Items are sorted by chronological order of reporting. Negative line numbers are counted from the bottom of the page. Within displayed equations matrices and vectors are counted as a single line.
Page 53 Line -3
Change: \(f(\alpha(x) + (1 - \alpha)x) \)
To: \(f(\alpha(x) + (1 - \alpha)y) \)

Page 53 Line -2
Change: any local minimizer
To: any strict local minimizer

Page 53 Line -1
Change: a global minimizer
To: a strict global minimizer

Page 53 Line -1
Insert: New sentence at end of line:
Is every local minimizer also a global minimizer?

Page 23 Line -2
Change: \(\xi \)
To: \(\xi_i \)

Page 24 Line -3
Change: \((13.3), (0.3, 1.5)\)
To: \((1, 3.3), (0.3, 1.5)\)

Page 41 Line 9
Change: Schölkopf
To: Schölkopf

Page 41 Line 16
Change: Eruditorium
To: Eruditorum

Page 52 Line -3
Change: \(f(x) = c^T x \) for some vector \(c \)
To: \(f(x) = c^T x + b \) for some vector \(c \) and scalar \(b \)

Page 539 Line -14
Change: \(y_j(w^T x_j - b) = 1 \)
To: \(y_j(w^T x_j + b) = 1 \)

Page 539 Line -12
Change: \(b = w^T x_j - y_j = \sum_{i \in SV} \alpha_i y_i x_i^T x_j - y_j \)
To: \(b = y_j - w^T x_j - y_j = \sum_{i \in SV} \alpha_i y_i x_i^T x_j \)

Page 709 Line 3
Change: pp. 1 - 52
To: pp. 1 - 51

Page 710 Line 2
Change: Compte Rendu
To: Comptes Rendus

Page 547 Lines -11, -12
Change: . . . Guignard (1969) is the weakest in the sense that it is not only sufficient but also necessary for the fulfillment of the optimality conditions.
To: . . . Guignard (1969) is not only sufficient but also necessary in some sense for the fulfillment of the optimality conditions (cf. Gould and Tolle (1971)).

Page 655 Line -13
Change: Lorenz
To: Lorentz

Page 739 Line 9 Column 2
Change: Lorenz
To: Lorentz
Page 25
Change: Repeat the problem when the first class includes also the point (0.2, 2.5) and the second class includes the point (1.7, 3.6).
To: Repeat the problem when the point (0.2, 2.5) is in the first class rather than the second, and the point (1.7, 3.6) is in the second class rather than the first.

Page 10
Change: a_{ij}
To: $a_{ij}x_j$

Page 29
Change: 72 Gy
To: 78 Gy

Page 35
Change: 1444 detector pairs
To: 2164 detector pairs

Page 148
Exercise 3.2
Change: Example 5.5
To: Example 5.4

Page 160
Exercise 4.6
Change: Examples 5.7, 5.8 and 5.9
To: Examples 5.6, 5.7 and 5.8

Page 166
Change: x_4
To: x_5

Page 188
Change: maximize
To: minimize

Page 186
Change: $y_i - M$
To: $M - y_i$

Page 203
Exercise 4.4
Change: basic $x_1 x_2 x_3 x_4 x_5$ rhs
To: basic $x_1 x_2 x_3 x_4 x_5 x_6$ rhs

Page 206
Change: $z(\alpha) = -13 + \alpha c^T_B x_B = -13 + 21\alpha$
To: $z(\alpha) = -13 + \alpha \Delta c^T_B x_B = -13 + 21\alpha$

Page 398
Change: $-g(x)$
To: $-\nabla f(x)$

Page 220
Change: $c_N = \begin{pmatrix} -5 \\ 0 \end{pmatrix}$
To: $c_N = \begin{pmatrix} 5 \\ 0 \end{pmatrix}$

Page 220
Change: $N = \begin{pmatrix} 2 & 1 \\ 4 & 0 \end{pmatrix}$
To: $N = \begin{pmatrix} -2 & 1 \\ -4 & 0 \end{pmatrix}$

Page 207
Change: $\hat{e}_N^T = c_N^T - c_n^T B^{-1} N = \begin{pmatrix} 0 \\ \frac{1}{t} \end{pmatrix}$
To: $\hat{e}_N^T = c_N^T - c_n^T B^{-1} N + \alpha(\Delta e_N^T - \Delta c_n^T B^{-1} N) = \begin{pmatrix} 0 \\ \frac{1}{t} \end{pmatrix}$
Change: \[\hat{c}^T_N = c^T_N - c^T_B B^{-1} N = \begin{pmatrix} 0 \\ \frac{1}{\pi} \end{pmatrix} \]

To: \[\hat{c}^T_N = c^T_N - c^T_B B^{-1} N + \alpha (\Delta c^T_N - \Delta c^T_B B^{-1} N) = \begin{pmatrix} 0 \\ \frac{1}{\pi} \end{pmatrix} \]