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Abstract

In a financial market, for agents with long investment horizons or at
times of severe market stress, it is often changes in the asset price that
act as the trigger for transactions or shifts in investment position. This
suggests the use of price thresholds to simulate agent behavior over much
longer timescales than are currently used in models of order-books.

We show that many phenomena, routinely ignored in efficient mar-
ket theory, can be systematically introduced into an otherwise efficient
market, resulting in models that robustly replicate the most important
stylized facts.

We then demonstrate a close link between such threshold models and
queueing theory, with large price changes corresponding to the busy peri-
ods of a single-server queue. The distribution of the busy periods is known
to have excess kurtosis and non-exponential decay under various assump-
tions on the queue parameters. Such an approach may prove useful in the
development of mathematical models for rapid deleveraging and panics in
financial markets, and the stress-testing of financial institutions.

PACS numbers 89.65.Gh 89.75.Da

1 Introduction

Economists and physicists have uncovered seemingly universal statistical proper-
ties of real markets, many of which deviate from those predicted by assumptions
of market efficiency. These are often referred to as the ‘stylized facts’ [9, 21] and
there now exist many different heterogeneous agent models (HAMs) that can
replicate the most important ones: the lack of correlations in the price-returns
at all but the shortest timescales; apparent power-law decays for the frequency
of large magnitude price changes ; and volatility clustering. It is not our inten-
tion to review the vast HAM literature here (a valuable overview can be found in
[23]) but many of the models suffer from one or more of the following (related)
problems.

Firstly, they tend to be constructed without due regard to the actual process
by which agents arrive at their chosen course of action. This makes it difficult
to argue why one model should be preferred over another which in turn makes
it harder to convince orthodox economists to take any of them seriously.

Secondly, at the level of individuals, many of the recent findings of behavioral
economics [18, 13, 17, 6] are ignored. Similarly, larger-scale market structures
and institutions may have rational-but-complex motivations and perverse in-
centives that are also overlooked.

1Department of Mathematical Sciences, George Mason University, MS 3F2, 4400 University
Drive, Fairfax, VA 22030 USA

1



A third common problem is that agents are treated as Markovian in the sense
that their recent past does not influence their future behavior. It occurs in those
models that, for example, probabilistically switch agents between investment
positions or trading strategies[2, 1].

Finally, many models are sensitive to the size of the system and when the
number of agents M →∞ some of the stylized facts, such as excess kurtosis, can
even disappear altogether. A frequent cause of this modelling issue is related to
the Markovian modelling of the agents mentioned above — the Central Limit
Theorem and The Law of Large Numbers remove any endogenous fluctuations
in the continuum limit.

Previous work [11, 10, 12, 20] has shown that the use of price thresholds
to trigger agent activity bypasses these problems while allowing for the mod-
elling of multiple real-world phenomena in a plausible and consistent manner.
Furthermore, an efficient market (where the price follows a geometric Brownian
Motion) exists as a special case within this framework which makes possible a
systematic study of the ways in which irrational behavior and other ‘imperfec-
tions’ may perturb such hypothetical solutions.

The two main contributions of this paper are, firstly, to extend and bet-
ter justify the moving threshold models first introduced in [20] and, secondly, to
show that queueing theory [7] may provide both insights and analytical tools for
studying the fat-tailed price returns generated by such threshold models. This
is because the largest price changes are caused by cascades of buying or selling
and their distribution can be reinterpreted as the distribution of the busy-period
of a single-server queue — the length of time for which a queue exists after it has
begun. There are various established results concerning the excess kurtosis and
non-exponential decay of this random variable under very general assumptions
on the arrival rate, departure rate and service time of customers. While none of
these extant results from queueing theory apply precisely to the more compli-
cated situation in market models, the correspondence is close enough to suggest
a common underlying mathematical explanation for the presence of power-laws
and fat-tails in both types of system.

The paper is organized as follows. Section 2 provides a better motivation for
the moving threshold models first introduced in [20]. In particular, a separation
of timescales argument is used to justify the main modeling assumptions. It is
then shown how the rules governing the threshold dynamics can mimic many
phenomena that are neglected in efficient/rational market models. It is espe-
cially interesting to introduce those very simple rules and behaviors that induce
coupling between agents’ trading strategies into an otherwise efficient market.
Power-law fat-tailed price returns and volatility clustering consistent with the
stylized facts are robustly generated.

The class of models in Section 2 assumes a separation of timescales and op-
erates over long time periods. However, the fast cascade processes responsible
for the largest price changes can also be viewed as a stand-alone model for very
rapid price-deleveraging or market panics, say. Thus, in Section 3 we consider
such cascades and, after a brief overview of queueing theory, demonstrate the
very close connection between the two. Standard queueing theory results con-
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cerning the distribution of the busy-period of single-server queues then suggest
a novel, but incomplete, explanation of the fat-tailed nature of price returns in
financial markets.

2 A Threshold Model Over Long Timescales

2.1 A continuous-time model

We consider a market with asset or index price p(t) at (continuous) time t
and introduce a separation of timescales. Information arrives continuously and
results in instantaneous price changes that are implemented by ‘fast’ agents who
are primarily motivated by such new information rather than price (these agents
will not be simulated directly in the time-discretized version since they operate
over very small timescales). There are also, however, M ‘slow’ agents, who
are motivated primarily by price changes, and act over much longer timescales
(typically weeks or months). Each of these M agents can be either own (the
state +1) or not own (the state −1) the asset at any given moment.

At time t the ith slow agent is represented by its state, ±1, and an inter-
val Ii(t) = [Li(t), Ui(t)] where Li(t) ≤ p(t) ≤ Ui(t) (see Figure 1). Whenever
p(t) crosses either endpoint of this interval, agent i is deemed to be no longer
comfortable with her current investment position, switches states, and the in-
terval Ii(t) is updated so that p(t) is again an interior point. Also, the action
of switching causes a small jump in the price caused by the change in buy/sell
pressure. Thus at time t the system is represented by the price p(t), the states
of the agents, and M closed intervals each of which includes the value p(t).

Price

state = +1

state = −1

p(t)

L (t)
j

U (t)
j

L (t) U (t)
i i

Figure 1: A representation of the model showing two agents in opposite states.
Agent i is in the +1 state and is represented by the (interval between) the two
circles, and agent j is in the −1 state and is represented by the two crosses.

We shall refer to the endpoints of the intervals as thresholds and the behavior
of the system will be defined by rules governing both the dynamics of p(t) and
the thresholds. Before describing the kinds of rules that can be incorporated
into such a framework a few general remarks are in order.

The above model bears a resemblance to order-book models [24] that at-
tempt to describe how trades are cleared. In such models, the price typically
moves along the positive real line and potential buyers and sellers are matched
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when the price is acceptable to both parties. However, the differences are more
profound than the similarities. Order-book models are concerned with very
short timescales and how trades are executed. Here we are concerned with
much longer timescales and why trades are placed — it is implicitly assumed
that the market is liquid (the fast sellers provide the necessary pool of liquidity)
and all trades can be executed without explicitly matching buyers and sellers.

2.2 A discrete-time version

We require time-discretized models that are suitable for computer simulations.
First a timestep h is chosen, typically less than one trading day. The state of the
ith slow agent over the nth time interval is represented by si(n) = ±1. The price
of the asset at the start of the nth time interval is p(n) and for simplicity the
system is drift-free so that p(n) actually corresponds to the price relative to the
risk-free interest rate plus equity-risk premium or the expected rate of return.
We do not assume that agents are of uniform size (in terms of their trading

positions) and thus weight the ith agent by its size wi and define W =
∑M
i=1 wi.

A key variable is the sentiment defined as the weighted average of the states of
all of the M investors

σ(n) =
1

W

M∑
i=1

wisi(n). (1)

and ∆σ(n) = σ(n)− σ(n− 1).
The price p(n) evolves according to the rule

p(n+ 1) = p(n) exp
((√

hη(n)
)
f(•)− h/2 + κ∆σ(n)

)
(2)

where κ > 0 and η(n) ∼ N (0, 1) represents the exogenous information stream.
Note that when κ = 0 and f ≡ 1 the price follows a geometric Brownian motion
(the term −h/2 is the drift correction required by Itô calculus). The function
f(•) allows the effect of new information on the marketplace to vary and is
discussed further below but note that if f ≡ 1 then the pricing formula (2)
is simply a geometric Brownian motion modified by a linear supply/demand
correction due to the sentiment of the slow agents.

The rules governing the dynamics of the thresholds are implemented as fol-
lows. The thresholds for each agent change (usually slowly) between switchings
and correspond to that agent’s evolving strategy. If, at the end of a timestep,
an agent’s interval is crossed by the price, then that agent switches and the
corresponding change in σ will feed into the price at the next iteration. This
choice of synchronous updating is made for two reasons — it is computation-
ally convenient but also reflects the fact that even after a slow trader decides
to react, there is likely to be some delay in effecting the trade (unlike the fast
traders). In the simulations that follow, h is chosen to correspond to 1/10 of a
day and then the daily price returns are computed).

As general as the above framework is, it can be made more realistic by
allowing agents to own differing amounts of the asset, and perhaps even shorting.

4



This can be achieved by assigning an (evolving) weight value to each threshold
(upper and lower, separately) such that when that threshold is breached the
agent buys or sells so as to own that amount of stock. However useful this may
prove to be in the future, it will not be considered here.

It is important to note that the model has two fundamental, and essentially
separable, components — one governs the motion of the price p(n), given by
(2), and the other governs the motion of the thresholds. Or, equivalently, one
set of rules describes the fast agents and the other describes the slow ones. We
now discuss which phenomena can be incorporated into such a model.

Firstly, in the pricing formula (2) the law of supply and demand is reproduced
for κ > 0 — increasing/decreasing σ causes the price to rise/fall. Its magnitude
(relative to f) determines the extent to which price changes are determined
by changes in sentiment versus the arrival of new information. If the function
f ≡ 1 then the fast traders are accurately and instantly converting information
into price changes. We posit, however, that this is not necessarily the case. For
example during times of extreme sentiment f(•) may be greater, perhaps due to
a surplus of speculators [8] or excessive attention being paid to information in an
environment where market conditions are perceived to be due for a correction
of some kind. This mechanism is undoubtedly too simplistic but nevertheless
tying volatility to sentiment in this way results in realistic volatility clustering
[20]. Or one can instead introduce an explicit dependence of f upon n to create
changes in market conditions with time or to use a stochastic volatility model.
And of course it is still being assumed that the information stream is Gaussian
and uncorrelated with itself — weakening these highly unrealistic assumptions
provides additional mechanisms for volatility clustering. In actual markets, all
of these mechanisms are probably present to some degree or another, and will
be considered in more detail elsewhere.

2.3 Introducing market ‘defects’ using thresholds

The focus of this paper is on the fat-tailed price returns, and previous results [11,
12, 20, 19] suggest that these are caused by the thresholds and their dynamics
rather than the pricing mechanism.

Let us start by assuming that f ≡ 1; that the threshold distributions of the
agents are perfectly mixed along the priceline at n = 0; and that the threshold
rules for agents in either state are identical and simply geometric Brownian mo-
tion. Then σ will not move away from zero since equal numbers of slow agents
are switching between the two states and so p(n) reduces to a geometric Brow-
nian process. Thus this special case corresponds to a weakly-efficient market
[15] with no possibility of predicting future prices from prior ones.

This base model is also very closely related to the concept of rational expec-
tations (in the sense of [22]) which relies upon the assumption that the predic-
tions and expectations of all the agents are, on average, correct. In other words,
there are no systemic biases or dependencies between agents’ strategies which
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are treated as Gaussian fluctuations around the ‘correct’ one2. Thus, interpret-
ing the random motions of the slow agents’ thresholds in the above model as, in
fact, being the result of arbitrarily complex computations to maximize individ-
ual utility functions gives a model that is, practically and philosophically, very
close to the neoclassical paradigm.

But, by allowing for a wider range of threshold dynamics, we can replicate
many different effects observed in real agents and real markets — and in doing
so violate the above assumptions of independence and lack of systemic bias in
agents’ strategies.

Suppose first that agent i is perfectly rational then the values Li(n) and
Ui(n) represent the cumulative effect of rigorous market analysis and future
expectations. Thus the price interval [Li(n), Ui(n)] defines that agent’s (con-
scious, or algorithmic in the case of a trading program) strategy. Or in the case
of a less-than-perfectly-rational individual the price interval still represents a de
facto strategy, but one that the agent herself may not be fully aware of. The
rules governing the dynamics of the threshold values may be as complicated
as desired, simultaneously incorporating amongst many other things: rational
strategies based upon optimization of utility functions or econometrics or tech-
nical analysis; past performance; adaptive heuristics; inductive learning; new
information; tax issues; price data from alternative investment options; margin
calls; perverse incentives; recent market volatility (perhaps then influencing fu-
ture volatility); psychological effects; the weather; herding; imitation within a
subset of closely-networked agents; and all the key findings of behavioral eco-
nomics.

Thus another working assumption is that all such effects are cumulative
and can be applied to a single pair of thresholds — some effects will move a
particular threshold inwards towards the current price (making it more likely
that that threshold will be breached and the agent will switch) while others will
move it outwards. In other words we are hypothesizing that a slow agent’s past
experiences, present state and future expectations can be condensed into two
price values, one on either side of the current price, together with the current
state of the agent. Information about the agent’s state, threshold values and
threshold dynamics are all carried over from one timestep to the next.

Thresholds are especially well-suited for incorporating some important as-
pects of agent behaviors and motivations in a very natural way. By ensuring
that they are reset away from the current price after a switching, agents cannot
switch arbitrarily often (which will be the case in the presence of non-negligible
transaction costs). Similarly included is the ‘anchoring’ phenomenon whereby
the price at which the agent last traded influences the value they place upon the
asset and thus the price at which they next trade. In a similar vein, chartists
and technical analysts have developed many observational rules to help them
predict future market performance. A particularly simple kind concerns the
existence of ‘resistance levels’ which, if breached, indicate a further price move

2This assumption is used in macroeconomics to justify the use of a single ‘representative
agent’ to model an entire economy.
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in the same direction. If such an effect does indeed exist then it can be applied
to the threshold dynamics of a subset of the agents (or it may even arise as a
natural consequence of other rules). Taking this one step further, a subset of
agents may be influenced by important-sounding numbers, such as 10000 on the
DJIA, and consciously-or-not have a threshold at around that value3. As an-
other (extreme but not uncommon) example consider an individual who bought
a dot-com stock at the top of the tech-bubble and then held it all the way down
to zero. In such a case, that agent’s lower threshold decreased (due to loss
aversion) even faster than the price while the upper threshold didn’t decrease
fast enough and so the stock was never sold. At the more rational end of the
spectrum, a rational investor or computerized trading program (fundamentalist
trader) that believes the current price to be too high, with no other complicating
factors, will enter state −1 (if necessary) and then can be mimicked by setting
the lower threshold at some point below the appraised price level and the upper
level arbitrarily high.

However the phenomenon that appears to be most important in the genera-
tion of fat-tails within threshold models is herding, whereby there is a tendency
for (rational or otherwise) agents in the minority position to switch and join the
majority. This can be incorporated into threshold dynamics in a very simple
manner — agents in the minority position have their thresholds move inwards
towards the current price thus making them more likely to switch and join the
majority (unless the majority state changes first). Different agents have differ-
ing herding propensities that are reflected in the rate at which their thresholds
move together.

Herding may be initiated, for example, by a widespread misconception about
the present or the future (such as house prices never going down) or some sys-
temic asymmetry4 that causes agents to prefer one of the states over the other.
Herding then provides a plausible positive-feedback mechanism. However, it
must be emphasized that for many agents herding is a rational, not irrational,
phenomenon. Indeed herding in the natural world is an effective survival strat-
egy and the same is true in financial markets (as well as being a trading strategy
in itself, often referred to as momentum trading). Professional investors risk los-
ing their jobs, bonuses and/or investment capital if they deviate too far from
the mean in what turns out to be the wrong direction. Thus there is a strong
motivation to play safe and ‘chase the average’. This naturally (and rationally
from the point of view of the agents themselves) also leads to herding.

2.4 Numerical Simulations

It is not the purpose of this paper to provide a detailed numerical investigation
since results from a similar model (using two pairs of static thresholds for each

3Or assume that other, less rational, agents will be affected by it (as in Keynes’ beauty
contest) and so assign a significance to it themselves. In either case, the effect is the same!

4For example the perverse incentives induced by inappropriate fee structures, or the moral
hazard that occurs when the risk of a certain investment position is reduced, removed or
transferred.
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agent) are compared against the stylized facts in [19] and further numerical
results for a moving threshold model can be found in [20]. However, for com-
pleteness, we provide enough details for reproduction of the numerical results
and highlight the main findings of previous studies.

The model is kept as simple as possible and so apart from including herding
and a volatility function f(σ) = 1 + 2|σ| we assume that agents thresholds are
reset after a switching from a specified random distribution.

The timestep h is defined in terms of the variance of the external information
stream. A daily variance in price returns of 0.6–0.7% implies that h of 0.000004
should correspond to approximately 1/10 of a trading day. The results of 10
consecutive timesteps are then combined to give the daily price return.

The parameter κ = 0.1 and all agents have equal weight. The reset thresh-
olds after a switching at price P are [Li, Ui] = [P/(1 + ZL), P (1 + ZU )] where
ZL, ZU are each chosen from the uniform distribution on the interval [0.05, 0.25],
corresponding to price moves in the range 5–25%. The model is very robust to
changes in these parameters and in the absence of further information they are
chosen to be as simple as possible.

The thresholds of all agents are subject to a random, driftless, component
governed by a quantity δ = 10−8. Herding is introduced by supposing that for
agents in the minority position only

Li(n+1) = Li(n)+Cih|σ(n)|+N (0, δ), Ui(n+1) = Ui(n)−Cih|σ(n)|+N (0, δ)

while for those in the majority

Li(n+ 1) = Li(n) +N (0, δ), Ui(n+ 1) = Ui(n) +N (0, δ).

Note that the drift in the position of the thresholds is proportional to the length
of the timestep and the magnitude of the sentiment. The constant of propor-
tionality Ci is different, but fixed, for each agent and chosen from the uniform
distribution on [20, 100]. This range of parameters corresponds to a herding
tendency that operates over a timescale of a few months or longer.

Figure 2 shows the price output of the model (the more volatile curve) against
the ‘efficient’ pricing (less volatile) obtained from (2) by setting κ = 0 and
f(σ) ≡ 1 with M = 100000.

Figure 3 shows a simulation with M = 1000 but all other parameters un-
changed, emphasizing that the results do not depend critically upon the system
size while Figure 4 shows the daily percentage returns for the simulation in
Figure 2.

Measurements of power-law exponents, similar to those carried out in [19],
provided estimates close to those observed in analyses of price data from real
markets for the tail of the price returns and the decay of the volatility autocor-
relation function, typically in the range [2.8, 3.2].

In the absence of herding, i.e. when Ci = 0 ∀i, then, provided that the initial
states si(0) of the agents are sufficiently mixed, σ(n) ≈ 0 ∀n and p(t) always
remains close to the efficient market price. Such a model is both practically and
philosophically recognizable as the neoclassical notion of an efficient market —
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Figure 2: Asset price of a simulation over 40 years with 100000 agents.

agents trade due to differing expectations but the averaging procedure inherent
in the rational expectations assumption is valid and no mispricing occurs. How-
ever, Figure 5 is a snapshot of the system for the simulation of Figure 2 (herding
included) at a point in time when σ ≈ 0. The two displayed histograms are the
density of thresholds for agents in the two states +1 and −1 plotted separately.
The main point to note is the discrepancy between the two density functions
which indicates that as the system evolves and the price fluctuates, σ will move
away from 0 because the agent thresholds are not perfectly mixed.

Finally we note that in the above simulation there are different causal mech-
anisms for the volatility clustering and fat-tails. If f ≡ 1 (i.e. the fast agents
are correctly interpreting new Gaussian information) then herding induces fat-
tails but there is no volatility clustering. Thus the systemic bias of the slow
agents cause fat-tails while the imperfect interpretation of information by the
fast agents results in volatility clustering5.

3 A Queueing Theory Description of Price Cas-
cades over Short Timescales

We are interested primarily in the tail-distribution of price returns. Since the
information stream is modelled as Gaussian, extreme price moves are due to
cascades of buying or selling affecting (2) with κ > 0. Without loss of generality
we shall consider a selling cascade. Figure 6 shows the start of such a possible
selling cascade within the threshold model of Section 2. The circles and crosses

5However, more sophisticated threshold dynamics for the slow agents that are also functions
of recent price volatility may provide a further mechnism for volatility clustering
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Figure 3: Asset price of a simulation over 40 years with 1000 agents.
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Figure 4: Daily price returns for Figure 2.
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Figure 5: The density of the thresholds along the price axis for agents in each
of the two states. The difference between the two distributions is a ‘memory
effect’ of the prior behavior of the system and affects the future evolution.

to the left of the current price indicate the positions of the lower thresholds of
the slow agents.

There are four points to consider before proceeding. Firstly, Figure 6 can
act as a stand-alone model of a rapid deleveraging process. As the price falls
and passes the lower thresholds of agents who are in the +1 state, they switch
to the −1 state pushing the price down further (if κ > 0) and triggering other
agents to sell and so on (note that these lower thresholds may in reality be
the pricing points at which margin calls are activated). Secondly, under the
most extreme market conditions, the distinction between fast and slow agents
made in Section 2 may be invalid as the amount of new information entering
the system is negligible and all the agents are motivated by price changes. In
this case M will be equal to the total number of agents, not just the number of
slow ones, and the model more closely resembles an order book. Thus the link
to queueing theory outlined below may also be useful in the context of those
models.

Thirdly, as shown in Figure 5, the distribution of thresholds is a result of the
evolution of the system over a long period of time and will in general be highly
non-uniform over the positive real line. Finally, although we are supposing that
the cascade/relaxation process is instantaneous, in practice this is certainly not
the case and agents’ thresholds may move significantly between the start of the
cascade and the end.

We consider the continuous-time version of the model outlined at the start of
Section 2 and it will also be convenient to introduce the log-price P (t) = ln p(t).
At the start of the cascade the price is fluctuating due to the arrival of new
information and the action of the fast traders. Then at some value P ∗ it equals
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Figure 6: The start of a selling cascade. As in Figure 1, crosses and circles
represent thresholds of agents in the −1 and +1 states respectively.

one of the thresholds of agent i who is in the +1 state. We now consider the
cascade to be a relaxation process that occurs instantaneously. The log-price
jumps downwards by an amount κ∆σ = 2κwi/W as the agent switches and its
thresholds jump to a non-zero distance away. If there is no other agent with
its lower threshold in the interval [P ∗, P ∗ − 2κwi/W ] then the cascade stops
immediately. If there is such an agent, or agents, then the cascade continues.
During the relaxation process, there may be agents in the opposite state caught
in the cascade whose switching will act in the opposite price direction and help
to bring the cascade to an end. Once the cascade is over, time restarts and P (t)
evolves under the action of the information stream until another threshold is
met.

Now consider the following scenario from queueing theory [7]. A customer,
named i, arrives at an empty single-server queue. If she is served before another
customer arrives then the busy period of the queue, defined to be the length of
time it is in existence, is simply the time taken to serve her, call it 2κwi/W . If
on the other hand other customers arrive before she is served then the queue
continues until they are all served. However, we must also allow for the possi-
bility that some people in the queue may decide to leave it before being served
— this is referred to in the queueing theory literature as reneging.

There exists an almost exact correspondence between these two situations.
Price in the market model corresponds to time in the queueing problem, the
size of the trade the agent wishes to make corresponds to the length of time
taken to serve that customer, and the overall price change during the cascade
maps to the busy period of the queue. Agents in the opposite state caught up
in the cascade act as ‘anti-customers’ whose arrival in the queue causes them to
cancel out with an agent, or agents, of the same total weight/service time. This
is of course equivalent to those agents deciding to renege and leave the queue. A
subtle, but negligible, difference is that in the market cascade an agent j in the
opposite state getting caught up in the process should correspond to a customer,
or customers, of the same total ‘size’ wj/W reneging from the queue. But if wj
is sufficiently large then there may not be enough total weight in the queue for
this to happen (i.e. at the end of a selling cascade a small ‘bounce’ may occur
in the price but customers who have already been served cannot leave a queue).

Queueing theory has a standard notation for describing queues. A queue
(without reneging) is X/Y/n where X describes the distribution of arrivals, Y
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the serving times and n is the number of servers. Below we shall only consider
cases where X,Y = M or G and n = 1. M corresponds to exponentially-
distributed arrival or service times generated by a Poisson process while G is
a general distribution, usually under some assumption of finite moments. In
the case of an M/M/1 queue the Poisson parameters for X and Y are λ and µ
respectively.

We now state some results from queueing theory concerning the distribution
of the busy period under progressively weaker assumptions. While none of these
results apply directly to price cascades under all circumstances, they may be
indicative of an underlying explanation for the apparent universality of sub-
exponential decays in price returns [21].

First consider an M/M/1 queue without reneging. Using standard argu-
ments [7], if ρ = λ/µ < 1 then the busy period τ of the queue is finite with
probability 1 and the entire distribution is given by

Prob(τ ≤ t) =

√
µ/λe−(λ+µ)tI1(2

√
λµt)

t
(3)

where I1(·) is the first modified Bessel function of the first kind. Furthermore
explicit formulae exist for the moments and

E[τ4] =
E[Y 4]

(1− ρ)5
+

10λE[Y 2]E[Y 3]

(1− ρ)6
+

15λ2(E[Y 2])3

(1− ρ)7
(4)

(generalizations for M/M/1 queues with various reneging assumptions can be
found in [16]). In fact (4) holds for M/G/1 queues without reneging if ρ =
λ/E(Y ) < 1. The generalization of (3) to M/G/1 queues is provided by the
Takacs Equation:
if Y ∗(s) is the Laplace-Stieltjes transform of the cumulative density function of
Y (t) then τ∗(s) satisfies

τ∗(s) = Y ∗{s+ λ− λτ∗(s)}. (5)

This functional equation establishes close connections between the tail of
the service times and the tail of the busy period distribution [14] (see also
[26, 5, 16]). In particular, the tails of the service time distribution (ie. the
distribution of agent sizes) and the tails of the busy period (price changes) obey
the relationship

(1− τ(t)) ∼ (1− ρ)−α−1(1− Y (t)) as t→∞

where α ≥ 1 and Y (t) is subexponential with 1 − Y (t) = L(t)
tα for some slowly-

varying function L. Such results are of interest because of the observed power-
law distributions of sizes in many socio-economic and financial systems. However
it should be noted that threshold models can produce approximate power laws
even when the agents are all of uniform size [20] and so a general explanation of
power-law price returns may not require a power-law distribution for the agents’
sizes.
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The above results for M/G/1 queues without reneging may be directly appli-
cable to smaller and intermediate-size cascades where the presence of reneging
(agents who are switching in the opposing direction) can be approximated by
modifying the service time distribution and, in particular, decreasing E(Y ).
However, especially for larger cascades, the assumptions of constant arrival and
reneging rates are not appropriate. As an extreme case, consider a selling cas-
cade that initially has arrival rates corresponding to a supercritical process (and
a queue that would become infinitely long with non-zero probability). Then the
mechanism that ultimately stops the cascade is the re-arrival of agents who have
already been through the cascade once. For example, an agent who was fortu-
nate (or smart) enough to sell at the start of a selling cascade may eventually
re-enter the process but making the opposite trade, thus reaping an actual as
opposed to hypothetical profit, and acting as a brake rather than an accelerator.
Thus financial cascades have a propensity to be self-limiting. Similar situations
within queueing theory arise by considering the arrival and reneging rates to
be functions of time and/or queue length [25, 3, 4] but few general results exist
concerning the busy-period distribution.

We end by commenting that price-return tails are an aggregate of many dif-
ferent cascades that almost certainly have differing queueing parameters. Thus a
precise analysis of the busy-period distributions may not be necessary to explain
the observed functional forms of the tails.

4 Conclusions

Even very simple threshold models appear to be capable of capturing the most
important statistical aspects of financial markets. They also better reflect the
incremental and history-dependent nature of decision-making processes. Fur-
thermore, since a (weakly) efficient market exists as a special case, it is possible
to systematically study the ways in which removing various efficient market as-
sumptions, as reflected in the model, change the global behavior of the system.
In this sense, the framework presented in Section 2 can be considered as a set of
thought experiments that can be used to query the assumptions behind much
of modern finance and economics.

The numerics in Section 2.4 focussed upon herding as the principle cause
of deviation from an otherwise efficient market. This is because many impor-
tant real-world factors such as psychology, bonus/commission criteria and other
compensation practices, and moral hazard all produce a similar effect; namely,
that one side of a trade or market position becomes more attractive than the
other and then herding provides a positive feedback mechanism.

It was then demonstrated that queueing theory can potentially be applied
to threshold models. It is unlikely that the cited results, concerning the kurtosis
and tail-distribution of the busy periods of single-server queues, can be accu-
rately applied to any real market cascade. However, the analytical methods of
queueing theory may provide an explanation for the universality seen in the tail
statistics. Queueing theory may also be useful for analyzing order-books and
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modelling market panics and deleveraging cascades.
Finally, in this paper the attention has been on the slow traders and hence

the threshold dynamics. However, such threshold models can be fused, in a
very intuitive way, with order-book models. The resulting models would be
computationally very intensive, since they must simulate the fast traders as
well as the slow ones, but should be able to mimic many different real-world
effects across multiple timescales.
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