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Abstract

Inaction and stickiness in economic and financial systems can arise in various ways. It can

be rational, such as in the presence of activity costs, or may be caused by the bounded

rationality of agents. Unsurprisingly, this has resulted in various modeling approaches with

differing justifications at the micro and aggregate levels and degrees of analytical tractability.

Here we consider the situation where a model variable only changes so as to maintain

a maximal allowable difference from a related variable. This form of inaction/stickiness

naturally leads to interesting consequences such as path-dependence, a continuum of feasible

equilibria, and highly non-trivial responses to shocks of varying magnitudes — even in very

simple otherwise-linear systems.

We show how all these phenomena can be rigorously analyzed using mathematical play

operators. In an economic setting these can be interpreted in two very different ways,

either as the optimal response to a variational problem that minimizes total switching costs

(within a given interval of admissible values), or as a (non-forward-looking) form of bounded

rationality.

We choose a simple, well-understood, unique equilibrium macroeconomic model as our

starting point and then introduce a play operator in two ways. First we imbue the aggregate

inflation expectation term with this form of boundedly rational inaction. In the second model

we instead use a play operator to model interest rate setting by the Central Bank.

Typically, after sufficiently small shocks the system will revert to its prior (path-dependent)

equilibrium but larger shocks will permanently change the equilibrium value. Furthermore,

a stability analysis shows that the path to this new equilibrium may be very long with a

highly unpredictable, sometimes counter-intuitive, endpoint. Indeed at certain model pa-

rameters exogenously-triggered runaway inflation can occur. We also observe an additional

potentially destabilizing effect due to Central Bank inaction. Finally we show how multiple

play operators may be incorporated to form more sophisticated models.

Keywords: bounded rationality, stickiness, mathematical models, adaptive expectations,

path-dependence, sticky inflation.
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1. Introduction

The temporary inaction of certain agents is an important qualitative feature of much real-

world economic activity. However, just as in engineering/physical systems with frictions, its

inclusion in quantitative mathematical models is non-trivial — with the additional compli-

cation that in economics there may be multiple causes of ‘friction’ within a heterogeneous5

population.

In this paper we study play operators in an economic setting. These operators are

widely-used in engineering, and have already been applied to both financial modeling [1]

and microeconomics [2]. However, here we shall focus on macroeconomics.

For this initial investigation we introduce play operators into a toy Dynamic Stochastic10

General Equilibrium (DSGE) model in two different places. The first corresponds to a simple

model of boundedly rational stickiness in (aggregate) inflation expectations. Play operators

have an extremely useful and unusual composition/aggregation property which holds even

when agents are connected on an arbitrary network and are influenced both by the actual

inflation rate and the expectations of their neighbors. This is discussed in Section 1.6 but15

the analysis presented here does not make use of it and in this sense is preliminary. The

second use of a play operator does not require any aggregation and represents a particular

form of rational/strategic inaction in the setting of interest rates by the Central Bank.

Of course no complex economic ‘entity’, such as an aggregated Representative Agent or

a committee of Central Bankers, is likely to be described more than approximately by a20

simple mathematical operator. However the very different, but quite intuitive, economic

interpretations of play operators together with their analytical tractability helps to justify

studying models that include them.

Both the analysis and the numerical simulations demonstrate interesting dynamics in

the presence of noise and exogenous shocks that have plausible real-world interpretations25

and thus potential explanatory power. It should be noted that the main qualitative features

appear to be robust and not due to the simplicity of the underlying toy model.

We start by introducing the mathematical definition of the play operator (and its dual

the stop operator) in an abstract setting and stating the minimization problem that it solves.

1.1. Play and stop operators30

We assume the following rules that define how the output pt of a play operator varies

with the input xt at integer times t:

(i) The value of the difference |pt − xt| never exceeds a certain bound ρ;

(ii) As long as the above restriction is satisfied, the output does not change, i.e.

|xt − pt−1| ≤ ρ implies pt = pt−1;35

(iii) If the output has to change, it makes the minimal increment consistent with constraint

(i).
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Rule (ii) introduces inaction/stickiness into the dependence of pt on xt, while (i) states

that the output cannot deviate from the input by more than a prescribed threshold value ρ.

Hence pt follows xt reasonably closely but is ‘parsimonious’ because it remains indifferent to40

variations of xt limited to a (moving) window p− ρ ≤ x ≤ p+ ρ. The last rule (iii) enforces

continuity of the relationship between pt and xt and, in this sense, can be considered as a

technical modeling assumption.

(a)
(b)

Figure 1: (a) An illustration of the input-output sequence of the (a) play operator and (b) stop operator.

(a) The polyline OA1A2A3A4A5A6 represents a sample input-output trajectory for the play operator. The

input-output pair (x, p) is bounded to the gray strip between the two parallel lines p = x ± ρ. In [2], this

strip is called band of inactivity, the line x = x − ρ is called upward spurt line while the line p = x + ρ is

called downward spurt line. The output p remains unchanged for a transition from (xt−1, pt−1) to the next

point (xt, pt) as long as the pair (xt, pt−1) fits to the band of inactivity (for example, the transitions from

A2 = (x2, p2) to A3 = (x3, p3) with p2 = p3 or from A5 = (x5, p5) to A6 = (x6, p6) with p5 = p6). If

xt > xt−1 and the point (xt, pt−1) lies to the right of the inactivity band, then the output increases resulting

in the point (xt, pt) to lie on the upward spurt curve (for example, the transition from A1 = (x1, p1) to

A2 = (x2, p2)). Similarly, if xt < xt−1 and the point (xt, pt−1) lies to the left of the inactivity band, then

the output decreases and the point (xt, pt) lies on the downward spurt line (for example, the transition from

A3 = (x3, p3) to A4 = (x4, p4)). (b) The input-output trajectory of the dual stop operator corresponding

to the trajectory of the play operator shown in panel (a). Here st = xt − pt; the trajectory is limited to the

horizontal strip −ρ ≤ s ≤ ρ at all times.

Rules (i)–(iii) are expressed by the formula

pt = xt + Φρ(pt−1 − xt) (1)

with the piecewise-linear saturation function

Φρ(x) =


ρ if x ≥ ρ,
x if −ρ < x < ρ,

−ρ if x ≤ −ρ.
(2)

Relationship (1) is known as the play operator with threshold ρ, see Fig. 1(a) for a depiction

of the operator’s behavior. A dual relationship

st = Φρ(xt − xt−1 + st−1) (3)

between xt and the variable

st = xt − pt

is referred to as the stop operator, see Fig. 1(b). The variable st measures the difference

between the output and input, hence st remains within the bound |st| ≤ ρ at all times.45
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Interestingly the explicit relationship (1) between pairs of variables has been observed in

economic data [2, 3].

One can think of the play operator as having two modes. A ‘stuck mode’ where it will not

respond to small changes in the input and a ‘dragged mode’ where the absolute difference

between the input and output is at the threshold value and any change to the input, in the50

correct direction, will drag the output along with it.

Equations (1) and (3) will now be denoted by

pt = Pρ[xt], st = xt − pt = Sρ[xt], (4)

where Pρ and Sρ are the play and stop operators with threshold ρ, respectively.

1.2. The play operator as the solution to a variational inequality

The play operator above is in fact the solution to a well-defined variational inequality.

So if an agent in an economic model acts as a play operator when responding to some55

input variable they can, depending upon the context, be considered as engaging in a form

of optimizing/minimizing rational behavior.

Given a sequence xt for t = 0, . . . , T and initial condition p0 ∈ [x0 − ρ, x0 + ρ] then the

play operator pt is the unique function from {0, 1, 2, . . . , T} to R such that

(a) |xt − pt| ≤ ρ for all t = 0, . . . , T and60

(b) for all sequences yt with |yt| ≤ ρ,

t∑
s=1

(xs − ps − ys)(ps − ps−1) ≥ 0 for all t = 1, . . . , T.

Thus over each time step pt moves as little as possible subject to constraint (a) (without

knowledge of future values of the input). This has a very natural interpretation when we

make the Central Bank’s interest rate policy a play operator in Section 4 — rather than

adjust the interest rate rt at every time step the Bank instead only adjusts rt subject to

conditions (i)-(iii) above where the input is some linear combination of the current inflation65

rate and output gap.

This optimizing property of play operators was originally stated in continuous-time with

absolutely continuous inputs and outputs [4]. However, the above discrete-time formulation

is a special case of the results in [5] where the inputs and outputs are piecewise-constant.

1.3. The dynamical consequences of play operators in an otherwise-linear system70

A play operator can be in one of two modes. Its output is either ‘stuck’ at some value

or is being ‘dragged’ along by the input variable because the maximum allowable difference

between them has been reached. Each of these modes can be analyzed separately as linear

systems using standard stability techniques. However the full ‘hybrid’ system is nonlinear

and displays far richer dynamics in the presence of exogenous noise and shocks (the switching75

between the two modes and differences in their stability also gives rise to non-Gaussian

statistics, see for example [6]).
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Here we are able to prove the existence of an entire line interval of feasible equilibrium

points, examine their stability, and identify some important consequences of path depen-

dence regarding the effects of exogenous shocks and policy changes upon the state of the80

system. Furthermore, these effects are plausible in that they both correspond to observed,

but potentially puzzling, economic situations and are robust enough to be observed numer-

ically in more sophisticated variants of the model.

The level of mathematical knowledge required to follow most of the arguments is not

much more than is needed to examine the existence and stability of equilibria in more85

traditional, fully linear, models. Also, the threshold, or amount of ‘give’, in the play operator

can be reduced to zero recovering the linear, unique equilibrium, case. Or, to put it another

way, we can rigorously show that a plausible, yet analyzable, perturbation (that may be

rational or boundedly rational) of a linear model significantly alters the qualitative behavior

of the system in recognizable ways. 1
90

If the presence of stickiness/inaction/frictions in economics does indeed induce a myriad

of coexisting equilibria then phenomena that are not possible (or require a posteriori model

adjustments) in unique equilibrium models become not just feasible but inevitable. Perhaps

the most obvious of these is permanence, also known as remanence, where a system does

not revert to its previous state after an exogenous shock is removed. It is of course a central95

concern of macroeconomics whether or not economies affected by, say, significant negative

shocks can be expected to have permanently reduced productivity levels.

For the models studied in this paper, sufficiently small shocks (whether exogenous or ap-

plied by policy makers) will not change the equilibrium point and a standard linear stability

analysis determines the rate at which the system returns to it. Larger shocks will move the100

equilibrium point along a line of potential equilibria in the expected direction. But even

larger shocks may move the system far enough away from the set of equilibria that the return

path and ending point on the interval are very hard to predict. Furthermore, in neither of

the last two cases will the system exhibit any tendency to return to its pre-shocked state —

the model displays true permanence. A related property is that the model parameters alone105

cannot determine which equilibrium a system is currently in without knowing important in-

formation about the prior states of the system — true path dependence (note that this does

not prevent the system from being iterated once the initial conditions are fully specified).

1.4. The play operator as rational inaction

As shown in Section 1.2 a play operator can be interpreted as the optimal solution to110

a very straightforward variational problem. Thus an agent in an economic model whose

output is described by a play operator can be considered as rational, at least within the

confines of the model.

In Section 4 we shall model the Interest Rate setting mechanism of the Central Bank

by a play operator. The output is of course the rate itself and the input is some linear115

1In [7] a similar ‘stress test’ was applied to equilibrium models used in finance. It was shown that even

very low levels of irrational or perversely-incentivized rational herding by market participants destabilizes

the equilibrium (Brownian motion) solution for an asset price and replaces it with ‘boom-and-bust’ dynamics

that is only evident over long timescales.
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combination of output gap and inflation. Rather than change interest rates every time

period, the Central Bank does so as infrequently and minimally as possible by satisfying

rules (i)–(iii) from Section 1.1.

We note that there are other ways in which inaction can be justified as a rational re-

sponse. The Rational Inattention literature (see for example [8, 9]) treats economic agents120

as finite-capacity channels (in Information Theoretic terms) that can only (or choose to

only) process new information at a finite rate. They then react optimally in the presence of

these constraints but this can involve long delays and periods of non-reaction to changing

economic circumstances (see [10] for a DSGE model with rational inattention).

There are also Instantaneous Control Models [11] where a (costly) control mechanism125

ensures that some quantity never leaves a specified interval by kicking in at the boundaries

of the interval. For example, the inventory in a warehouse might be regulated by selling the

surplus at a discount when it is full and having to buy at a premium when it is empty. A

play operator can indeed fit into this framework but we shall focus upon dynamic rather

than stochastic properties.130

1.5. The play operator as boundedly rational inaction

Since at least the time of Keynes and his General Theory, the idea that people (as

individuals or collectively) will make boundedly rational shortcuts or use ‘rules of thumb’

has been an important element in certain schools of macroeconomics, especially when the

future is highly unpredictable. Various theories of ‘Heuristics under Uncertainty’ and rules135

for ‘Satisficing’ have been observed by experimental economists and formalized by theorists

[12, 13].

We can use a play operator with threshold ρi to mimic the inflation expectation of a

single agent i in the following way. The input to agent i is a combination of both the

current inflation rate and the current expectations of those agents who are neighbors of i on140

some network structure representing relationships within the economy. Agent i’s inflation

expectation remains fixed/stuck until the difference between their own expectations and the

input becomes greater than ρi (in either direction) in which case i’s expectation moves so

as to keep the difference at ρi. Note that the operator play combines boundedly rational

inertia and anchoring together with a minimal adjustment procedure2. The important issue145

of aggregation into a single Representative Agent will be discussed below.

The research into how expectations are actually formed is extensive but far from con-

clusive, see for example [14, 15, 16, 17, 18]. However the ideas of threshold effects and a

‘harmless interval’ of inflation are not new in economics [19, 20, 21, 22, 23] and are consis-

tent with our modeling approach. Also, there is some evidence for this type of inaction in150

experimental data [2, 3]

The most widely-used models for inaction/stickiness in macroeconomics are ‘delayed ra-

tionality’ approaches such as Calvo pricing [24] and the sticky-information of Mankiw and

Reis [25]. Here hypothetical agents instantaneously adjust to the ‘correct’ rational response

2Of course over long timescales any agent would notice eventually that their wages, say, were not keeping

up with inflation but we posit that over shorter timescales in the presence of noise this is not a major effect.
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but at a fixed rate rather than immediately. This can be represented mathematically by155

introducing delay terms into the relevant equations. In the absence of noise the same opti-

mal equilibrium solution will be reached as if the stickiness were absent. In macroeconomics

delayed-rationality models have the advantage that they do not deviate too far philosoph-

ically from the Rational Expectations paradigm [26], are easy to analyze, and often retain

the unique-equilibrium property. 3
160

However our hypothetical agents are not furnished with any concept of rational expec-

tations, even with a delay. They are truly stuck (not just delayed) until forced to adjust by

the magnitude of some discrepancy and they have no awareness of the modeling assump-

tions. This means that at any moment in time the particular equilibrium being approached

is determined by prior states of the system and not by modeling assumptions about the165

future.

Indeed this play operator model of expectations has more in common with approaches

that were popular before the rise of Rational Expectations. In particular our agents’ ex-

pectations are ‘backward-looking’ as in Adaptive Expectations and some Adaptive Learning

[30] models that also generate path-dependent equilibria. However, rather than using, say,170

lagged inflation values with exponentially-decaying weights, each agent’s inflation expecta-

tion is determined by a subset of the most recent extrema of their individual inputs and is

handled automatically by the play operator as described in Section 1.1.

1.6. The aggregation problem

The standard approach to the problem of aggregating expectations is to introduce a175

Representative Agent whose expectations are fully-informed, rational and consistent with

the model itself. Here, if we suppose that each agent acts like a play operator, then an

aggregation of boundedly rational agents into a single Representative is required. To examine

this issue we shall temporarily generalize the discussion to consider abstract play operators

and some of their mathematical properties.180

The aggregate of even just two play operators with differing thresholds is no longer a

play operator — although the output will still display inactive (as well as less active) modes

and there is still a maximum allowable difference between the input and output. This is

illustrated in Figure 17(a) in Appendix F for the case of three play operators. However

play (and stop) operators are just special cases of a wider class of Prandtl-Ishlinskii or PI185

operators.

PI operators have a remarkable aggregation/composition property. When connected

together in an arbitrary network (under mild technical conditions) they collectively act as

a single, but different, PI operator. Thus, as long as individual agents are represented

by PI operators, there is a rigorous aggregation process by which a network of interacting190

heterogeneous agents can be reduced to a single Representative Agent. This ability to

3Continua of equilibria can occur in such models (see [27, 28] and for the special case of passive interest-

rate policy see [24, 29]) and is considered an extreme form of indeterminacy. This is problematic within

a Rational Expectations framework since it makes it harder still to justify how agents’ expectations are

consistent with the model.
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rigorously aggregate non-trivial agents is very unusual — and not just within economics.

The result and further references to PI operators can be found in [31]. Furthermore this

new composite PI operator can be identified analytically in simple cases or, in general, by

measuring the network’s response to a monotonic input.195

So let us return to the expectations aggregation problem. We can imagine the agents

in the economy/model being connected in a way that reflects how much influence expecta-

tions (or, say, wage increases) affect their neighbors. Then each agent’s individual inflation

expectation is modeled by a play operator (or by something ‘close’ within the space of PI

operators) whose input is some combination of both the actual inflation rate and the ex-200

pectations of their neighbors. By the composition property of PI operators, the aggregate

response will also be a (probably quite complicated) PI operator that should nevertheless

still have stuck, less active, and more active regimes while limiting the difference between

the actual and aggregated expected inflation.

Importantly, when agents are connected into a network structure, internal ‘cascades’ of205

changes in expectations can occur. For example, if one especially significant agent suddenly

starts to increase their expectation of inflation, this may trigger increases in its network

neighbors’ expectations and so on. Nevertheless the possibility of such cascades is still

captured by the composite PI operator — if cascades can occur then the output of the

operator when given a smoothly varying input has discontinuities that correspond to the210

cascades (see [31]).

Rather than study a sticky expectations model with a single, complicated, aggregate PI

operator we choose to leave this for later work. We instead assume that the aggregated PI

function is itself just a single play operator — this case can be analyzed in detail and is a

necessary first step for a deeper understanding of the dynamics of such systems (although we215

present simulations for a three-agent model in Appendix F). Also, the space of all possible

boundedly rational perturbations to rational models is very large and very hard to study

rigorously or even define. This makes the analysis of tractable, plausible, boundedly-rational

variants of rational models of independent interest and provides an additional justification

for our non-standard but conceptually simple Representative Agent.220

1.7. Outline of the paper

We start from a dynamic stochastic general equilibrium (DSGE) macroeconomics model,

which includes aggregate demand and aggregate supply equations

yt = yt−1 − a(rt − pt) + εt,

xt = b1pt + (1− b1)xt−1 + b2yt + ηt
(5)

augmented with the rate-setting rule

rt = c1xt + c2yt, (6)

where yt is the output gap (or unemployment rate, or another measure of economic activity

such as gross domestic product), xt is inflation rate, rt is interest rate, pt is the economic

agents’ aggregate expectation of future inflation rate and εt, ηt are exogenous noise terms.
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Time is an integer variable, t = 1, 2, . . . , and the process starts from initial values x0, y0, p0.225

All the parameters are non-negative and in addition, b1 < 1. This model is close to the

starting model used in [6] but simpler in that we do not include the aggregate expectation of

the output gap and the correlation between the subsequent values of the interest rate. We

also choose to remove the noise term from the interest rate update rule. The inclusion of such

factors does not affect our most significant qualitative observations, but would complicate230

some aspects of the rigorous analysis that we present.

For expository reasons we present the analysis of the inflation expectations model first

and in greater detail than for the Central Bank model. In Sections 2.3–2.4 we perform the

stability analyses (local and global) for various parameter regimes of the expectations model,

with some details relegated to Appendices. The stability properties of the system are not as235

clear cut as in a truly linear system. In fact, the equations define a piecewise linear (PWL)

system, and certain nonlinear effects come into play. In particular, in nonlinear systems an

equilibrium may only be locally stable. This means that the equilibrium is only stable to

perturbations of a certain size — ones that don’t move the system outside of a ‘basin of

attraction’ — and this phenomenon is responsible for much of the interesting dynamics in240

the presence of shocks of differing sizes.

In Sections 3.1–3.6 we present various numerical simulations. We are particularly in-

terested in the transitions between equilibrium states caused by exogenous shocks, and the

effects of increasing or decreasing stickiness. Where possible we compare results against

the non-sticky model. Permanence is the rule not the exception and there are even param-245

eter regimes where a large enough shock will completely destabilize an apparently stable

system via a runaway inflation mechanism. We also compare the statistical output of the

model against that of De Grauwe [6] at similar parameters and see the same boom-and-bust

cyclicality and heavy-tailed distributions.

In Appendix F we briefly consider a more complicated version of the model with three rep-250

resentative agents all with different inactivity thresholds. This is primarily to demonstrate

that multiple play operators can indeed be used together to simulate different representative

agents within a model and that the most important qualitative features are unchanged.

In Section 4 we remove the play operator from inflation expectations and add it into

the response of the Central Bank instead, as outlined in Section 1.4. We perform a second255

stability analysis and obtain some interesting new effects — there is the possibility of (quasi)-

periodic behavior in the absence of noise and sticky Central Bankers appear to destabilize

equilibria.

We conclude with a summary of the main results, some general implications for policy

and modeling, and suggestions for future work.260

2. Inflation expectations as a play operator

2.1. The model

Equations (5) and (6), completed with formulas (1) and (2), form a closed model for

the evolution of the aggregated variables xt, yt, rt, pt. However, the dependence of these
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quantities at time t upon their values at time t − 1 is implicit. In order to implement the

model, we proceed by solving equations (5)–(2) with respect to the variables xt, yt. As

shown in Appendix A, the model can be written in the following equivalent form:

zt = Azt−1 + std+Nξt (7)

where zt = (yt, xt)
>, ξt = (εt, ηt)

>, the superscript > denotes transposition, the matrices

A,N and the column vector d are defined by

A =
1

∆

(
1− b1 a(1− b1)(1− c1)

b2 (1− b1)(1 + ac2)

)
, N =

1

∆

(
1− b1 a(1− c1)

b2 1 + ac2

)
, (8)

d =
1

∆

(
a(b1c1 − 1)

−(ab2 + b1(1 + ac2))

)
with

∆ = (1− b1)(1 + ac2) + ab2(c1 − 1) (9)

and st = xt − pt is defined by the equation

st =
1

1 + α
Φ(1+α)ρ(ft − ft−1 + st−1) (10)

with

α =
∆

b1(1 + ac2) + ab2
, (11)

ft =
α

∆

(
b2yt−1 + (1− b1)(1 + ac2)xt−1 + b2εt + (1 + ac2)ηt

)
. (12)

Equations (7), (10) express yt, xt and st = xt − pt explicitly in terms of the previous values

of the same variables and the exogenous noise εt, ηt. We use these equations in all the

simulations that follow.265

We shall refer to the variable st = xt − pt as the perception gap. Note that (10) defines

a stop operator with input ft and threshold (1 +α)ρ, which is different from ρ (cf. (2)) and

so (10) can be written as

st =
1

1 + α
S(1+α)ρ[ft]

using the notation (4). It is important to note that the transition to equations (7), (10) is

justified under the condition that α is positive, and we assume this constraint to hold in the

rest of the paper. In particular, α > 0 whenever c1 > 1 (see Section 2.4).

2.2. An entire line segment of equilibrium points

We begin the analysis of the model (7), (10) by looking at the case of no exogenous noise,

i.e. we set ξt = 0 and consider the equation

zt = Azt−1 + std, zt = (yt, xt)
> (13)

instead of (7) with st defined by (10), (11) and

ft =
α

∆

(
b2yt−1 + (1− b1)(1 + ac2)xt−1

)
. (14)
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This model has an entire line segment of equilibrium points which corresponds to a contin-

uum of feasible equilibrium states of the economy as a function of the inflation expectations

of economic agents. Indeed, equation (13) implies

z∗ = s∗(I−A)−1d = s∗

(
b1
b2
, b2+b1c2

b2(1−c1)

)>
(15)

for an equilibrium point z∗ = (x∗, y∗)
>, where I is the 2 × 2 identity matrix. Hence one

obtains a different equilibrium for each admissible value of the perception gap variable s∗,

i.e. −ρ ≤ s∗ ≤ ρ. Thus, the set of all equilibrium points, which can be denoted as z∗(s∗) for

different s∗, can be naturally thought of as a line segment in the phase space of the system,

see Fig. 2. In particular, the value of the output gap at an equilibrium, y∗(s∗) ranges over

the interval [−ρb1/b2, ρb1/b2] and the equilibrium value of the actual inflation belongs to the

range

x∗(s∗) = s∗
b2 + b1c2
b2(1− c1)

with − ρ ≤ s∗ ≤ ρ.

Interestingly, at least in this simple model, the range of equilibrium values of the output270

gap is unaffected by the controls c1, c2 applied by the regulator through Taylor’s rule (6).

However, these controls do affect the range of possible values of the equilibrium inflation

rate.

(a) (b)

Figure 2: The projection of the line segment of equilibrium points (blue) onto the (x, s) plane for (a) c1 > 1

and (b) c1 < 1. The segment has a negative slope in (a) and a positive slope in (b). Sample trajectories of

system (13) are shown in black.

Equation (15) indicates the difference between the cases c1 > 1 and c1 < 1. When c1 > 1,

the equilibrium z∗(ρ) corresponding to the lowest expectation of inflation has the highest275

value of the output gap and the lowest inflation of all the equilibrium points. Similarly,

the equilibrium z∗(−ρ) with the highest expectation of inflation has the lowest value of the

output gap and the highest inflation. On the other hand, in case c1 < 1, the equilibrium

z∗(ρ) with the highest output gap value has simultaneously the highest inflation rate.

The difference between the cases c1 > 1 and c1 < 1 will be further highlighted in Section280

2.4.

2.3. Local stability analysis

System (7), (10) is locally linear in some neighborhood of any equilibrium point from

the linear segment (15) with the exception of the two end points z∗(±ρ) corresponding

to equilibria where the play is right at one end of its inactive band. In other words, for
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sufficiently small deviations of the vector zt = (yt, xt)
> from an interior equilibrium z∗(s∗),

system (13) is equivalent to

zt − z∗(s∗) = B(zt−1 − z∗(s∗)) (16)

where

B =

(
1

1+a(b2c1+c2)
a(b1−1)c1

1+a(b2c1+c2)
b2

1+a(b2c1+c2)
(1−b1)(1+ac2)
1+a(b2c1+c2)

)
As shown in Appendix B, the matrix B is stable for any admissible set of parameter val-

ues, hence every equilibrium with |s∗| < ρ is locally stable. This local stability ensures

that if a sufficiently small perturbation is applied to the system residing at an equilibrium285

z∗(s∗), removing the perturbation returns the system to the same equilibrium. Further, the

eigenvalues of the matrix B determine how quickly (or slowly) the system returns to the

equilibrium state. This situation is of course very similar to the expected response in a

fully linear equilibrium model. The dependence of the eigenvalues of the parameters of the

system is discussed in Appendix C.290

However, the situation for these interior equilibria changes markedly for larger pertur-

bations. This is related to the stability properties of the two extreme equilibria z∗(±ρ) and

is far more subtle as discussed in the next section. In particular, the basin of attraction

of the equilibrium decreases and finally vanishes as one approaches either of the extreme

equilibrium points along the line segment (15) (the extreme equilibria themselves are stable295

but not asymptotically stable).

2.4. Global stability analysis

System (13) without stickiness (ρ = 0) simply has the form

zt = Azt−1. (17)

As shown in Appendix B, its unique zero equilibrium is globally stable if c1 > 1 and is

unstable if c1 < 1.

For system (13) with stickiness (ρ > 0), equation (17) approximates the dynamics far300

from equilibrium points because the term st in (13) is bounded in absolute value by ρ. In

particular, since (17) is unstable for c1 < 1, so is system (13). This creates the possibility

of run-away inflation at these values of c1 (see Section 3.5).

Interestingly, the same condition c1 > 1 that ensures the global stability of system (17),

also guarantees the global stability of the set of equilibrium states for the sticky nonlinear

system (13). In order to show this, one can use a family of Lyapunov functions

V (xt, st,∇tx,∇ts) = 1
2

(
C(∇tx)2 +G(∇ts)2 + (Cxt +Gst)

2
)

+ γ
(
(Cxt +Gst)∇tx+ H

2C (Cxt +Gst)
2
)
,

where ∇tu = ut − ut−1, u = x, s. A proper choice of the parameters C,G,H, γ ensures that

such a function is non-negative, achieves its minimum zero value on the linear interval of305

equilibrium states, and decreases to zero along every trajectory of system (13). This allows

us to prove that every trajectory of system (13) converges to one of the equilibrium states
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(15). In the interest of space, details of the proof are omitted here and will be presented

elsewhere.

For system (7) with noise, this global stability result implies that trajectories tend to310

return towards the segment of equilibrium points after large fluctuations and hover in a

vicinity of equilibrium states for extended periods of time. The rate with which the system

returns towards the line segment of equilibrium states after a large perturbation is removed

is determined by the eigenvalues of the matrix A, see Appendix C.

3. Numerical results315

3.1. Parameter values

The default parameter set that we use for numerical simulation is the same as in [6],

see Table 1, and we shall explore in detail the surrounding parameter space. Note that,

Parameters a b1 b2 c1 c2

Values 0.2 0.5 0.05 1.5 0.5

Table 1: The set of parameter values.

as an example, if with the above parameters we choose ρ = 1
2 then the components of the

equilibrium points z∗(s∗) = (y∗(s∗), x∗(s∗)
> range over the intervals

y∗(s∗) ∈ [−5, 5], x∗(s∗) ∈ [−6, 6].

The choice of ρ is somewhat arbitrary as there is of course no corresponding reference

parameter in [6] and so in many of the simulations it will be varied. Also it should be

emphasized that these reference parameters are motivated by [6] but very similar numerical

results were obtained for other choices.320

3.2. Lower inflation volatility due to stickiness

The range of the equilibrium points of the system is directly proportional to the threshold

value ρ of the play operator because the perception gap s∗ in (15) can take any value in

the interval −ρ ≤ s∗ ≤ ρ. In particular, ρ = 0 corresponds to the system without stickiness

in which the expectation of inflation coincides with the current inflation rate, p = x. This

system is simply described by the equation

zt = Azt−1 +Nξt (18)

(cf. (7)). In the absence of noise, it has a unique equilibrium at x = y = 0.

The sticky system exhibits lower volatility in the inflation rate than the system without

stickiness, see Fig. 3. This can be explained by the stability properties of matrices A and B

where B is the linearization matrix of (16) for the sticky system at an equilibrium. For the325

parameter values of Table 1, the spectral radius of the matrix B is smaller than the spectral

radius of A (see Appendix C), hence the sticky system tries to revert to equilibrium more
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strongly within the basin of attraction of individual equilibria, i.e. as long as the perception

gap does not become extreme. Fig. 3 shows that the volatility decreases with ρ. For large

(compared to ρ) deviations of zt from the set of equilibrium points, system (7) behaves as330

(18).

(a) (b)

(c) (d)

Figure 3: Trajectories of (a) inflation rate xt and (b) output gap yt. Measure of volatility of (c) inflation

rate and (d) output gap for different values of ρ with standard deviation (SD).

3.3. Transitions between equilibrium states

The system remains within the basin of attraction of a particular equilibrium state z∗(s∗)

as long as the perception gap st does not reach either of the extreme values ±ρ and remains

confined to the interval |st| < ρ, see Fig. 4(a,d). But as soon as the perception gap hits the335

end of its range and starts being ‘dragged’ by the actual inflation rate (Fig. 4(b,e)) the system

transitions to the basin of attraction of a different equilibrium state where st becomes ‘stuck’

again. For this reason, the system stays near equilibrium states which correspond to non-

extreme perception gaps for longer periods of time than near extreme ones. Figures 4(c,f)

illustrate a transition from the equilibrium state with an extreme perception gap, z∗(ρ), to340

one with a more moderate perception gap.

3.4. Response to shocks

We shall stress the system by applying supply shocks through the term ηt. The response

of the system to demand shocks applied through the term εt is similar. However, the

parameter regime being considered diminishes the effect of relatively small demand shocks345

due to the small value of b2 = 0.05.

System (18) without stickiness, which has a unique globally stable equilibrium state

x∗ = y∗ = 0, as expected returns to the equilibrium (and hovers near it due to noise)

after each shock, see Fig. 5(a). Shocks applied to the sticky system (7), (10) result in
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(a) (b) (c)

(d) (e) (f)

Figure 4: Transitions between the equilibrium states. (a – c) Time traces of inflation rate; (d – f) the

corresponding plots in the (x, s)-space exhibiting different transition scenarios. The noise is turned off

before and after the interval of time of interest in order to show the equilibrium state at the ends of this

interval. (a, d) The perception gap remains within the bounds |st| < ρ, and the system stays in the basin

of attraction of one equilibrium point. The inflation rate x∗(s∗) is the same before and after the noisy

interlude. (b, e) The perception gap reaches the extreme value −ρ (the highest expectation of inflation),

and the trajectory transits from the basin of attraction of an equilibrium state with higher inflation rate and

lower output gap (the right slanted segment in (e)) to the basin of attraction of an equilibrium state with

a lower inflation rate and higher output gap (the left slanted segment in (e)). (c, f). A transition from the

equilibrium with the highest inflation rate (the rightmost point in (f)) to an equilibrium state with a more

moderate inflation rate through the basins of attraction of several other equilibrium states.

(a) (b)

Figure 5: Response to shocks. (a) The system without stickiness (ρ = 0) settles to the same unique

equilibrium after each shock. (b) The system with stickiness (ρ = 1) settles to a new equilibrium after a

shock is applied.

transitions between equilibrium states, see Figure 5(b). Numerical simulation show that350

shocks of small magnitude typically move the system in the direction of the shock (see

Fig. 6(a)). For example, after a shock that pushes up the inflation rate the system settles

to a new equilibrium state, which has higher inflation rate (and lower output gap) than the

equilibrium occupied prior to the shock. On the other hand, shocks of larger magnitude

cause a transition to an equilibrium state that can be hard to predict because such shocks355

cause a longer and more complex excursion into the phase space far from equilibrium set. In

Fig. 6(b), the system resides near an equilibrium with high inflation rate before a shock is

applied. Although the shock pushes the inflation even higher, the system eventually settles

to an equilibrium with nearly zero inflation rate after the shock is removed.
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(a) (b)

Figure 6: Response to shocks of (a) small and (b) large magnitude.

3.5. The possibility of runaway inflation360

(a) (b)

Figure 7: Run-away inflation scenario. Parameter are ρ = 1, a = 0.3, b1 = 0.5, b2 = 0.05, c1 = 0.9,

c2 = 0.01. The ranges of inflation rate and output gap values at equilibrium states for this set parameter

are x∗ ∈ [−11, 11] and y∗ ∈ [−10, 10], respectively. (a) Time series of inflation rate xt. (b) Trajectory in the

(x, s) space.

According to Section 2.4 the system is globally stable for c1 > 1, but becomes unstable

for c1 < 1. The latter case creates a possibility of the run-away inflation scenario. It is

interesting that as shown in Section 2.3 all the equilibrium points are locally stable even

if c1 < 1. As a result, dynamics appear to be stable as long as the trajectory is confined

to the basin of attraction of an equilibrium state. However, when noise or a shock or365

another fluctuation drives the trajectory outside this bounded stability domain, the run-

away scenario may and is likely to start, see Fig. 7. Just to be clear, the behavior is stable

while the perception gap is not extreme, but if a shock causes that to change then the

runaway instability can suddenly occur with no change in the system parameters.

3.6. A trade-off between inflation and output gap volatility370

Parameters c1 and c2 of Taylor’s rule (6) control the volatility level of inflation and

output gap near an equilibrium state. Numerical simulations of the model with sticky

inflation expectation show that when c1 increases (which corresponds to stronger inflation

targeting by the Central Bank), the volatility of the inflation rate decreases, see Fig. 8(a).

However, at the same time, the output gap becomes highly volatile with increasing c1, see375

Fig. 8(b).

When c2 increases (stronger output gap targeting), the output gap volatility decreases,

see Fig. 9(b). In particular, the case c2 = 0 corresponding to pure inflation targeting in
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Taylor’s rule is characterized by the highest volatility of the output gap. However, from

Fig. 9(a), it appears that the inflation rate volatility exhibits a non-monotone behavior with380

c2. This is confirmed by Fig. 10, which shows the dependence of the standard deviation of

xt and yt on c2 for the trajectories presented in Fig. 9. The inflation rate volatility reaches

its minimum for c2 ≈ 0.8 for the parameter values a, b1, b2, c1 from Table 1 and ρ = 1.

All the above results are in agreement with [6]. In addition, c1 and c2 affect the range of

the inflation rate value at the equilibrium states for the model (7). According to (15), this385

range increases with c2 and decreases with c1 − 1 (for c1 > 1). At the same time, the range

of output gap equilibrium values is unaffected by the parameters of Taylor’s rule.

(a) (b)

Figure 8: Numerical simulations of (a) inflation rate, xt and (b) output gap, yt for ρ = 1 and various values

of c1. The remaining parameters values are from Table 1.

(a) (b)

Figure 9: Numerical simulations of (a) inflation rate, xt and (b) output gap, yt for ρ = 1 and various values

of c2. The remaining parameter values are from Table 1.

(a) (b)

Figure 10: Measure of the effect of c2 on volatility of (a) xt and (b) yt with standard deviation (SD).
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4. The Central Bank as a play operator

The Central Bank policy can be rationally inactive or sticky as noted in Section 1.4. To

explore this scenario in this Section we shall replace the Taylor rule (6) with the relation

rt = Pσ[c1xt + c2yt] (19)

also involving a play operator. But at the same time, for the sake of simplicity and in

order to isolate the effect of stickiness in the Central Bank response upon the system, we

remove the play operator from equations (5) thus assuming that the aggregate expectation

of inflation equals to the current actual inflation rate, pt = xt; this corresponds to setting

ρ = 0 in equations (5). In this case,

yt = yt−1 − a(rt − xt) + εt,

xt = xt−1 + b2
1−b1 yt + ηt.

(20)

It would be interesting to consider the model with both sticky inflation expectations and

sticky Central Bank response, however this is beyond the scope of this paper.390

System (19), (20) can be written in the form (7) with

st = Sσ[c1xt + c2yt],

the matrix A defined by (8), N = A, and d = (a(1 − b1), ab2)>/∆ with ∆ defined by (9).

The technique presented in Subsection 2.1 can be adapted to convert the implicit system

(19), (20) into a well-defined explicit system provided that

1− b1 − ab2 > 0. (21)

(see Appendix E). Hence, we assume that this condition is satisfied.

Equilibrium states of system (19), (20) with zero noise terms form the line segment

(y∗(s∗), x∗(s∗)) =
(

0,
s∗

c1 − 1

)
, s∗ ∈ [−σ, σ]. (22)

Notice that the output gap value is zero for all the equilibrium states, while the equilibrium

inflation rate ranges over an interval of values. Notably, the local stability analysis (see

Appendix E) shows that all the equilibrium states with s∗ ∈ (−σ, σ) are unstable for any

set of parameter values. That is, stickiness in the Taylor rule leads to destabilization of395

equilibrium states.

On the other hand, for large values of zt = (yt, xt)
>, the system can be approximated by

equation (17), which is exponentially stable (as shown in Appendix B). This ensures that in

the system (19), (20), in the absence of noise, all trajectories converge to a bounded domain

Ω surrounding the segment of equilibrium states and, upon entering this domain, remain400

there. However, since the equilibria are all unstable, more complicated bounded attracting

orbits (such as periodic, quasiperiodic, or even chaotic attractors) must occur. Fig. 11

shows a few possibilities for the attractor of system (19), (20) obtained for different sets

of parameter values. The attractor belongs to Ω whose size is controlled by the parameter

σ of the sticky Taylor rule (19). This size can be estimated using the Lyapunov function405

introduced in Subsection 2.4.

Finally, we note that in the presence of noise, a trajectory will most likely wander un-

predictable around Ω unless kicked outside temporarily by a fluctuation.
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(a) (b) (c)

(d) (e) (f)

Figure 11: An attractor of system (19), (20) for several parameter sets. (a – c) A periodic orbit (with period

8, 10, 16, respectively) shown on the (x, y) plane for the system without noise. (d) A quasiperiodic orbit.

(e) Two equilibrium states corresponding to s∗ = ±σ (the time trace of xt shown for 2 trajectories). (f)

Time trace of xt for a trajectory of the system with noise for the same parameters as in (e).

5. Conclusions

In this paper we have rigorously analyzed simple macroeconomic models using play410

operators to introduce inaction/stickiness into both inflation expectations and the interest

rate setting mechanism of the Central Bank. For such simple models, defined via single (and

conceptually quite elementary) changes from a standard one, the play operators introduce

surprisingly complicated and subtle-yet-recognizable phenomena into the dynamics.

In the sticky inflation expectations simulations we observed: lower inflation volatility415

due to stickiness in inflation expectations; permanent transitions to sometimes unexpected

equilibrium states due to exogenous shocks; a trade-off between inflation and output gap

volatility as the targeting rule is varied, with evidence of cyclicality over long timescales;

the possibility of runaway inflation due to exogenous shocks in an apparently stable system;

the possibility of cascading effects in more complex models; and strong cyclicality induced420

by Central Bank stickiness.

Some of the more detailed conclusions of our simulations are specific to the actual models

studied but, based upon the mathematics presented here and additional numerical simula-

tions with more complex variants of the models, we believe at least the following qualitative

features to be generic and robust.425

Firstly, the presence of an entire continuum of feasible equilibria rather than a unique one

(or even finite numbers of them). This causes permanence and path-dependence at a deep

level. It should be noted that in more sophisticated models, with more sticky agents and

variables, the set of possible equilibria may be extremely complicated with the possibility of

‘cascades’ where one play operator starting to drag causes others to do so. As was outlined in430

Section 1.6 play operators, when combined appropriately [31], can have a remarkably simple

aggregated response — even when connected in a network. This allows for the possibility

of (almost)-analytic solutions (using a more general Prandtl-Ishlinskii operator) even when

endogenous cascades and rapid transitions between states are occurring and will be the
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subject of future work.435

Secondly, the existence of different modes depending upon whether particular sticky

variables are currently stuck or being dragged. After small enough shocks the system will

revert to the same equilibrium just as if it were a linear unique equilibrium model. But

some modes will be less stable than others (in our sticky expectations model the dragging

mode is less stable than the stuck one) and a large enough shock may move the system440

far enough away from the set of equilibria that the route back to a new (possibly counter-

intuitive) equilibrium is both long and unpredictable. An extreme example of this is when

the system moves into a completely unstable regime, runaway inflation, without any change

in the system parameters.

Our choice of model for this preliminary investigation into treating economic variables445

as play/stop operators was partly motivated by the work of De Grauwe [6] and Gabaix [32]

which used different boundedly rational expectation formation processes in similar DSGE

models. However, play operators are also a viable option for modeling other sticky economic

variables at both the micro- and macroeconomic levels. To emphasize this, in our second

model we used one to represent a sticky (but rational in the sense of solving a certain450

minimization problem) strategy by the Central Bank. The results suggest that Central

Bank inaction/stickiness tends to destabilize equilibria and cause larger fluctuations in the

‘Animal Spirits’.

The modeling approach presented above can be considered a ‘stress test’ of the usual

rational expectations assumption in the underlying toy model. Or to put it another way,455

it is examining the robustness of a modeling assumption rather than just the stability of

the solutions within the model. It provides an additional class of simple perturbations to

rational models — ones that are genuinely nonlinear and capable of introducing additional

phenomena in a way that merely changing the parameters of an equilibrium model cannot.

The most natural extension of this work, as mentioned in Section 1.6 is to replace the460

single play operator representing inflation expectations of the Representative Agent with a

more realistic PI operator based upon either measurements of the actual economy or a net-

work model of the connections between agents in the economy. Once a suitable PI operator

has been identified then simulations can be performed almost as easily as with a play opera-

tor although identifying the sets of feasible equilibria for example will be more complicated.465

If one supposes for a moment that such a model displays similar qualitative features and

adequately represent an actual economy then there are some significant modeling/policy

implications.

There is our original observation that permanence is an inherent property of the system.

After sufficiently small shocks the system may return to the same equilibrium but after larger470

shocks it will not. This does not mean however that the model parameters have changed.

Indeed changing the parameters in a unique equilibrium model to match and then try to

control a path-dependent reality may well introduce additional instabilities. This would be

an interesting line of research.

Furthermore, different path-dependent equilibria have different stability properties and475

those close to the boundary of the set of feasible equilibria will typically be only marginally

stable. So the system’s equilibrium may move around the set of feasible equilibria for a very
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long time, responding proportionately to exogenous stimuli, until suddenly it doesn’t! Ei-

ther a seemingly unremarkable exogenous shock, or a cascade of endogenous sticky quantities

changing their mode, takes the system on a far-from-equilibrium (but still bounded) excur-480

sion with a very unpredictable outcome somewhere back on the set of feasible equilibria.

Trying to control the endpoint while such an event is unfolding, or undoing its consequences

afterwards, may be extraordinarily difficult.

Appendix

A. Derivation of equations (7), (10)485

Here we show how to obtain equations (7), (10) from model (5)–(2). To this end, we

substitute the equation for rt into the equation for yt and obtain

(1 + ac2)yt = yt−1 − ac1xt + apt + εt.

Next, we substitute this equation into the equation for xt and simplify to obtain

γxt − βpt = b2yt−1 + (1− b1)(1 + ac2)xt−1 + b2εt + (1 + ac2)ηt, (23)

where

γ = 1 + ac2 + ab2c1, β = b1(1 + ac2) + ab2.

Since pt = xt − st, equation (23) can be rewritten as

αxt + st = ft (24)

with α and ft defined by (11), (14). Therefore, xt = α−1(ft − st), which combined with

(11), (14) gives

xt =
b2
αβ

yt−1 +
(1− b1)(1 + ac2)

αβ
xt−1 −

1

α
st +

b2
αβ

εt +
1 + ac2
αβ

ηt. (25)

Subsequently, substituting equation (25) into equation (5) gives

yt =
ab2(1− c1) + αβ

αβ(1 + ac2)
yt−1 +

a(1− c1)(1− b1)

αβ
xt−1

+
a(c1 − 1− α)

α(1 + ac2)
st +

αβ + ab2(1− c1)

αβ(1 + ac2)
εt +

a(1− c1)

αβ
ηt. (26)

Equations (25), (26) can be written as system (7) with the matrices A, N and the vector d

defined by formulas (8).

Equation (10) can be obtained from relation (24) using the inversion formula for the

play operator. This inversion formula is presented for a more general Prandtl-Ishlinskii (PI)490

operator, including the play operator as a particular case, in Appendix D.

B. Local stability analysis

The characteristic polynomial of matrix B is

PB(λ) = λ2 − λ
(

2 + ac2 − b1(1 + ac2)

1 + a(b2c1 + c2)

)
+

1− b1
1 + a(b2c1 + c2)

.
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Applying Jury’s stability criterion to the characteristic polynomial gives the following set of

inequalities:

PB(1) = 1− 2 + ac2 − b1(1 + ac2)

1 + a(b2c1 + c2)
+

1− b1
1 + a(b2c1 + c2)

> 0,

PB(−1) = 1 +
2 + ac2 − b1(1 + ac2)

1 + a(b2c1 + c2)
+

1− b1
1 + a(b2c1 + c2)

> 0,

1 >
1− b1

1 + a(b2c1 + c2)
.

It is easy to see that all the three inequalities above are satisfied for any set of parameters495

a, b2, c1, c2 > 0 and 0 < b1 < 1, hence every equilibrium z∗(s∗) with |s∗| < ρ is locally stable.

Now, let us consider the system without stiction. The characteristic polynomial of matrix

A is

PA(λ) = ∆λ2 − (1− b1)(2 + ac2)λ+ 1− b1

with ∆ defined by (9). Applying Jury’s stability criterion, we obtain

PA(1) = 1− (1− b1)(2 + ac2)

∆
+

1− b1
∆

> 0,

PA(−1) = 1 +
(1− b1)(2 + ac2)

∆
+

1− b1
∆

> 0,

1 >
1− b1

∆
.

Taking into account the constraints a, b2, c1, c2 > 0 and 0 < b1 < 1, these conditions result

in the relationship

c1 > 1.

Note that the system zt = Azt−1 is the linearization of sticky system (7) at infinity, hence

it describes the return of the sticky system towards near equilibrium dynamics after a large

perturbation. Thus, the stability condition c1 > 1 for A agrees with the global stability500

criterion obtained in Section 2.4.

C. The effect of parameters on stability properties

Here we provide some numerical analysis concerning the effect of the parameters on

stability properties of the equilibrium states. Stronger stability generally implies lower

volatility and more infrequent transitions between different equilibrium states. We quantify505

local stability using the maximum absolute value, |λi,e|, of eigenvalues of the linearized

system at an equilibrium point. The subscripts e and i refer to the system without stickiness

(ρ = 0) and with stickiness (ρ = 1), respectively.

The model contains five other parameters, a, b1, b2, c1 and c2. Fig. 12 shows the

dependence of |λi,e| on the parameter a and implies that the system with stickiness is more510

stable than the system without stickiness. Other parameter values are taken from Table

1. Interestingly, the system with stickiness becomes more stable for increasing a, while this

dependence for the non-sticky system is non-monotone since |λe| has a minimum at a ≈ 0.8.

The range of output gap equilibrium values is proportional to the ratio of parameters

b1 and b2 according to (15). Fig. 13 presents the dependence of |λi,e| on these parameters.515
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Figure 12: Variation of |λi| and |λe| with a. Other parameters are taken from Table 1.

The sticky system is more stable than its non-sticky counterpart for b1 < 0.9, but becomes

less stable than the non-sticky system as b1 approaches 1 (in the latter case, the future

inflation rate is defined predominantly by expectations). The dependence of |λi,e| on b2

and the dependence of |λe| on b1 is monotone (stronger stability for larger b1,2), while the

dependence of |λi| on b2 is non-monotone. The strongest stability is achieved by the sticky520

system for some intermediate value of b1 between 0 and 1.

(a) (b)

Figure 13: Dependence of (a) |λi| and (b) |λe| on b1 and b2. Other parameters are taken from Table 1.

Parameters c1 and c2 control the range of inflation rate equilibrium values according to

(15). This range contracts when c1 increases (for c1 > 1) and expands when c2 increases.

Fig. 14 shows that the sticky system is generally more stable than the non-sticky one. Both

systems become more stable with increasing c1 (stronger inflation targeting in Taylor’s rule),525

see Figs. 14(a, b) and 15(a, b). The dependence of |λi| on c2 demonstrates some slight non-

monotonicity for large c2 values, see Figure 15(b). The non-monotonicity of |λi| with c2 is

much more pronounced with the minimum achieved for a certain value of c2 depending on

c1, see Figs. 14(b) and 15(b). This minimum corresponds to the strongest stability and,

in this sense, optimizes the Central Bank policy. In Fig. 14(b), the strongest stability is530

achieved on the ‘parabolic’ line.

D. Inversion of the PI operator

In this section, we consider the inversion of the PI operator, which is necessary to trans-

form the implicit system (5), (6) coupled with relation (32) into the explicit form (35). Here
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(a) (b)

Figure 14: Dependence of (a) |λi| and (b) |λe| on c1 and c2. Other parameters are taken from Table 1.

(a)

(b)

Figure 15: Cross-sections of the plots shown in Fig. 14 (a) for various c2 values and (b) for various c1 values.

we use the term ‘PI operator’ for an input-output relationship of the form

ft = αxt +

n∑
i=1

µiSρi [xt], (27)

where the weights µi are allowed to have any sign, α ≥ 0, and ρ1 < ρ2 < · · · < ρn. Such

an operator is completely defined by the so-called Primary Response (PR) function φ(x),

which describes the output in response to a monotonically increasing input. Here, this is a
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Figure 16: PR function φ of PI operator (27) and PR function φ−1 of its inverse PI operator (28).

piecewise linear continuous function satisfying φ(0) = 0 with the slopes defined by

φ′(x) =



α+ µn + · · ·+ µ2 + µ1, 0 < x < ρ1,

α+ µn + · · ·+ µ2, ρ1 < x < ρ2,
...

α+ µn, ρn−1 < x < ρn,

α, x > ρn,

see Fig. 16. As shown in [33], if the slopes of φ are all positive, then the PI operator (27) is

invertible, and the inverse relationship is also a PI operator:

xt = α̂ft +

n∑
i=1

µ̂iSρ̂i [ft]. (28)

Further, the PR function of operator (28) is the inverse of the PR function φ of operator

(27). This allows one to express the weights α̂, µ̂i and the thresholds ρ̂i explicitly in terms

of the weights α, µi and the thresholds ρi. In particular, the equation αxt + st = ft with

st = Sρ[xt] (see (24)) can be inverted as

xt =
1

α
ft −

1

α(1 + α)
S(1+α)ρ[ft],

and this implies st = 1
1+αS(1+α)ρ[ft], which is equivalent to (10) (cf. Appendix A).

E. Sticky Taylor rule

In order to convert system (19), (20) to the explicit form, we replace the variable yt with

the variable gt = c1xt + c2yt and obtain

gt = (c1 + ac2)xt + gt−1 − c1xt−1 − ac2Pσ[gt] + c2εt, (29)

xt =
c2(1− b1)

b2c1 + c2(1− b1)
xt−1 +

b2
b2c1 + c2(1− b1)

gt +
c2(1− b1)

b2c1 + c2(1− b1)
ηt. (30)

Further, substituting (30) into (29) gives

αgt + κPσ[gt] = ft (31)
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with

α =
c2(1− b1 − ab2)

b2c1 + c2(1− b1)
, κ = ac2,

ft = gt−1 − c1xt−1 +
c2(1− b1)(c1 + ac2)

b2c1 + c2(1− b1)
(xt−1 + ηt) + c2εt.

Using that α > 0 due to (21), we can invert (31) as in Appendix D to obtain

gt =
1

α

(
ft −

κ

α+ κ
Pασ[ft]

)
.

This equation together with (30) defines the explicit system for (19), (20). The linearization

zt = Bzt−1 of this system at any equilibrium point with s∗ ∈ (−σ, σ) has the matrix

B =
1

1− b1 − ab2

(
1− b1 a(1− b1)

b2 1− b1

)
.

Since

detB =
1− b1

1− b1 − ab2
> 1,

all these equilibrium states are unstable.535

F. A multi-agent model

Model (7) can be easily extended to account for differing types of agent with different

inflation rate expectation thresholds. To this end, we replace the simple relationship (4)

between pt and xt with the equation

pt =

n∑
i=1

µiPρi [xt] = xt −
n∑
i=1

µiSρi [xt] (32)

with
n∑
i=1

µi = 1. (33)

Here the play operator Pρi models the expectation of inflation by the i-th agent; pt is

the aggregate expectation of inflation; µi > 0 is a weight measuring the contribution of

agent’s expectation of inflation to the aggregate quantity; and, ρi is an individual threshold

characterizing the behavior of the i-th agent. Relation (32) is equivalent to the formula

st = I[xt] :=

n∑
i=1

µiSρi [xt], (34)

which is a (discrete) Prandtl-Ishlinskii (PI) operator with thresholds ρi and weights µi

[34, 35, 36], where st = xt − pt.

The implicit system (5), (6), (32) with multiple agents can be converted into an explicit

form using the same technique as we used for the system with one play operator. Again this

involves the inversion of the PI operator. The explicit system

zt = Azt−1 + Î[c · zt−1 + ξ̂t] d+Nξt, (35)

which is similar to its counterpart (7), includes a PI operator with rescaled thresholds ρ̂i

and weights µ̂i, see Appendix D for details; ξt, ξ̂t denote the noise terms.540
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(a) (b)

Figure 17: Different expectations of agents based on three thresholds ρ1 < ρ2 < ρ3 of (a) play and (b) stop

operators with a single input xt.

The stability properties of the equilibrium states of system (35) with multiple agents

are similar to the stability properties considered above in Section 2.4. In particular, if we

consider the system without external noise for c1 > 1, then the set of equilibrium states is

globally stable, and every trajectory converges to an equilibrium state.

In the simulations of this section, we classify economic agents into three categories,545

strongly, moderately, and weakly sensitive to inflation rate variations (hence n = 3), by

assigning thresholds ρ1 < ρ2 < ρ3, respectively, to these groups, see Fig. 17. Further, the

contribution of each group to the aggregate expectation of inflation carries equal weight,

µi = 1/3.

Overall, numerical results obtained for model (5), (6), (32) with three agents are quali-550

tatively similar to the results described above for the model with one agent, see Figs. 18 –

25, which are counterparts of Figs. 4 – 10, respectively.

(a) (b)

Figure 18: Trajectory of the system with 3 agents near an equilibrium state when none of the agents achieves

an extreme perception gap (cf. Figure 4(a, d)). Here c1 > 1. (a) Time trace of inflation. (b) Inflation versus

expectation of inflation by any of the agents.
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(a) (b) (c)

Figure 19: Trajectory of the system with 3 agents when the most sensitive agent reaches an extreme per-

ception gap but the two less sensitive agents do not (cf. Figure 4(b, e)). The parameter c1 satisfies c1 > 1.

(a) Time trace of inflation. A change of the equilibrium state occurs. (b) Inflation versus expectation of

inflation by the most sensitive agent. (c) Inflation versus expectation of inflation by each of the two less

sensitive agents.

(a) (b) (c)

Figure 20: Trajectory of the system with 3 agents with the most sensitive agent and the moderately sensitive

agent having an extreme perception gap at the initial (equilibrium) point (cf. Fig. 4(c, d)). The parameter c1

satisfies c1 > 1. (a) Time trace of inflation. (b) Inflation versus expectation of inflation for the moderately

sensitive agent. (c) Inflation versus expectation of inflation for the most sensitive agent. The least sensitive

agent shows the behavior as in Fig. 19(c).

(a) (b)

Figure 21: Changes of the equilibrium state in the model with 3 agents due to shocks (cf. Figures 5, 6). (a)

Small shocks. (b) Relatively large shocks.

Figure 22: The run-away inflation scenario in the model with 3 agents in the case c1 < 1 (cf. Fig. 7).
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(a) (b)

Figure 23: Trade-off between the inflation and output gap volatility in the model with 3 agents as the inflation

targeting parameter c1 in the Taylor rule is varied (cf. Fig. 8). (a) Trajectories of xt. (b) Trajectories of yt.

(a) (b)

Figure 24: Trade-off between the inflation rate and output gap volatility in the model with 3 agents as

the output gap targeting parameter c2 in the Taylor rule is varied (cf. Fig. 9). (a) Trajectories of xt. (b)

Trajectories of yt.

(a) (b)

Figure 25: Measure of the effect of c2 on volatility of (a) inflation rate, xt and (b) output gap, yt with

standard deviation (SD) (cf. Fig. 10).
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