Homework 1

Solve numerically the following problems. Show the models and optimal solutions.

1. \(\min 100(x_2 - x_1^2)^2 + (1 - x_1)^2, \) s.t. \(x_2 \geq -1.5. \)

2. \(\min x_2 + 0.00001(x_2 - x_1)^2, \) s.t. \(x_2 \geq 0. \)

3. \(\min (x_1 + 1)^3 / 3 + x_2, \) s.t. \(x_1 \geq 1, x_2 \geq 0. \)

4. \(\min \sin(x_1 + x_2) + (x_1 - x_2)^2 - 1.5x_1 + 2.5x_2 + 1, \) s.t. \(-1.5 \leq x_1 \leq 4, -3 \leq x_2 \leq 3. \)

5. \(\min (1 - x_1)^2, \) s.t. \(10(x_2 - x_1^2) = 0. \)

6. \(\max x_2 - \log(x_1^2 + 1), \) s.t. \((x_1^2 + 1)^2 + x_2^2 = 4. \)

7. \(\min \sin(\pi x_1 / 12) \cos(\pi x_2 / 16), \) s.t. \(4x_1 - 3x_2 = 0. \)

8. \(\max x_2 - x_1, \) s.t. \(-3x_1^2 + 2x_1x_2 - x_2^2 \geq -1. \)

9. Find position of \(n = 2 \) and \(n = 20 \) electrons on a sphere of radius \(R = 1 \) by solving the following problem:

\[
\min \frac{1}{\sum_{i=1}^{n} \sum_{j>i} \sqrt{(x_i - x_j)^2 + (y_i - y_j)^2 + (z_i - z_j)^2}},
\]

s.t. \(x_i^2 + y_i^2 + z_i^2 \leq R^2, \) \(i = 1, \ldots, n. \)

Make sure to provide a good initial guess for this problem: no 2 electron can be at the same initial location, otherwise some denominators may become zero. Use ampl “let” command to provide the initial guess.