HW 11

Using paper, pencil and the optimality conditions determine minimizers/maximizers of the following functions given constraints:

1)
$$f(x_1, x_2) = x_2$$
, subject to $x_1^2 + x_2^2 \le 1$, $-x_1 + x_2^2 \le 0$, $x_1 + x_2 \ge 0$.

2)
$$f(x_1, x_2) = x_1^2 + 2x_2^2$$
, subject to $x_1^3 + x_2^3 \le 1$ and $x_1^2 + x_2^2 \ge 1$.

3)
$$f(x_1, x_2) = x_1 + x_2$$
, subject to $\ln x_1 + 4 \ln x_2 \ge 1$.

4) Solve the problem: maximize $f(x) = c^T x$, subject to $x^T Q x \le 1$, where Q is a positive definite symmetric matrix. What is the solution when the function is minimized?