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Abstract

We consider stability properties of a class of adaptive time-stepping schemes based

upon the Milstein method for stochastic differential equations with a single scalar

forcing. In particular we focus upon mean-square stability for a class of linear test

problems with multiplicative noise. We demonstrate that highly desirable stability

properties can be induced in the numerical solution by the use of two realistic local

error controls, one for the drift term and one for the diffusion.

Keywords Error control, mean-square stability, numerical integration, Milstein, Milstein-
type methods, variable step-size, stochastic differential equations

1 Introduction

We investigate the numerical solution of the class of scalar linear, constant coefficient,
stochastic differential equations (SDEs) with multiplicative noise, written in Itô form as

dX = λX dt + µX dW, X(0) = X0 6= 0 (1.1)

for fixed initial data X0, λ, µ ∈ C and with W (t) a standard Wiener process. This
class of test problems is a natural analogue to the linear test problems used to analyze
stability properties (such as A-stability) of numerical schemes for ordinary differential
equations (ODEs) and has been considered previously by several authors [14, 19, 27, 26,
23, 9, 7, 16, 15, 5] for schemes using a fixed time-step h. Linear test problems are of
interest because complete analyses are often possible which, via linearization arguments,
can provide insights into the behaviour of numerical schemes on more general classes
of problem. Other investigations of mean-square stability with fixed time-steps include
[2, 3, 22, 28, 1, 24, 29, 8, 30].

For adaptive time-stepping ODE solvers, it has long been known that adaptivity based
upon local error control(s) can impart desirable stability properties for linear and nonlinear
equations [12, 11], especially for ’stiff’ problems, even when the underlying method is
explicit and has a small stability region. This occurs because a consequence of the error
control is to force the time-steps close to, but below, the linear stability limit. However,
this phenomenon, which appears to be very common, is still not perfectly understood and
there are very few rigorous stability results in this area. One important observation is
that algorithms employing an error-per-unit step control appear to have better stability
properties than their error-per-step counterparts [31].

The current state of both the theory and software for SDE solvers is at a very basic
level, at least in comparison with solvers for ODEs. This is especially true for adaptive
schemes, with several different approaches proposed in the literature (see for example
[10, 17, 6, 20]) but little consensus as to the benefits or range of applicability of the
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current options. Most attention has been paid to the issues of convergence and efficiency.
In this paper we show that a realistic local error control strategy, using two error controls
in conjunction with the (explicit) Milstein method, can effectively stabilize the numerical
solution of (1.1) whenever the underlying exact solution is itself stable. Thus the adaptive
algorithm can replicate the desirable mean-square stability properties of various implicit
Euler-Maruyama and Milstein-based methods [27] when applied to (1.1) — the price to
be paid is, of course, that the time-steps may be prohibitively small. Apart from the
obvious theoretical interest, this property may be useful, for example, in the context of
stiffness detection whereby a sophisticated algorithm uses an adaptive explicit method to
advance the solution but changes to an implicit method when it is deemed more efficient
to do so. In such a situation, the stability of the numerical algorithm over the entire
integration time can then be assured, with only efficiency requirements determining the
choice of method.

The paper is organized as follows. In Section 2 we introduce the notion of mean-square
stability for the exact and numerical approximations to (1.1). We also recall the Milstein
method and define the adaptive strategy to be employed. This strategy uses two local error
controls, one involving only the drift term of (1.1) and the other only the diffusion term.
Such dual error controls have already been proposed in the literature [20, 21] and have both
theoretical and practical advantages. In Section 3 we then show that, using the local error
controls introduced in Section 2, mean-square stability can be effectively achieved, even
for moderately large tolerances τ , under very mild conditions on the adaptive algorithm.
Finally, in Section 4 we present some numerical results that help confirm the analysis. We
thus demonstrate that a feasible class of adaptive time-stepping algorithms, based upon
dual error controls, can successfully mimic the mean-square stability of the test problems
(1.1).

2 Basic definitions and the adaptive algorithm

The equation (1.1) with fixed λ, µ is defined to be (asymptotically) mean-square stable if

lim
t→∞

E(|X(t)|2) = 0

where E(·) denotes the expected value over W (t). The exact solution of (1.1) is

X(t) = X0 exp

(

(λ − 1

2
µ2)t + µW (t)

)

,

and mean-square stability occurs when [26]

Re(λ) +
1

2
|µ2| < 0. (2.1)
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For alternative concepts of stability see [13, 25]. In the interests of clarity, we shall perform
the analysis for λ, µ ∈ R, µ ≥ 0 and then state the results for the general complex case
at the end of Section 3. Thus, for real coefficients the mean-square stability criterion
becomes

λ +
1

2
µ2 < 0 (2.2)

and the stability boundary is a straight line with slope −2 when plotting µ2 against λ.

Let us now interpret a numerical solution as consisting of (accepted) time-steps hn, n =
0, 1, 2, . . . and output values Xn, where Xn approximates X(tn) and tn = Σn−1

i=0 hi. Then
we define mean-square stability for the numerical scheme as

lim
n→∞

E(|Xn|2) = 0

provided that X(0) = X0 is deterministic and tn → ∞ as n → ∞.

The Milstein method, for a general autonomous SDE, written in Itô form as

dXt = f(X(t)) dt + g(X(t)) dW, X(0) = X0 (2.3)

is defined by

Xn+1 = Xn + hnf(Xn) + ∆Wng(Xn) +
1

2
g′(Xn)g(Xn)(∆W 2

n − hn) (2.4)

where ∆Wn = W (tn+1) − W (tn). Thus when applied to (1.1) this becomes

Xn+1 = Xn + hnλXn + ∆WnµXn +
1

2
µ2(∆W 2

n − hn)Xn. (2.5)

In what follows, it will be convenient to work in Stratonovich rather than Itô calculus.
For this reason we define f = f − 1

2
g′g and Λ = λ − 1

2
µ2 and rewrite (2.4) and (2.5) as

Xn+1 = Xn + hnf(Xn) + ∆Wng(Xn) +
1

2
g′(Xn)g(Xn)∆W 2

n (2.6)

and

Xn+1 = Xn + hnΛXn + ∆WnµXn +
1

2
µ2∆W 2

nXn (2.7)

respectively.

We now define the local error estimates that will be controlled for our adaptive Milstein
method. The idea of using two error controls, one based upon the drift and another on the
diffusion, has been explored previously [21, 20]. In [21] strong convergence was proved for
an adaptive Euler-Maruyama scheme employing a deterministic error control, irrespective
of any additional error control criteria being used. Thus, such a splitting can be beneficial
from a theoretical point of view. In [20] a dual error control was used as the basis for a
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class of adaptive strategies that can be used to better control the local errors committed
on each step, thereby improving the efficiency of the algorithm. The error estimates that
we choose to control are motivated in a very similar manner to those in [20] and a brief
explanation is now given.

The Milstein method has strong order 1 and so the leading order terms in the trunca-
tion error at each step are order h

3

2 . In Stratonovich calculus these leading-order terms
are [18]

J10f
′g + J01g

′f +
1

6
∆W 3

ng′′gg +
1

6
∆W 3

n(g′)2g (2.8)

where

J10 =

∫ tn+h

tn

∫ s1

tn

◦ dW ds1, J01 =

∫ tn+h

tn

∫ s1

tn

ds ◦ dW (s1).

Since g′′ is not calculated and the Stratonovich integrals J10 and J01 are unknowable from
samples of the Brownian motion, we use an approximate upper bound for the final term,
namely, 1

6
|∆Wn|3 ‖g′‖∞ ‖g′g‖∞ as our first local error estimate. Removing the factor of

1

6
for simplicity, this becomes |∆Wn|3µ3|Xn| for our test problems.

Note that this error estimate is based only upon the diffusion component of the SDE.
The next highest terms in the truncation error in the Milstein method are of order h2.
From these we choose the term 1

2
h2f ′f that is determined solely by the drift. This can

be approximated, for example, by using the difference between the forward Euler method
and the Heun method on the ODE dX

dt
= f(X) resulting in a second error estimate for

a general nonlinear SDE. For the test problems (1.1) this reduces exactly to 1

2
h2

nΛ2Xn

and so this, without the factor of 1

2
, will be the second quantity that we control. We

could have instead chosen to control the quantity 1

2
h2f ′f (ie. using the Itô rather than

Stratonovich drift) but this is of little consequence to our analysis. For further details of
this point, the reader is directed to [20].

A complete algorithm is now described. A user-defined tolerance τ is specified, to-
gether with two positive functions σi(τ, h,X), i = 1, 2. A candidate time-step h and its
corresponding ∆W will be accepted, and thus be defined as hn and ∆Wn respectively, if
and only if

h2Λ2|Xn| ≤ σ1(τ, h,Xn) (2.9)

and
|∆W |3µ3|Xn| ≤ σ2(τ, h,Xn). (2.10)

If a candidate time-step is rejected because either (2.9) or (2.10) is violated then a smaller
time-step is chosen until both conditions are satisfied. Once a suitable time-step is found
an initial candidate time-step must be chosen for the next time-step and so forth.

Our choices for the functions σ1 and σ2 are

σ1(τ, h,Xn) = τh|Xn|
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and
σ2(τ, h,Xn) = τ

3

4 h
3

4 |Xn|.
The error control on the drift term is therefore just a standard error-per-unit-step criterion
measuring the relative error. The diffusion control is similar and the reason for h

3

4 rather
than h appearing in σ2 will become apparent from the analysis of Section 3. The choice
of exponent 3

4
for the tolerance τ is purely to streamline the algebra. Our main results

remain unchanged if, for example, we use different tolerances for each of the error controls
and reduce them to zero under mild restrictions. For the class of problems (1.1), together
with the above choices of σ1 and σ2, the general error controls (2.9) and (2.10) simplify
to

hΛ2 ≤ τ (2.11)

and
|∆W |4µ4 ≤ τh. (2.12)

Note that (2.12) can be regarded as the diffusion equivalent of the deterministic error-
per-unit-step control (2.11).

The precise details of the time-step selection mechanisms will heavily impact the ef-
ficiency of the algorithm, but that issue is not considered here. Instead, in Section 3 we
shall place a very mild restriction on the selection mechanism, and then make a definite
choice for the numerical results of Section 4. The analysis relies only upon the fact that
the error controls (2.11) and (2.12) are satisfied at each step and that limn→∞ tn = ∞ with
probability 1, which is then proved for the specific algorithm used in Section 4. Further
examples of possible time-step selection strategies can be found in [20].

Finally, it is crucial that whenever a sampling of the Brownian motion is required at
a new time t, all conditional probabilities induced by previously generated values must
be respected. In other words, the sequence of time-steps is allowed to depend upon the
Brownian forcing but the distribution of W (t), for any t > 0, must be independent of the
sequence of (attempted) time-steps. If not, then a biased stochastic forcing will result. A
detailed description of these conditional probabilities is contained in [20] but the following
simple example highlights the issues involved.

Let us suppose that the algorithm is on the first time-step, attempting to advance
using a candidate step of length h, and that the Brownian increment over this interval
is some number δ, computed from N (0, h) (i.e we have W (0) = 0, W (h) = δ). If either
of the error controls (2.11) and (2.12) are violated then a smaller time-step, say h/2,
must be attempted. Therefore the value of W (h/2) is required and this is drawn from
the distribution N (δ/2, h/4), and not N (0, h/2), since the Brownian motion is now tied
down at t = 0 and t = h, forming a Brownian bridge for 0 ≤ t ≤ h. Furthermore, the two
Brownian increments W (h/2) and δ − W (h/2) are not independent, either of each other
or of the value δ. This has important consequences for the analysis of Section 3.
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3 Mean-square stability analysis

We define Vn = ∆Wn/
√

hn and so for the test problem (1.1),

Xn+1 = Xn

[

1 + hnΛ +
√

hnµVn +
1

2
hnµ

2V 2
n

]

.

The distributions of the random variables Vn and hn depend in some unspecified manner
upon the time-step selection strategy employed. In particular, Vn is not necessarily a
normalized Gaussian random variable, as would be the case if there were no step-size
rejections. This is because the times at which the numerical solution is updated are not
necessarily stopping times. Note however, that by our choice of a relative error control,
Vn and hn are independent of Xn. If, for fixed Λ and µ, we have

E

(

∣

∣

∣

∣

Xn+1

Xn

∣

∣

∣

∣

2
)

= E

(

[

1 + hnΛ +
√

hnµVn +
1

2
hnµ

2V 2
n

]2
)

≤ L < 1 (3.1)

for some constant L and
∑

∞

i=1
hi = ∞, then limn→∞

(

E |Xn|2
)

= 0 and numerical mean-
square stability occurs.

The following lemma assumes that the algorithm is not ‘biased’ towards either positive
or negative jumps in the Brownian forcing and will result in a greatly simplified stability
criterion.

Lemma 3.1 Assume that the choice of time-steps is independent of the sign of ∆W , ie.
that replacing W (t) by −W (t) results in the same sequence of accepted time-steps. Then
E(hp

nV
q
n ) = 0 for all p ≥ 0 and q odd.

Proof The error controls (2.11) and (2.12) are independent of the sign of ∆W and so
the result follows immediately by symmetry. ¤

After a little algebra, the condition (3.1) becomes

Λ + E
(

µ2V 2
n

)

+ E

(

1

2
hnΛ2

)

+ E

(

1

2
hnµ

2ΛV 2
n

)

+ E

(

1

8
hnµ

4V 4
n

)

< 0 (3.2)

where use has been made of Lemma 3.1 to remove the odd powers of Vn. Let us now
define E(V 2

n ) = 1 + ε. The value of ε does in general depend upon Λ, µ and τ , and will be
estimated for a specific algorithm in Section 4. The error controls (2.11) and (2.12), con-
sidered separately, imply that E(hnΛ2) ≤ τ and E(hnµ

4V 4
n ) ≤ τ respectively. Multiplying

the two error controls together and then taking the square-root gives E(hnµ
2ΛV 2

n ) ≤ τ .
Thus the last 3 terms of (3.2) are bounded in absolute value by τ/2, τ/2 and τ/8 respec-
tively and the numerical stability criterion becomes

(λ +
1

2
µ2) + εµ2 + O(τ) < 0. (3.3)
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Comparing this result to (2.2) we see that the boundary of the numerical stability region
closely resembles that of the class of equations (1.1). If ε < 0 everywhere along the
boundary of (2.2) then the numerical stability region should be strictly larger than (2.2),
except for some O(τ) neighborhood of the origin.

Finally we remark that, for the case of complex drift and diffusion coefficients, replac-
ing λ and µ in the error controls (2.11) and (2.12) by |λ| and |µ| results in the stability
criterion

(Re(λ) +
1

2
|µ2|) + ε(Re(µ))2 + O(τ) < 0 (3.4)

which should be compared to (2.1)

4 Numerical results

In this section we present numerical results using an adaptive scheme of the form described
above. In particular we will estimate the quantity E(V 2

n ) for various choices of λ, µ and
τ .

Our algorithm will employ a basic halving-and-doubling strategy. If a time-step h is
rejected, the next candidate time-step is simply h/2. Whenever a time-step h is accepted,
the solution is advanced and the first candidate time-step for the next step is 2h. Together
with the error controls (2.11) and (2.12) this completely defines an algorithm that satisfies
the assumption of Lemma 3.1.

For this extremely simple algorithm we can immediately prove the following admissi-
bility result.

Lemma 4.1 The halving-and-doubling algorithm described above, for any fixed λ ≤ 0, µ >
0 and τ > 0, will reach the end of a given finite time interval [0, T ] with probability 1.

Proof Without loss of generality we suppose that T ∈ N and the set of allowable time-
steps that can be used by the algorithm is H = {2k : k ∈ Z}. The proof relies on the
fact that, for the simple halving-and-doubling strategy used, a necessary condition for the
integration to fail to reach time T is that the stochastic error control be violated at least
once with step-size 2−k, for every sufficiently large integer k. The probability that the
adaptive algorithm rejects a candidate time-step, even once, with step-size h is bounded
from above by the probability that the fixed step-size Milstein method, using step-size h,
will fail to satisfy the diffusion error criterion at least once during the integration period.
It is this probability that is proved to tend to zero as h → 0.

First we note that the drift error control is satisfied for all h < τ/Λ2 and so we now
focus upon the diffusion error control. Let the initial candidate time-step for the algorithm
be hinit ∈ H and choose h ∈ H such that h < min(hinit, τ/Λ2). We now prove that, as
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h → 0, the probability of every step of the fixed time-step Milstein method satisfying
(2.12), tends to 1.

For a fixed h, let us define Vm = ∆Wm/
√

h, m = 1, . . . , T/h where ∆Wm is the
Brownian increment over the mth interval of width h. Since we are considering the fixed
time-step algorithm, the Vm are independent identically distributed standard Gaussian
random variables, and the diffusion error control used over that subinterval will be satisfied
if

|Vm| ≤ η :=
1

µ
4

√

τ/h. (4.1)

We start from the elementary bound (see e.g. [4]) that for a standard Gaussian random
variable V ,

P (V > η) <
1

η
√

2π
e−η2/2 ∀η > 0. (4.2)

Now

P (|Vm| ≤ η ∀m = 1, . . . , T/h) = 1 − P (∃m : |Vm| > η)

≥ 1 − T

h
P (|V | > η) where V ∼ N (0, 1)

> 1 − T

h

√

2

π

1

η
e−η2/2

= 1 − Tµ

h

√

2

π
4

√

h

τ
e
−

√
τ
h

1

µ2 .

Since this quantity tends to 1 as h → 0 we have the desired result. ¤

Proving the above admissibility result for more general time-stepping strategies will
depend crucially upon the precise details of the algorithm, but numerical experiments
with more sophisticated time-step selection strategies strongly suggest that such results
hold, at least under very mild conditions on the time-step selection process.

We now numerically estimate the quantity E(V 2
n ) := 1 + ε for the above algorithm

for various values of λ, µ and τ (note that the precise values of ε also depend upon the
time-step selection procedure employed). Of particular interest are the values of ε on,
or close to, the mean square stability boundary for the test problems (1.1) as these will
help locate the stability boundary for the numerical method. However, since the stability
boundary (2.2) is equivalent to

Λ + µ2 = 0

it follows from the error controls (2.11) and (2.12), via a simple scaling argument, that
E(V 2

n ) is independent of λ, µ and τ (to within discretization effects) along this stabil-
ity boundary. The computed value of E(V 2

n ) is found to be approximately 0.86, giving
ε = −0.14. The fact that ε < 0 is to be expected since the diffusion error control will
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Table 1: Numerical estimates of E(V 2) for various values of λ, µ.
λ µ E(V 2

n )

-2 1.5 0.87
-2 1 0.89
-2 0.5 0.99

-4 2 0.87
-8 2 0.90
-16 2 0.96

preferentially sub-divide time intervals over which the absolute Brownian increment is
unusually large. We also estimate E(V 2) at other points within the stability region (2.2).
Table 1 shows the results of moving into the stability region starting from the boundary
at λ = −2, µ = 2. All the results are tabulated for τ = 0.1. As expected, moving further
into the stability region results in the drift control dominating the choice of time-steps.
This reduces the number of step rejections due to large Brownian increments and E(V 2)
tends to 1.

From these numerical results we infer that the numerical stability boundary can be
approximated by the line

λ + 0.36µ2 < 0 (4.3)

and thus strictly contains the stability region (2.2) except possibly in a neighborhood of
O(τ) around the point λ = 0, µ = 0. Locating the numerical stability boundary more
accurately than this would appear to be a very hard problem, but this approximation
suffices to show that the numerical solution is mean-square stable whenever the underlying
test problem is stable. Different time-stepping strategies will induce slightly different
values of ε, and therefore different numerical stability regions, but qualitatively similar
results have been obtained for other algorithms.
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