geometries

ヘロト ヘ部ト ヘヨト ヘヨト

æ

Minors Different Clique and Chromatic Numbers Direct Sum of Convex Geometries

Direct Sum of Convex Geometries

Proposition (B.)

For all integers $m \ge 0$, there exists a convex geometry (X, \mathscr{L}) such that $\chi(\mathcal{G}(X, \mathscr{L})) - \omega(\mathcal{G}(X, \mathscr{L})) > m$.

- We take the direct sum of the convex geometry on the previous slide *m* times.
- $\chi(\mathcal{G}([n], \mathscr{L})) \omega(\mathcal{G}([n], \mathscr{L})) = \frac{n}{4}$
- This compares to a construction of B.-Morris where $\frac{\chi(\mathcal{G}([n],\mathscr{L}))}{\omega(\mathcal{G}([n],\mathscr{L}))} = \frac{\lceil log_2(n+1) \rceil}{2}$

Minors Different Clique and Chromatic Numbers Direct Sum of Convex Geometries

Questions?

Copoint Graph of Convex Geometries

◆□▶ ◆御▶ ◆臣▶ ◆臣▶

æ