Errata for Linear and Nonlinear Optimization, 2nd Edition, First Printing by Griva, Nash, and Sofer
Last modified on July 31, 2010

Items are sorted by chronological order of reporting. Negative line numbers are counted from the bottom of the page. Within displayed equations matrices and vectors are counted as a single line.

Page 53 Line -3
Change: $\quad f(\alpha(x)+(1-\alpha) x)$
To:
Page 53 Line -2
Change:
To:
any local minimizer
any strict local minimizer
Page 53 Line -1
Change: a global minimizer
To:
Page 53 Line -1
Insert:
a strict global minimizer
New sentence at end of line:
Is every local minimizer also a global minimizer?
Page 23 Line -2
Change: $\quad \xi$
To:
ξ_{i}
Page 24 Line -3
Change:
To:
(13.3), (0.31.5)
$(1,3.3),(0.3,1.5)$
Page 41 Line 9
Change:
To:
Schökopf
Schölkopf
Page 41 Line 16
Change:
Eruditorium
Eruditorum
Page 52 Line - 3
Change:
To:
$f(x)=c^{T} x$ for some vector c
$f(x)=c^{T} x+b$ for some vector c and scalar b
Page 539 Line-14
Change:
To:
Page 539 Line -12
Change:
$y_{j}\left(w^{T} x_{j}-b\right)=1$
$y_{j}\left(w^{T} x_{j}+b\right)=1$

To:
Page 709 Line 3
Change:
$b=w^{T} x_{j}-y_{j}=\sum_{i \in S V} \alpha_{i} y_{i} x_{i}^{T} x_{j}-y_{j}$
$b=y_{j}-w^{T} x_{j}=y_{j}-\sum_{i \in S V} \alpha_{i} y_{i} x_{i}^{T} x_{j}$

To:
pp. 1-52
to.
pp. 1-51
Page 710 Line 2
Change:
Compte Rendu
To:
Comptes Rendus
Page 547 Lines -11, -12
Change:
To:
Page 655 Line-13
Change: Lorenz
To:
. . . Guignard (1969) is the weakest in the sense that it is not only sufficient but also necessary for the fulfillment of the optimality conditions.
. . . Guignard (1969) is not only sufficient but also necessary in some sense for the fulfillment of the optimality conditions (cf. Gould and Tolle (1971)).

Change:
Lorentz
Page 739 Line 9 Column 2
Change:
Lorenz
To:
Lorentz

Page 25 Line 3
Change: \quad Repeat the problem when the first class includes also the point $(0.2,2.5)$ and the second class includes the point (1.7, 3.6).
To:
Page 10 Line -4
Change: $\quad a_{i j}$
To: $\quad a_{i j} x_{j}$
Page 29 Line 8
Change: $\quad 72$ Gy
To: $\quad 78$ Gy
Page 35 Line 10
Change: 1444 detector pairs
To:
Repeat the problem when the point $(0.2,2.5)$ is in the first class rather than the second, and the point $(1.7,3.6)$ is in the second class rather than the first.
$a_{i j}$
$a_{i j} x_{j}$

2164 detector pairs
Page 148 Exercise 3.2
Change: Example 5.5
To: Example 5.4
Page 160 Exercise 4.6
Change: \quad Examples 5.7, 5.8 and 5.9
To: \quad Examples 5.6, 5.7 and 5.8
Page 166 Line -6
Change: $\quad x_{4}$
To:
x_{5}
Page 188 Line 9
Change: maximize
To: minimize
Page 186 Line 9
$\begin{array}{ll}\text { Change: } & y_{i}-M \\ \text { To: } & M-y_{i}\end{array}$
Page 203 Exercise 4.4
Change: basic $\begin{array}{llllllll} & x_{1} & x_{2} & x_{3} & x_{3} & x_{4} & x_{5} & \text { rhs }\end{array}$
To:
basic $\begin{array}{llllllll}x_{1} & x_{2} & x_{3} & x_{4} & x_{5} & x_{6} & \text { rhs }\end{array}$
Page 206 Line -2
Change: $\quad z(\alpha)=-13+\alpha c_{B}^{T} x_{B}=-13+21 \alpha$
To:
Page 398 Line -12
Change:
$z(\alpha)=-13+\alpha \Delta c_{B}^{T} x_{B}=-13+21 \alpha$

To:
$-g(x)$
Line -4
Change: $\quad c_{N}=\binom{-5}{0}$
To: $\quad c_{N}=\binom{5}{0}$
Page 220 Line -3
Change: $\quad N=\left(\begin{array}{cc}2 & 1 \\ 4 & 0\end{array}\right)$
To: $\quad N=\left(\begin{array}{ll}-2 & 1 \\ -4 & 0\end{array}\right)$
Page 207 Line 9
Change: $\quad \hat{c}_{N}^{T}=c_{N}^{T}-c_{B}^{T} B^{-1} N=\binom{0}{\frac{1}{7}}$
To:
$\hat{c}_{N}^{T}=c_{N}^{T}-c_{B}^{T} B^{-1} N+\alpha\left(\Delta c_{N}^{T}-\Delta c_{B}^{T} B^{-1} N\right)=\binom{0}{\frac{1}{7}}$

Page 208 Line 2
Change: $\quad \hat{c}_{N}^{T}=c_{N}^{T}-c_{B}^{T} B^{-1} N=\binom{0}{\frac{1}{8}}$
To: $\quad \hat{c}_{N}^{T}=c_{N}^{T}-c_{B}^{T} B^{-1} N+\alpha\left(\Delta c_{N}^{T}-\Delta c_{B}^{T} B^{-1} N\right)=\binom{0}{\frac{1}{8}}$

