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Abstract. We consider a system of operator equations involving play and
Prandtl-Ishlinskii hysteresis operators. This system generalizes the classical

mechanical models of elastoplasticity, friction and fatigue by introducing cou-

pling between the operators. We show that under quite general assumptions
the coupled system is equivalent to one effective Prandtl-Ishlinskii operator

or, more precisely, to a discontinuous extension of the Prandtl-Ishlinskii op-

erator based on the Kurzweil integral of the derivative of the state function.
This effective operator is described constructively in terms of the parameters

of the coupled system. Our result is based on a substitution formula which
we prove for the Kurzweil integral of regulated functions integrated with re-
spect to functions of bounded variation. This formula allows us to prove the
composition rule for the generalized (discontinuous) Prandtl-Ishlinskii opera-
tors. The composition rule, which underpins the analysis of the coupled model,

then establishes that a composition of generalized Prandtl-Ishlinskii operators

is also a generalized Prandtl-Ishlinskii operator provided that a monotonicity
condition is satisfied.

1. Introduction.
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1.1. Background and objectives. Classical models of hysteresis effects are of-
ten defined as the superposition of a large number of simple hysteresis operators
such as plays, stops or non-ideal relays [1, 2]. These simple hysteresis components
model, for example, magnetic domains in a ferromagnetic material or individual
fibers in an elastoplastic cable. In reality hysteretic components affect each other
(via magnetic fields in magnetic media or friction forces in mechanical systems) but
these interactions, by and large, are ignored in macroscopic models of hysteresis.
The reason is that the inclusion of interactions usually leads to a dramatic com-
plexification of the model and, specifically, makes identification of parameters a
hard problem. For example, the Preisach model of ferromagnetic materials, which
is obtained by superposition of non-interacting non-ideal relays, can be completely
identified by measurements of the first and second-order hysteresis curves of the re-
lationship between the magnetization and the applied field [3]. However, in another
model of magnetic materials which is widely used in statistical physics, the Ising
spin-interaction model where hysteresis emerges from the interaction of spins, any
complete identification algorithm remains an open problem. Knowledge of the hys-
teresis curves up to any order k is not sufficient for recovering higher-order hysteresis
curves or the adjacency matrix and spin switching thresholds [4].

Thus, the absence of interactions is often considered a necessary simplification
for making the model tractable and efficient enough for engineering applications.
However, adding even simple interactions via a mean-field term to the classical
Preisach model (the moving model [5]) can account for the more complex hysteresis
loops that are observed experimentally but forbidden by the Classical model. Fur-
thermore, the rapid development of network science has stimulated greater interest
in models that include interactions between hysteretic components. Interactions
can introduce several new effects including a more complex hysteresis loop struc-
ture compared to standard models, as mentioned above. But perhaps the most
interesting are cascading effects, also known as avalanches in discrete-state models,
which allow perturbations to propagate through a network due to interactions be-
tween nodes [6]. In continuous models, this reveals itself as discontinuities in the
input-output operator.

The objective of this work is to explore how the inclusion of interactions affects
one classical model of hysteresis known as the Prandtl-Ishlinskii (PI) operator. To
this end, we consider a network model that includes as particular cases: an exten-
sion of the PI model from a superposition of non-interacting elementary hysteresis
operators called plays to a system of interacting plays; a discontinuous extension
of the PI operator (we shall call it a generalized PI operator) that has properties
similar to the continuous PI operator and for which the identification problem is
completely solved; and a network with (generalized) PI operators at the nodes.
Having introduced these classes of models (the most general being the network of
PI operators), we attempt to obtain the solution operator for the network i.e. the
operator that maps the time series of the input to the time series of the state of
each node.

The PI operator is a phenomenological model of hysteretic relationships which
has various physical interpretations. Examples include plasticity [7], friction1 [8],
fatigue accumulation [9], and complex constitutive laws coupling mechanical and
electro-magnetic properties of smart materials [10]. The model admits effective nu-
merical implementation. Furthermore, hysteresis loops generated by a PI operator

1The Maxwell slip-friction model and the Prandtl-Ishlinskii model are mathematically identical.
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have simple characteristic properties that can be used for solving the identification
problem. And whenever empirical hysteresis loops exhibit (at least approximately)
similar properties, or can be mapped to a set of loops with similar features by a
coordinate transformation, a well-defined identification algorithm allows one to pa-
rameterize an approximating PI model. Essentially, in order to parameterize a PI
operator, one needs to know one scalar function of a scalar variable called the pri-
mary response (PR) curve2. This curve is a plot of the output vs the input, which
quantifies the response of the PI operator to monotonically increasing and decreas-
ing inputs; experimentally, it is typically obtained by measuring the response to a
slowly varying monotone input. The response of the PI operator to arbitrary piece-
wise monotone inputs is then determined in terms of the PR curve by an explicit
formula [11], which allows fast and accurate computation of the output for real time
measurements of the input. This makes the PI operator a suitable model for design-
ing model-based controllers [12]. A remarkable property of the PI operator, that is
important in applications as well as being central to this work, is expressed by the
composition formula. In short, a composition of PI operators is also a PI operator,
and the PR function of the composition is the composition of the PR functions of
the composed operators3 [13]. In particular, the inverse of a PI operator is another
PI operator. This property plays a key role in the compensation-based control of
sensors, actuators and micro-electro-mechanical systems employing smart materials
[14, 15].

In scalar plasticity theory the Prandtl-Ishlinskii model represents the constitutive
relationship between variable stress (loading) and strain of an elasto-plastic material
as a superposition of elementary constitutive laws known as elastic-ideal plastic
elements (fibers), which are modeled by play operators [7]. The phenomenology of
the PI model is based on the assumption that elementary fibers do not interact and
respond to the external loading applied to all of them independently of each other.
However, even in this classical setting, some interaction between the fibers can be
expected to occur in practice A system of elastic and elastic-ideal plastic fibers
which affect each other via frictional forces when stretched by external loading has
been considered in [16]. That system, which assumes the Maxwell-slip model for
the friction forces, is an example of the network models considered here. As was
shown in [16], introducing interactions between plays into the PI model can result
in two different scenarios. In the first, the system of interacting plays is equivalent
to a single effective PI operator. That is, the interactions do not generate extra
complexity in the input-output operator but merely change the parameters of the
PI model. This will be the case when the interactions are sufficiently weak. In
the second scenario, interactions produce complex hysteresis loops and ratcheting
effect (non-closed loops) which cannot occur in a Prandtl-Ishlinskii model (nor in
any model having return point memory, such as the Preisach and the Ising models).
A detailed discussion of the mathematical properties of the PI operator and the
mathematical theory of hysteresis operators can be found in [1, 11, 13, 17, 18].

In this work, we undertake a detailed analysis and rigorous mathematical un-
derpinning of the first above scenario. For a mechanical application we refer the
interested reader to [16]; the same paper also introduces a novel financial applica-
tion where a network model with simple discontinuous generalized PI operators at

2Also known as the loading curve in plasticity.
3 We remark that a linear combination (weighted superposition) of PI operators is a PI operator

too and follows immediately from the definition.
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the nodes mimics the effect of momentum trading strategies on prices in a financial
market.

1.2. Methods and results. Although systems (networks) of interacting PI oper-
ators have, to the best of our knowledge, not been studied before it is clear that
the composition formula plays the main role in understanding and describing their
behavior and in finding conditions which ensure that the whole system responds
to inputs as one effective PI operator. Assuming that the input of the system is
mapped to the time series of each component by an unknown PI operator, we ob-
tain a system of operator equations where all of the terms are PI operators, some
of them known (that is, their PR functions are given) and others unknown. These
equations will contain compositions of known and unknown PI operators. If the
composition formula works, then the PR functions of the unknown PI operators
can be found from the algebraic system that is obtained from the system of opera-
tor equations by replacing each PI operator by the Nemytski operator generated by
the PR function of the PI operator (equation (14)). After all the PR functions have
been using this algebraic system (and thus all the PI operators have been identified)
the argument is completed by verifying that the composition formula indeed works
for all these PI operators. This requires one to verify that (a) all the solutions of
the algebraic system (PR functions) are monotone, and (b) all the PR functions are
continuous. If these two properties are confirmed, the above construction delivers
an explicit solution of the system and ensures that each component’s response to
any external input is described by a PI operator, hence the hysteresis loops have a
simple well-defined structure.

In this paper, we assume that the monotonicity condition (a) is satisfied (this
corresponds to the first scenario that is realized for the mechanical and financial
models mentioned above). However, in case of sufficiently strong interactions be-
tween the nodes, the network can produce a discontinuous response to continuous
inputs. The question arises as to whether this discontinuous response is in any way
similar to the response described by the PI operator in the continuous case.

Here we give a positive answer to this question by providing an effective solu-
tion to the system of interacting PI operators. Essentially, we generalize the above
scheme based on the composition formula to the discontinuous case, thus lifting
condition (b). To this end, we introduce an extension of the PI operator which can
have a discontinuous PR function. This extension, called the generalized PI opera-
tor, is defined in terms of the Kurzweil integral of a regulated function representing
the memory state of the PI operator with respect to a (discontinuous) PR function
(Section 2).

Secondly, we prove the composition formula for the generalized PI operators. The
composition formula states that the composition of two generalized PI operators is
also a generalized PI operator provided a monotonicity condition is satisfied for one
of them (Corollary 3.3). It allows us to apply the same scheme as was described
above for the continuous setting to the discontinuous case. In other words, we
show that a network of generalized PI operators is equivalent to one generalized PI
operator if monotonicity holds (Theorem 3.1).

The proof of the composition formula is based on the substitution formula for
the Kurzweil integral (Theorem 4.5) which, it appears, has not been proved before
for regulated functions integrated with respect to a function of bounded variation
— this is the result we need here. Hence, the proof of the substitution formula
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presented below is of independent interest to Kurzweil integral theory (Section 4).
Conclusions are presented at the end of the paper.

2. Discontinuous extension of Prandtl-Ishlinskii operator.

2.1. Play operator. Consider a simple hysteresis operator known in continuum
mechanics as the play operator pr parameterized by r > 0. It was introduced in [1]
first for continuous piecewise monotone inputs and was then extended to arbitrary
continuous inputs from the dense set of piecewise monotone functions. Specifically,
if u ∈ C[0, T ] is a given input function which is monotone (nondecreasing or non-
increasing) in an interval [t0, t1], and if the output ξr(t0) ∈ [u(t0) − r, u(t0) + r] is
known, then we define the output ξr(t) for t ∈ [t0, t1] by

ξr(t) = ξr(t0) + Pr(u(t)− ξr(t0)), (1)

where Pr : R→ R is the dead zone function

Pr(x) = max{x− r,min{0, x+ r}} for x ∈ R. (2)

Figure 1 presents the input-output diagram of the play operator and its mechan-
ical interpretation.

The above definition was extended to regulated functions in [11]. We shall use
the notation ξr = pr[ξr(0), u] for the play operator that maps the input time series
u = u(t) (in a mechanical setting, this is varying loading) to the output time series
ξr = ξr(t) (varying displacement) given an initial value ξr(0). Note that this map
is defined for any initial displacement from the interval ξr(0) ∈ (u(0)− r, u(0) + r),
see the legend of Figure 1.

Note that t is the time variable, while r can be interpreted as memory variable.
All functions of t appearing in this text will be assumed to be regulated and right
continuous. Recall that a function f : [0, T ] → R is regulated if both the left
and the right limits f(t−), f(t+) exist for each t ∈ [0, T ], with the convention
f(0−) = f(0), f(T+) = f(T ). The set of right continuous regulated functions is
denoted by GR[0, T ], and endowed with seminorms

‖f‖[t1,t2] = sup{|f(t)| : t1 ≤ t ≤ t2}, (3)

and with the norm ‖f‖[0,T ] it is a Banach space. On the other hand, functions of r
are also be regulated and may be right continuous or left continuous depending on
the context. The set of left continuous regulated functions λ : [0,K] → R will be
denoted by GL[0,K].

2.2. Prandtl-Ishlinskii model. The Prandtl-Ishlinskii model is obtained by su-
perposing play operators.

Figure 2(a) presents a schematic of a mechanical realization of the Prandtl-
Ishlinskii model. For a system of N plays, the input-output relationship of this
model is

ξ(t) =

N∑
i=1

1

Ei
pri [ξri(0), u](t) , (4)

where Ei is the spring stiffness and ri is the maximal static friction force of the
friction element for the i-th play. Usually, a continuous limit of this model is used
(see, for example, [1, 11]), which has the form

ξ(t) =

∫ ∞
0

pr[ξr(0), u](t) dµ(r). (5)
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Figure 1. (a) Input-output diagram of the play operator. The
point (u(t), ξ(t)) belongs to the band between the slanted lines ξ =
u+r and ξ = u−r at all times. The point can move along the right
boundary of this band only upwards and along the left boundary
only downwards. Inside the band, it moves horizontally and can
move both left and right. The polyline A0A1A2A3A2A4A5A6A7

shown in bold is an example of a trajectory of the point (u(t), ξ(t)).
Using the notation (ui, ξi) for the coordinates of the point Ai, this
trajectory corresponds to the input u(t) which increases from the
value u0 to the value u1 and further to the value u2; then decreases
to the value u3; then increases to the value u4 through the value
u2; then decreases to the value u6 through the value u5; and finally
increases to the value u7. (b) Mechanical realization of the play:
an ideal spring with Young’s modulus E = 1 and the Coulomb
friction element (object on a dry surface) connected in parallel.
The input u(t) is the applied force (stress, loading). The output
ξ(t) is the difference between the actual spring length and its rest
length (strain). When a force u − Eξ applied to the object on
the dry surface is within the range (−r, r) it is compensated by
the static friction force and the object remains stationary on the
surface i.e. the displacement ξ remains constant. When the friction
force reaches ±r, a quasistatic motion begins. The kinetic friction
force is assumed to have the absolute value r equal to the maximal
value of the static friction. The balance of forces for the quasistatic
motion reads u = Eξ ± r.

A convenient way to define the initial condition for the plays is to introduce the
memory state space

Λ = {λ ∈W 1,∞
loc (0,∞) : |λ′(r)| ≤ 1 a.e. } , (6)

and put

ξr(0) = λ(r) + Pr(u(0)− λ(r)) (7)

for λ ∈ Λ. An initial condition (7) automatically satisfies the restriction |ξr(0) −
u(0)| ≤ r, which needs to be fulfilled for each play. We then consider the play
operator as a mapping which with a given memory state λ ∈ Λ and a given input
u ∈ GR[0, T ] associates the output ξr ∈ GR[0, T ], and we write ξr = pr[λ, u].
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Figure 2. (a) Mechanical realization of the Prandtl-Ishlinskii
model: a consecutive connection of plays. The motion is qua-
sistatic. The applied force u(t) is the same for all the plays. The
output ξ(t) is the difference between the total length of the system
and its length at rest when all the spring forces are zero. Springs
have different stiffnesses as well as friction elements and so are char-
acterized by different maximal static friction values ri. (b) Network
of Prandtl-Ishlinskii operators at the nodes with the input u.

In financial market modeling, the initial condition is typically chosen to be

λM (r) = min{−M + r, 0}. (8)

We shall see that such a choice also has advantages in that it simplifies the mathe-
matical formulas.

2.3. Extension of the model via Kurzweil integral. Let ψ : [0,∞) → R
with ψ(0) = 0 be an arbitrary right continuous function with bounded variation.
Using the Kurzweil integral formalism, we define the generalized Prandtl-Ishlinskii
operator Pψ : Λ×GR[0, T ]→ GR[0, T ] generated by ψ by the formula

Pψ[λ, u](t) = −
∫ ∞

0

∂−
∂r

pr[λ, u](t) dψ(r) , (9)

where the symbol ∂−/∂r denotes the left partial derivative with respect to r. The
function ψ is called the primary response curve or the loading curve of Pψ.

To ensure that this definition is both meaningful and compatible with the stan-
dard definition (5) of the Prandtl-Ishlinskii operator, we restrict the admissible
domain Λ of memory configurations λ by choosing a fixed number K > 0 and
putting

ΛK = {λ ∈ Λ : λ(r) = 0 for r ≥ K, λ′
∣∣
[0,K]

∈ GL[0,K]}. (10)

By [11, Propositions 2.7.5, 2.7.6], if |u(t)| ≤ U for every t ∈ [0, T ], then pr[λ, u](t) =
0 for all r ≥ max{K,U}, hence in (9) we integrate over a bounded interval. In
particular, λM from (8) belongs to ΛM . Furthermore, still using [11, Propositions
2.7.5, 2.7.6], the function r 7→ ∂−

∂r pr[λ, u](t) takes only values ±1 in (0, U) with
finitely many jumps in each interval [a, U ] with a > 0, hence it belongs to GL[a,R]
for every 0 < a < R < ∞. Then formula (9) can be obtained from (5) using
integration by parts. In this case,

ψ(r) =

∫ r

0

(r − s) dµ(s)
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and so the loading curve ψ is continuous. This function has a clear meaning: if
λ = 0 (that is, all the forces at the initial moment are zero) and the input u is
increasing, then the output of the Prandtl-Ishlinskii model is ξ(t) = ψ(u(t)).

It is important to remark that both the function ψ and the integrand in the
Kurzweil integral definition (9) of the generalized Prandtl-Ishlinskii operator may
be discontinuous. Also, the play pr0 with threshold r0 can be considered as a special
case of the Prandtl-Ishlinskii operator with the choice ψ(r) = (r − r0)+.

3. Main results.

3.1. Problem statement and main theorem. In this section, we develop a
method for solving systems of the form

w(t) = P[w](t) + cu(t), (11)

where u ∈ GR[0, T ] is a given right continuous regulated input function, c =
(c1, . . . , cn) is a given constant vector, P is a vector operator of the form

(P(w))i(t) =

n∑
j=1

Pψij [λij , wj ](t) , (12)

Pψij
is a generalized Prandtl-Ishlinskii operator with a primary response curve ψij ,

and with initial condition λij ∈ ΛK . The unknown in the problem is the function
w(t) = (w1(t), w2(t), . . . , wn(t)).

The form of (11) that is most relevant here is the system

wi(t) =

n∑
j=1

aijPψj [λj , wj ](t) + ciu(t) , i = 1, . . . , n, (13)

which describes a network of n generalized Prandtl-Ishlinskii operators Pψi [λi, ·],
see Figure 2(b). Here (aij)i,j=1,...,n is the adjacency matrix of the network so that
two nodes are connected if aij 6= 0 and the value of aij measures the strength of
their interaction. The network is driven by an external input u. From (13), the
input wi of the i-th node is a weighted sum of the outputs Pψj

[λj , wj ] of all the
nodes connected to it and the external input u. Examples of mechanical systems
with friction and plastic elements leading to model (13), as well as a financial
application, can be found in [16].

The main result of this paper is the following theorem.

Theorem 3.1. Assume that primary response functions ψij of the operators Pψij

are right continuous, have bounded variation, and satisfy ψij(0) = 0. If the algebraic
system

ϕi(r) =

n∑
j=1

ψij(ϕj(r)) + cir, i = 1, . . . , n, (14)

admits a nondecreasing right continuous solution (ϕ1(r), . . . , ϕn(r)) for all r ≥ 0
with ϕi(0) = 0 then, for a suitable choice of initial states λij , λ

i ∈ ΛK , problem
(11)–(12) has a solution wi = Pϕi

[λi, u] in the class of generalized Prandtl-Ishlinskii
operators for all regulated inputs u.

We will see below in Corollary 3.4 how the initial conditions have to be chosen
for the validity of the superposition formula. In addition, the condition that (14)
admits nondecreasing solutions is quite restrictive. Even if all the ψij are linear,
that is, ψij(z) = aijz with aij > 0, the condition may fail to hold. On the other
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hand, if right-continuous functions ψij are non-decreasing and bounded, then the
existence of nondecreasing solutions ϕi follows from a variant of the Birkhoff-Tarski
fixed point theorem with compactness based on the Helly selection principle (the
financial model in [16] satisfies these properties). Generically, continuity of func-
tions ψij (which is equivalent to continuity of the operators Pψij

in (12)) does not

guarantee continuity of the solution operators wi = Pϕi [λ
i, u]. Interaction of the

nodes can naturally result in discontinuity of operators Pϕi
. This is part of the rea-

son for introducing the generalized Prandtl-Ishlinskii operator. Indeed, the simplest
equation

w(t) = Pψ[λ,w](t) + u(t)

with n = 1 admits a continuous solution operator w = (I−Pψ)−1u if and only if the
function r → r − ψ(r) admits a continuous increasing inverse. However, additional
assumptions can ensure uniqueness and continuity of the Prandtl-Ishlinskii solution
operators wi = Pϕi

[λi, u], i = 1, . . . , n for problem (11)–(12). For example, this
is the case for any system (13) with smooth functions ψi and sufficiently small
coefficients aij (that is, a network with weak interaction; see [16] for a mechanical
example). Strong interactions typically result in discontinuities which represent
cascading effects (avalanches) in the network.

3.2. Composition formula. The main step in proving Theorem 3.1 consists of
generalizing the Prandtl-Ishlinskii composition formula from [13] to the case of
discontinuous primary response curves.

Proposition 3.2. Let λ ∈ ΛK , u ∈ GR[0, T ] be given, and let ϕ : [0,∞) → [0,∞)
be a nondecreasing function, ϕ(0) = 0, ϕ(∞) =: ϕ∞ ≤ ∞. Let ϕ−1 be the left
continuous inverse of ϕ, that is,

ϕ−1(s) = inf{t ≥ 0 : s ≤ ϕ(t)}. (15)

For s ≥ 0 put

λϕ(s) = −
∫ ϕ∞

s

λ′(ϕ−1(r)) dr . (16)

Set v(t) = Pϕ[λ, u](t). Then λϕ ∈ Λϕ(K), v ∈ GR[0, T ] and for all s ≥ 0,

ps[λϕ, v](t) = −
∫ ϕ∞

s

∂−
∂r

(
pr[λ, u](t)

)∣∣∣
r=ϕ−1(%)

d% . (17)

Proof. It is enough to prove formula (17) for one memory update, that is for the
input u(t) = λ(0) + (û − λ(0))H(t − τ) where H is the Heaviside function and
t > τ ≥ 0, and û ∈ R. To be definite, assume that û > λ(0). The function

µ(r) =

{
û− r for r ∈ [0, ru),
λ(r) for r ≥ ru,

(18)

where ru is the smallest root of the equation r + λ(r) = û, then represents the up-
dated value of the play pr[λ, u] at the moment t and we indeed have µ ∈ Λmax{û,K}.
By Theorem 4.5, the updated value of v at the moment t is given by the formula

v(t) = −
∫ ∞

0

µ′(r) dϕ(r) = −
∫ ϕ∞

0

µ′(ϕ−1(%)) d%.

We now define µϕ as the right hand side in (17), that is,

µϕ(s) = −
∫ ϕ∞

s

µ′(ϕ−1(%)) d%.
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Using (18), we obtain

µϕ(s) =

{
v(t)− s for s ∈ [0, ϕ(ru−)),
λϕ(s) for s ≥ ϕ(ru−),

(19)

and it is easily checked that s = ϕ(ru−) is the smallest root of the equation s +
λϕ(s) = v(t). Hence µϕ is the update of the play applied to v with initial memory
λϕ, which is what we required. �

From Proposition 3.2, we obtain the following composition formula for general-
ized Prandtl-Ishlinskii operators.

Corollary 3.3. Let λ ∈ ΛK , u ∈ GR[0, T ], ϕ, and v be as in Proposition 3.2,
and let ψ : [0,∞) → R with ψ(0) = 0 be a right continuous function of bounded
variation. Then

Pψ[λϕ, v] = Pψ◦ϕ[λ, u] . (20)

Proof. Note first that by virtue of (17) we have

∂−
∂s

(
ps[λϕ, v](t)

)
=
∂−
∂r

(
pr[λ, u](t)

)∣∣∣
r=ϕ−1(s)

.

Hence, by Theorem 4.5 (see below),

Pψ[λϕ, v] = −
∫ ∞

0

∂−
∂s

(
ps[λϕ, v](t)

)
dψ(s) = −

∫ ∞
0

∂−
∂r

(
pr[λ, u](t)

)
d(ψ ◦ ϕ)(r),

and the assertion follows. �

Consider now nondecreasing functions ϕi : [0,∞) → [0,∞), ϕi(0) = 0, i =
1, . . . , n, and another system ψij : [0,∞) → R, i, j = 1, . . . , n, of right continuous
functions of bounded variation with ψij(0) = 0, as in Theorem 3.1. Corollary 3.3
immediately implies the following statement.

Corollary 3.4. Assume that relations (14) hold for all r ≥ 0. For λi ∈ ΛK and
u ∈ GR[0, T ] set wi = Pϕi

[λi, u], i = 1, . . . , n. Then

wi(t) =

n∑
j=1

Pψij
[λiϕj

,wj ](t) + ciu(t) (21)

for all t ∈ [0, T ] and i = 1, . . . , n, with λiϕj
related to λi and ϕj as in (16).

Theorem 3.1 now follows from Corollaries 3.3 and 3.4. In particular, if λi(r) =
min{−Mi + r, 0} as in (8), then λiϕj

(r) = min{−ϕj(Mi−) + r, 0} for each i, j =
1, . . . , n.

From their definition, the class of generalized Prandtl-Ishlinskii operators is
closed with respect to linear superposition (parallel connections). From Corollary
3.3 it follows that the class of generalized Prandtl-Ishlinskii operators with increas-
ing primary response curves is also closed with respect to the composition operation
(cascade connections). Finally, Theorem 3.1 implies that any system (13) (network
connections) of the generalized Prandtl-Ishlinskii operators with increasing bounded
primary response curves and a non-negative adjacency matrix (aij)i,j=1,...,n is equiv-
alent to a set of independent generalized Prandtl-Ishlinskii operators.
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It is standard to define the output ξ = ξ(t) of a network model as a weighted
sum of the states of its nodes, that is, for system (13) to set

ξ(t) =

n∑
j=1

µjPψj
[λj , wj ](t) (22)

(cf. (4), (5)). If the conditions of Theorem 3.1 are satisfied, then the input-output
operator mapping the input u of the network (13) to its output ξ is a generalized
Prandtl-Ishlinskii operator ξ(t) = Pφ[λ, u](t) with φ(r) =

∑n
i=1 µiψi(ϕi(r)).

4. Substitution in Kurzweil integrals. In this section, we recall the definition
and some basic properties of the Kurzweil integral — introduced in [19] as a frame-
work for solving ODEs with singular right-hand sides. We cite most of the results
without proof. The interested reader can find further details in [20, 21, 22]. How-
ever, Theorem 4.5, which plays an important role here, appears to be new and its
detailed proof is given at the end of this section.

The original definition in [19] is not suitable for the integral formulation of dis-
continuous evolutionary variational inequalities, and this is why the Young integral
was used instead in [23]. However, the extension of the Kurzweil integral in [20] con-
tains the Young integral as special case whilst preserving the advantage of the easier
Kurzweil formalism. Here, we only deal with right-continuous evolution processes
and Definition 4.1 below, which dates back to [21], will turn out to be sufficient for
our purposes.

The basic concept in Kurzweil integration theory is that of a δ-fine partition.
Consider a nondegenerate closed interval [a, b] ⊂ R, and denote by Da,b the set of
all divisions of the form

d = {t0, . . . , tm} , a = t0 < t1 < · · · < tm = b . (23)

With a division d = {t0, . . . , tm} ∈Da,b we associate partitions D defined as

D = {(%j , [tj−1, tj ]) ; j = 1, . . . ,m} ; %j ∈ [tj−1, tj ] ∀j = 1, . . . ,m . (24)

We define the set

Γ(a, b) := {δ : [a, b]→ R ; δ(t) > 0 for every t ∈ [a, b]} . (25)

An element δ ∈ Γ(a, b) is called a gauge. For t ∈ [a, b] and δ ∈ Γ(a, b) we denote

Iδ(t) := (t− δ(t), t+ δ(t)) . (26)

Definition 4.1. Let δ ∈ Γ(a, b) be a given gauge. A partition D of the form (24)
is said to be δ-fine if for every j = 1, . . . ,m we have

%j ∈ [tj−1, tj ] ⊂ Iδ(%j) ,

and the following implications hold:

%j = tj−1 ⇒ j = 1 , %j = tj ⇒ j = m.

The set of all δ-fine partitions is denoted by Fδ(a, b).

It is easy to see that Fδ(a, b) is nonempty for every δ ∈ Γ(a, b); this follows e. g.
from [24, Lemma 1.2].

For given functions f, g : [a, b]→ R and a partition D of the form (24) we define
the Kurzweil integral sum KD(f, g) by the formula

KD(f, g) =

m∑
j=1

f(%j) (g(tj)− g(tj−1)) . (27)
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Definition 4.2. Let f, g : [a, b]→ R be given. We say that J ∈ R (J∗ ∈ R) is the
Kurzweil integral over [a, b] of f with respect to g and denote

J =

∫ b

a

f(t) dg(t) , (28)

if for every ε > 0 there exists δ ∈ Γ(a, b) such that for every D ∈ Fδ(a, b) we have

|J − KD(f, g)| ≤ ε . (29)

Using the fact that the implication

δ ≤ min{δ1 , δ2} ⇒ Fδ(a, b) ⊂ Fδ1(a, b) ∩ Fδ2(a, b) (30)

holds for every δ, δ1, δ2 ∈ Γ(a, b) it is easily verified that the value of J in Definition
4.2 is uniquely defined.

The Kurzweil integral satisfies most of the standard integral properties concern-
ing additivity and linearity with respect to f and g.

Clearly, the set of discontinuity points of every regulated function is at most
countable. Following [22], we denote by G(a, b) the set of all regulated functions
f : [a, b]→ R. Let us introduce in G(a, b) a system of seminorms

‖f‖[s,t] := sup{|f(τ)| ; τ ∈ [s, t]} (31)

for any subinterval [s, t] ⊂ [a, b]. Indeed, ‖·‖[a,b] is a norm and with this norm,

G(a, b) becomes a Banach space. Let us note that the space C[a, b] of continuous
functions f : [a, b] → R is a closed subspace of G(a, b) with respect to the norm
‖·‖[a,b]. Moreover, every regulated function can be uniformly approximated by step

functions of the form

w(t) =

m∑
k=0

ĉkχ{tk}(t) +

m∑
k=1

ckχ(tk−1,tk)(t) , t ∈ [a, b] , (32)

where d = {t0, . . . , tm} ∈ Da,b is a division, χA denotes the characteristic func-
tion of a set A ⊂ [0, b] (that is, χA(t) = 1 if t ∈ A, χA(t) = 0 if t /∈ A), and
ĉ0, . . . , ĉm, c1, . . . , cm are real numbers. We see in particular that the space BV (a, b)
of all functions of bounded variation on [a, b] is contained as a dense subset inG(a, b).
In the next section, we will restrict ourselves to the spaces GR(a, b), BVR(a, b) of
right-continuous functions from G(a, b), BV (a, b), respectively.

Remark 1. The additivity property of the Kurzweil integral needs some comment.
Whenever we integrate functions f, g defined in [a, b] over an interval [r, s] ⊂ [a, b],
we implicitly consider their restrictions f |[r,s], g|[r,s]. In particular, for regulated
functions, we have e. g. f |[r,s](s+) = f(s), f |[r,s](r−) = f(r).

Note that we deal here with functions that are defined for all t ∈ [a, b]. The
concept of “almost everywhere” is meaningless.

The following explicit formulas can easily be derived from the definition.

Proposition 4.3. For every f : [a, b]→ R, g ∈ G(a, b), a ≤ r ≤ b, we have

(i)

∫ b

a

χ{r}(t) dg(t) = g(r+)− g(r−) ,

(ii)

∫ b

a

f(t) d
(
χ{r}

)
(t) =


0 if r ∈ (a, b)

−f(a) if r = a ,

f(b) if r = b ,
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(iii)

∫ b

a

χ(r,s)(t) dg(t) = g(s−)− g(r+) ∀ s ∈ (r, b] ,

(iv)

∫ b

a

f(t) d
(
χ(r,s)

)
(t) = f(r)− f(s) ∀ s ∈ (r, b] .

We see in particular that the integral
∫ b
a
f(t) dg(t) exists whenever one of the

functions f, g is a step function and the other one is regulated. By a density argu-
ment, we have the following classical result, see [22].

Theorem 4.4. (Properties of the Kurzweil integral)

(i) If f ∈ G(a, b) and g ∈ BV (a, b), then
∫ b
a
f(t) dg(t) exists and satisfies the

estimate ∣∣∣∣∣
∫ b

a

f(t) dg(t)

∣∣∣∣∣ ≤ ‖f‖[a,b] Var
[a,b]

g . (33)

(ii) If f ∈ BV (a, b) and g ∈ G(a, b), then
∫ b
a
f(t) dg(t) exists and satisfies the

estimate∣∣∣∣∣f(a) g(a) +

∫ b

a

f(t) dg(t)

∣∣∣∣∣ ≤
(
|f(b)|+ Var

[a,b]
f

)
‖g‖[a,b] . (34)

(iii) For every f ∈ G(a, b), g ∈ BV (a, b) we have the integration-by-parts formula∫ b

a

f(t) dg(t) +

∫ b

a

g(t) df(t) = f(b) g(b)− f(a) g(a) (35)

+
∑
t∈[a,b]

(
(f(t)− f(t−)) (g(t)− g(t−))− (f(t+)− f(t)) (g(t+)− g(t))

)
.

(iv) If fn ∈ G(a, b) and gn ∈ BV (a, b) are such that ‖fn − f‖[a,b] , ‖gn − g‖[a,b] →
0 as n→∞, and Var [a,b] gn ≤ C independently of n, then

lim
n→∞

∫ b

a

fn(t) dgn(t) =

∫ b

a

f(t) dg(t) . (36)

Our main result for the Kurzweil integral is the following substitution formula.

Theorem 4.5. Let f : [0, b] → R be a bounded function such that f
∣∣
[a,b]
∈ G(a, b)

for all a ∈ (0, b). Let ϕ : [0, b] → [0, B] be a nondecreasing function, ϕ(0) = 0,
ϕ(b) = B, and let ψ : [0, B]→ R be a right continuous function of bounded variation.
Let ϕ−1 : [0, B]→ [0, b] be as in (15). Then for all a ∈ [0, b) we have∫ b

a

f(t) d(ψ ◦ ϕ)(t) =

∫ ϕ(b)

ϕ(a)

f(ϕ−1(s)) dψ(s) . (37)

The proof is divided into several steps.

Lemma 4.6. The function ϕ−1 defined by (15) is left continuous and, for all a ≤
c < d ≤ b, the following implications hold.

(i) ϕ−1(s) = c ⇒ s ∈ [ϕ(c−), ϕ(c+)];
(ii) s ∈ (ϕ(c−), ϕ(c+)] ⇒ ϕ−1(s) = c;
(iii) ϕ−1(s) ∈ (c, d) ⇒ s ∈ (ϕ(c+), ϕ(d−)];
(iv) s ∈ (ϕ(c+), ϕ(d−)) ⇒ ϕ−1(s) ∈ (c, d).
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Proof of Lemma 4.6. The left continuity of ϕ−1 is a consequence of the following
series of implications for all r, s:
r < ϕ−1(s) ⇒ ϕ(r) < s ⇒ ∃δ > 0 : ϕ(r) < s − δ ⇒ ∃δ > 0 : ϕ−1(s − δ) ≥

r ⇒ ϕ−1(s−) ≥ r.
We prove (i)–(iv) by four similar series of implications:

s < ϕ(r−) ⇒ ∃δ > 0 : s < ϕ(r − δ) ⇒ ∃δ > 0 : ϕ−1(s) ≤ r − δ ⇒ ϕ−1(s) < r,
(38)

s > ϕ(r+) ⇒ ∃δ > 0 : s > ϕ(r + δ) ⇒ ∃δ > 0 : ϕ−1(s) ≥ r + δ ⇒ ϕ−1(s) > r,
(39)

r < ϕ−1(s) ⇒ ∃δ > 0 : r + δ < ϕ−1(s) ⇒ ∃δ > 0 : ϕ(r + δ) < s ⇒ ϕ(r+) < s,
(40)

r > ϕ−1(s) ⇒ ∃δ > 0 : r − δ > ϕ−1(s) ⇒ ∃δ > 0 : ϕ(r − δ) ≥ s ⇒ ϕ(r−) ≥ s.
(41)

Then (i) and (iv) follow from (38)–(39), (ii) and (iii) follow from (40)–(41). �

Lemma 4.7. Let ϕ be as in Theorem 4.5, and let ψ : [0, B] → [0, C] be a nonde-
creasing right continuous function, ψ(0) = 0, ψ(B) = C. Let ψ−1, (ψ ◦ ϕ)−1 be
defined as in (15). Then for every r ∈ [0, C] we have (ψ ◦ ϕ)−1(r) = ϕ−1(ψ−1(r)).

Proof of Lemma 4.7. Let r ∈ [0, C] be given. Put p = (ψ◦ϕ)−1(r), q = ϕ−1(ψ−1(r)).
Assume first that p > q. For t ∈ (q, p) we then have ϕ(t) ≥ ψ−1(r), ψ(ϕ(t)) < r.
Then s = ϕ(t) satisfies ψ(s) < r and s ≥ ψ−1(r). The latter inequality implies
ψ(s+) ≥ r, which contradicts the right continuity of ψ.

Similarly, assuming p < q, we have for t ∈ (p, q) that ϕ(t) < ψ−1(r), ψ(ϕ(t)) ≥ r,
which is a contradiction. �

The formula in Lemma 4.7 does not hold in general if ψ is not right continuous.
Consider the example

ϕ(t) = ψ(t) =

 0 for t ∈ [0, 1],
1 for t ∈ (1, 2),
2 for t = 2.

Then

(ψ ◦ ϕ)(t) =

{
0 for t ∈ [0, 2),
2 for t = 2,

while ϕ−1(ψ−1(t)) = 1 for t ∈ (0, 1).

Lemma 4.8. Let the hypotheses of Theorem 4.5 hold. Then for all a ∈ (0, b) we
have ∫ b

a

f(t) dϕ(t) =

∫ ϕ(b)

ϕ(a)

f(ϕ−1(s)) ds . (42)

Proof of Lemma 4.8. For functions f of the form f(t) = χ{c}(t) or f(t) = χ(c,d)(t),

we have the Kurzweil integration formulas∫ b

a

χ{c}(t) dϕ(t) = ϕ(c+)− ϕ(c−),

∫ b

a

χ(c,d)(t) dϕ(t) = ϕ(d−)− ϕ(c+).

On the other hand, by Lemma 4.6, we have χ{c}(ϕ
−1(s)) = χAc

(s) with

(ϕ(c−), ϕ(c+)] ⊂ Ac ⊂ [ϕ(c−), ϕ(c+)],
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and χ(c,d)(ϕ
−1(s)) = χA(c,d)

(s) with the inclusions (ϕ(c+), ϕ(d−)) ⊂ A(c,d) ⊂
(ϕ(c+), ϕ(d−)], hence formula (42) holds. By additivity of the Kurzweil integral, it
holds for every step function, and by density, it can be extended to the whole space
G(a, b). �

Lemma 4.9. Let the hypotheses of Theorem 4.5 hold. Then∫ b

0

f(t) dϕ(t) =

∫ ϕ(b)

0

f(ϕ−1(s)) ds . (43)

Proof of Lemma 4.9. For a ∈ (0, b) set

ϕa(t) =

 ϕ(t) for t ∈ (a, b],
ϕ(0+) for t ∈ (0, a],
0 for t = 0.

In other words, we have

ϕa(t) =

{
ϕ(0+)(1− χ{0}(t)) for t ∈ [0, a],

ϕ(t) + χ{a}(t)(ϕ(0+)− ϕ(a)) for t ∈ [a, b].

Both integrals
∫ a

0
f(t) dϕa(t) = f(0)ϕ(0+) and

∫ b
a
f(t) dϕa(t) exist, hence the inte-

gral
∫ b

0
f(t) dϕa(t) exists and equals the sum of the two, that is,∫ b

0

f(t) dϕa(t) =

∫ b

a

f(t) dϕ(t) + f(0)ϕ(0+) + f(a)(ϕ(a)− ϕ(0+)). (44)

By Lemma 4.8, we have∫ b

0

f(t) dϕa(t) =

∫ ϕ(b)

ϕ(a)

f(ϕ−1(s)) ds+ f(0)ϕ(0+) + f(a)(ϕ(a)− ϕ(0+)). (45)

The functions ϕa converge uniformly to ϕ on [0, b]. Indeed, for all t ∈ [0, b], we have
|ϕa(t)− ϕ(t)| ≤ |ϕ(a)− ϕ(0+)| → 0. Hence, we can pass to the limit as a→ 0+ in
(45) and obtain∫ b

0

f(t) dϕ(t) = lim
a→0+

∫ b

0

f(t) dϕa(t) = lim
a→0+

∫ ϕ(b)

ϕ(a)

f(ϕ−1(s)) ds+ f(0)ϕ(0+)

=

∫ ϕ(b)

ϕ(0+)

f(ϕ−1(s)) ds+ f(0)ϕ(0+) . (46)

Since ϕ−1(s) = 0 for s ∈ [0, ϕ(0+)], it follows that (46) coincides with (43). �

We are now ready to finish the proof of Theorem 4.5.

Proof of Theorem 4.5. Assume first that ψ is nondecreasing, ψ(0) = 0, and ψ(B) =
C. By Lemmas 4.8 and 4.9, for all a ∈ [0, b) we have∫ b

a

f(t) d(ψ ◦ ϕ)(t) =

∫ (ψ◦ϕ)(b)

(ψ◦ϕ)(a)

f((ψ ◦ ϕ)−1(r)) dr . (47)

By Lemma 4.7, f((ψ ◦ ϕ)−1(r)) = (f ◦ ϕ−1)(ψ−1(r)) for all r ∈ [0, C]. Using again
Lemmas 4.8 and 4.9 with ϕ replaced by ψ and f replaced by f ◦ ϕ−1, we obtain∫ (ψ◦ϕ)(b)

(ψ◦ϕ)(a)

(f ◦ ϕ−1)(ψ−1(r)) dr =

∫ ϕ(b)

ϕ(a)

(f ◦ ϕ−1)(s) dψ(s) . (48)
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Hence, Theorem 4.5 is proved for nondecreasing ψ satisfying ψ(0) = 0. An arbitrary
right continuous function with bounded variation ψ can be decomposed into the sum
ψ = ψ+ − ψ− + ψc such that both ψ+, ψ− are nondecreasing and right continuous,
ψ±(0) = 0, and ψc is constant. For each of the functions ψ±, ψc, formula (37) holds,
hence it holds for ψ, and the proof is complete. �

5. Conclusions. We have proved the substitution formula for the Kurzweil in-
tegral where a regulated function is integrated with respect to a function with
bounded variation. Using this formula we have shown that a discontinuous gener-
alization of the Prandtl-Ishlinskii operator has the following composition property:
Pψ1 ◦ Pψ2 = Pψ1◦ψ2 if the primary response curve ψ2 of the (generalized) Prandtl-
Ishlinskii operator Pψ2

is monotone. The composition formula allowed us to show
that a network of interacting (generalized or classical) Prandtl-Ishlinskii operators
is effectively equivalent to one (possibly discontinuous) Prandtl-Ishlinskii operator
provided that the algebraic system of equations (14) admits a monotone solution.
This means, in particular, that if a standard phenomenology of the Prandtl-Ishlinskii
model, which assumes that plays do not affect each other, is modified to include
relatively weak interactions between the plays, then the resulting network model
can be reduced again to an effective Prandtl-Ishlinskii model of non-interacting
plays with some changed parameters. This result may explain why the simplified
(non-interacting) phenomenology of the Prandtl-Ishlinskii model produces good ap-
proximations to real data across multiple applications. However, the model with
stronger interactions between the plays can exhibit more complicated hysteresis
effects (including non-closed hysteresis loops and ratcheting) than can any (gener-
alized) Prandtl-Ishlinskii operator [16]. Thus, two situations can arise when inter-
actions are introduced into a Prandtl-Ishlinskii system of independent plays: one
where interactions result merely in a change of parameters of the plays (and the
network model is equivalent to a Prandtl-Ishlinskii operator); and another where
complex hysteresis effects such as ratcheting appear. Both cases can be accounted
for by just one class of network models. We note that standard models of ratcheting,
used for example in the study of fatigue and damage, combine the Prandtl-Ishlinskii
model with an additional nonlinearity (see Section 5.4.4 in [9]). However our re-
sults suggest that ratcheting can be induced by the strong interaction of elementary
constitutive laws, which is ignored in the Prandtl-Ishlinskii formalism. Solvability
of the algebraic system (14) within in the class of monotone functions can be inter-
preted as a criterion that decides which of the two above scenarios will be realized
by any particular network of interacting play operators (or, more generally, network
of generalized Prandtl-Ishlinskii operators).
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