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Abstract

When modelling the aggregate behavior of a population over long peri-

ods of time the standard approach is to consider the system as always being

in equilibrium — using averaging procedures based upon assumptions of ra-

tionality, utility-maximization and a high degree of independence amongst

the agents. These analytically tractable models are fully determined by a

small number of variables and the future evolution of the system is decou-

pled from its past. Previous studies [Akerlof and Yellen 1985, Scharfstein

and Stein 1990] suggested that allowing a subset of the agents to be non-

maximizing might shift the equilibrium solution but a shortcoming in those

analyses prevented the possibility of non-equilibrium solutions.

We show how equilibrium assumptions and solutions can be ‘stress-

tested’ by embedding the models within frameworks capable of far-from-

equilibrium dynamics. This procedure is applied to Brownian motion (Ran-

dom walk) asset pricing which serves as our prototypical equilibrium model.

The introduction of a simple, yet plausible, form of non-maximizing cou-

pling between the agents results in endogenous fluctuations that destabilize

the equilibrium solution. These fluctuations typically consist of long periods

of increasingly severe mispricing followed by rapid, unannounced, correc-

tions. Importantly, this occurs at realistic parameter values and is consistent

with the observed price dynamics of real markets. Furthermore the mispric-

ing phase may be mistaken for a trend in the fundamentals of the equilibrium

model. We argue that the ‘boom-bust’ nature of the destabilizing endoge-

nous dynamics is likely to be prevalent in economic systems at all scales.
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I Introduction

“We can model the euphoria and the fear stage of the business cycle. Their pa-

rameters are quite different. We have never successfully modelled the transition

from euphoria to fear.”

— Alan Greenspan, Financial Times, March 27th 2009.

All the mainstream schools of economic thought and, in turn, modern finance

have been strongly motivated by the mathematical elegance and predictive success

of Newtonian mechanics and statistical physics. This has resulted in mathematical

models constructed so that the solution is a stable, usually unique, equilibrium de-

scribed by a small number of variables and whose future evolution is independent

of its past states. Indeed the notion of equilibrium has become a unifying concept

in modern economics although its precise meaning varies with context. Here we

shall consider those equilibrium models that attempt to describe systems involv-

ing large numbers of interacting agents over significant periods of time. Some

examples, discussed briefly below, include the supply-demand curves of microe-

conomics, the Brownian motion description of asset prices, and the DSGE models

used in macroeconomics and central banking.

In the physical sciences, equilibria are most often studied as the limiting values

of dynamical systems where the short-term transient behavior may not even be of

interest. However, economic systems have no such end-state [Robinson 1974] and

so the only remaining (legitimate) justification for equilibrium models requires the

assumption that equilibrating processes operate (and dominate) over timescales

shorter than or comparable to any exogenous changes. This implies the system is
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at all times close to being in equilibrium and is referred to as a quasi-equilibrium

process in statistical physics.

In the context of large systems of interacting agents we shall define an equi-

librium model as one where there is an assumed absence (or near-perfect cancel-

lation) of endogenous dynamics so that the state of the system at any moment is

determined solely by the current values of a small number of aggregate or exoge-

nous variables. In particular it precludes any dependence upon prior states of the

system. This assumption is valid for the case of gas molecules in a closed box

that are reacting to slow changes in temperature — the pressure is determined by

the Ideal Gas Law and the current temperature.2 This happy state of affairs is

guaranteed by the Laws of Thermodynamics that provide both a unique statistical

equilibrium and a physical mechanism for reaching it.

It is useful to extend the analogy with thermal equilibrium in two ways. Firstly,

if the exogenous changes are too large or rapid, compared to the strength of the

equilibrating processes, then the box will move a long way from equilibrium

with its surroundings. However, there is a second potential source of disequi-

librium in economic systems that can be compared to a box of special molecules

[Buchanan 2007] that do not obey the First and Second Laws of Thermodynam-

ics (Conservation of Energy and Increasing Entropy respectively). These parti-

cles can spontaneously speed up or slow down, reveal a temporary preference for

one side of the box over the other, remember where they have been, or choose

to follow other particles. For a boxful of such molecules there also exist dise-

quilibrating forces that, when strong enough, can destabilize the equilibrium by

generating significant endogenous dynamics. We shall use a simple model, with a

small number of key observable parameters, to try and quantify the battle between

equilibrating/disequilibrating/exogenous forces in a typical financial market.

Equilibrium models have the virtue of being analytically tractable but this

very tractability places severe constraints on the nature of the solutions. This

2At a fixed volume, the pressure is proportional to the temperature.
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means that real-world phenomena that do not comfortably fit into the equilibrium

paradigm require ad hoc modelling adjustments that are often the cause of much

heated debate between different economic schools of thought.

As our introductory example we consider the supply-demand curves used for

price determination. The price value at the intersection of such curves (represent-

ing differentiable functions) is taken to be the equilibrium price that balances the

opposing forces of supply and demand. In the simplest model, if a shock occurs

to either curve and is then removed the price should very quickly settle back to

its pre-shock value (the critiquing of this model has a long and distinguished his-

tory but we shall not reproduce it here). In other words an instantaneously-acting

equilibrating force (or ‘invisible hand’) restores the previous equilibrium and no

memory of the shock remains — this picture fits perfectly within our definition of

an equilibrium model.

In Section V we shall argue that barriers to instantaneous equilibration, includ-

ing various forms of hysteresis, invalidate the overly simplified notion of ‘balance

of forces’ underlying the model. The entirety of producing and consuming agents

can be regarded as forming an endogenous structure with multiple feasible states

that can absorb some of the forces and also cause endogenous dynamics. In this

scenario, after a shock is removed the system will not necessarily return to its

previous state and the system retains memory. Note that this cannot be corrected

by replacing the differentiable functions defining the supply-demand curves by

ones that are merely continuous or even discontinuous. Instead one has to recog-

nise that there are no longer single-valued functions or curves — instead there are

supply and demand ‘smudges’ with the current price determined by the historical

record but lying within some achievable intersecting set.

Our second example concerns financial markets and the wild, occasionally

devastating, fluctuations that can occur. The Brownian motion (Random Walk) de-

scription of asset pricing is an equilibrium model asserting that exogenous Brow-

nian information streams are correctly translated into Brownian price changes.
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Brownian processes have no memory and their increments are independent and

Gaussian-distributed — in particular the probability of extreme increments (ie.

in the tails of the increment distribution) decays exponentially fast as a function

of their magnitude. However these properties are flatly contradicted by the two

most significant ‘stylized facts’ [Mantegna and Stanley 2000] of financial mar-

kets. These are volatility clustering where periods of excess volatility exist and

fat tails where the observed frequency of large price moves can be an order of

magnitude of orders of magnitude larger than predicted by the equilibrium model.

The consequences of this latter discrepancy cannot be overstated. At the time of

writing the global banking system is still being bailed out from bad loans and

investments (and levels of leverage) that were justified using equilibrium-based

risk-assessment models such as VaR (Value-at-Risk).

A third example concerns the rational expectations DSGE (Dynamic Stochas-

tic General Equilibrium) models of macroeconomics.3 They fail to explain anoma-

lies in important variables such as the output gap that display both fat tails [Fagiolo,

Napoletano, Piazza and Roventini 2009] and the periodicities in ‘animal spirits’

referred to as the Business Cycle. This is often explained away by positing correla-

tions and non-Gaussian statistics within the exogenous shocks but there is no com-

pelling reason for believing this is the case. There is a growing literature on agent-

based macroeconomics (see [Tesfatsion 2006, LeBaron and Tesfatsion 2008]) and

an interesting recent study [De Grauwe 2012] demonstrates that both effects can

be generated endogenously if one replaces the usual rationality assumptions on

the agents with bounded rationality plus limited learning capabilities. This is very

much in the spirit of what will be presented here although we shall go further and

use a fully agent-based (bottom-up) model to test the stability of an equilibrium

3These models use averaged variables and have unique solutions but often incorporate delays

into the system variables since macroeconomic policy changes cannot be expected to take effect

immediately. However such delay equations can always be rewritten without the delay by intro-

ducing extra variables.
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solution.

Economic systems are aggregations of many heterogeneous agents and the

a priori requirement of history-independent equilibrium solutions has profound

consequences (see [Kirman 1992]). Most of these models can be derived by as-

suming that agents display enough homogeneity to be ‘averaged’ or scaled-up and

replaced by a representative agent who is memoryless, perfectly rational (usually

in the sense of maximizing some hypothetical utility function) and correct about

future expectations. This averaging procedure, when applied to expectations, is

known as the Rational Expectations Hypothesis and implies that while individual

agents’ expectations may be wrong they all use all available information and, on

average, agree with the expectations assumption being used. 4

In this paper we use a heterogeneous agent model of a financial market to

demonstrate as starkly as possible that there are significant, systemic, real-world

effects that must not be averaged away. As the magnitude of these effects is

increased the system remains close to the equilibrium solution but only until a

certain (very low) level is reached. At this point the positive feedback mecha-

nisms are strong enough to counteract any equilibrating processes and far-from-

equilibrium endogenous dynamics replace the now completely unobservable equi-

librium solution.

As we shall see, for long periods of time the far-from-equilibrium solution may

be mistaken for an equilibrium solution whose parameters are changing. There

may be partial corrections along the way but the endogenous state eventually (and

unpredictably) shifts via a rapid cascade that can even overshoot and cause a mis-

pricing in the opposite direction. This whole process cannot be represented by any

equilibrium model5 and to make matters even worse, the boom-and-bust aspect of

4Such averaging assumptions are the economic analogue to the Central Limit Theorem in

Statistics which states that the mean of independent random variables (from a distribution with

finite first and second moments) is normally distributed. The assumption of independence is cru-

cial!
5See the quote by Alan Greenspan at the start of this section.
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the endogenous dynamics indicates a high degree of nonlinearity that cannot be

approximated by simply linearizing about an equilibrium solution. In other words

a genuinely nonlinear mathematical description is needed.

The cause of positive feedbacks/instabilities (and non-averagability) that we

shall focus upon is herding behavior whereby some agents have some additional

motivation (ranging from completely ‘irrational’ to hyper-rational) to prefer the

position taken by the majority of agents. While there are many possible causes of

herding behavior, the effects should usually be similar and can be introduced very

simply using the framework developed in Section II.

Boundedly rational behavior [Simon 1982] and contagion effects are often

qualitatively blamed for market bubbles and other extended mispricings. Two

widely-cited quantitative studies ([Akerlof and Yellen 1985, Scharfstein and Stein

1990]) showed that introducing non-maximizing changes into a subset of the

agents does indeed shift the value of the equilibrium solutions in their respective

models (the second study is especially relevant here in that it considered herding

effects among investment managers concerned about their relative performance to

be the primary source of the deviation). However these analyses were performed

entirely within an equilibrium framework that precluded the possibility of non-

equilibrium dynamic solutions 6.

Although it might appear that these theoretical results provide some hope for

the development of equilibrium models that adequately incorporate bounded ra-

tionality and/or herding there are two fundamental problems. Firstly, in an equi-

librium model the only timescales that exist are those imposed exogenously. Thus

in order to shed light on how long a mispricing might last and how quickly it

will be corrected there must, at the very least, be an additional non-equilibrium

exogenous model attached to the equilibrium one. However, if the causes of the

mispricing are endogenous then the modelling process should respect that fact.

6Similarly [Banerjee 1992] and [Bikhchandani, Hirshleifer and Welch 1992] introduced mod-

els of herd behavior via sequential decision-making but again within the equilibrium paradigm.
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The second problem is that in both analyses the logical steps were performed

in the wrong order. As usually occurs in equilibrium modelling, perfect utility-

maximization was assumed and then an averaging procedure (not explicitly stated)

generated the equilibrium solution, and only then was utility-maximization weak-

ened. However the averaging procedure requires utility-maximization and inde-

pendence between the agents in order to be valid. In other words an assumption

was made, then it was used, and then it was weakened. In order to avoid this

logical error we shall not use averaging or assume the existence of an underlying

stable equilibrium. Instead we will perturb a (bottom-up) agent-based model that

reproduces the equilibrium solution at special parameter values corresponding to

the perfect maximizing and independence assumptions.

The non-equilibrium modeling framework in the next Section was introduced

in [Lamba and Seaman 2008a] and [Lamba 2010] and is based upon earlier related

models ([Cross, Grinfeld, Lamba and Seaman 2005, Cross, Grinfeld, Lamba and

Seaman 2007]). The primary motivation for this earlier work was to incorporate

various systemic defects such as perverse incentives and investor psychology into

an otherwise efficient market and thus establish a causal link between endogenous

agent behavior at the micro level and the non-Gaussian price statistics observed

in financial markets. One clear conclusion was that herding can indeed induce

‘fat-tails’ consistent with observed power-law decays of real asset price changes.

Thus herding is a possible, indeed likely, contributor to an extremely important

phenomenon that is inconsistent with standard financial models.

The motivation here is different, although the modeling details are similar.

The simulations in Section IV should be considered a ‘stress-test’ of an extant

equilibrium pricing model that is achieved by weakening a particular subset of

the assumptions from the outset. Note that this allows us to carry over those

assumptions from the standard pricing model that are not being weakened.

Of course there are many other agent-based models that can also approxi-

mate the stylized facts (see [Hommes 2006] for a survey of the earlier models)
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and many of these also incorporate some form of herding or imitation. However

our model has certain features that make it especially suitable for the task at hand.

Most importantly, at the ‘default’ parameters the averaging procedures required to

generate the equilibrium solution are mathematically justified — and so in this de-

fault state the model fits easily within the orthodox modeling paradigm. Secondly,

we introduce a separation of timescales. This is a standard device for systems that

have different components operating at very different rates and so we shall have

‘fast’ agents who react near instantaneously to new information and the far more

interesting ‘slow’ agents who have both a limited form of memory and evolving

strategies over long periods. This allows us to introduce herding (as well as many

other behavioral effects if desired) in a simple way that more accurately captures

their incremental nature.

The paper is organized as follows. The modeling framework is described fully

in Section II together with an explanation of how various non-standard motiva-

tions, such as perverse incentives and the findings of behavioral economics, can

be approximated. Then in Section III the results of numerical simulations are pro-

vided for realistic estimates of the model parameters. These demonstrate that the

qualitative and quantitative changes introduced by such ‘imperfections’ are con-

sistent with observations of real markets. Section IV contains the most significant

numerical results. Here the herding strength is used as a bifurcation parameter to

establish how much herding is required to destabilize the equilibrium market solu-

tion. The answer would appear to be an order of magnitude lower than a plausible

estimate of herding in actual markets. In Section V links are established between

our modeling approach and various concepts from economics and finance. Some

implications of the findings and suggestions for further research are given in Sec-

tion VI.
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II The Model

Our starting point is the One-Dimensional Random Walk. This is a stochastic

process S(n) defined at discrete times n = 0,1,2, . . . where S(0) = 0 and S(n) =

S(n−1)+X(n). The random variables X(n) for n = 1,2,3, . . . are all independent

and identically distributed (i.i.d.) and take the values ±1 with probability 1
2 (so

that their mean is 0 and variance is 1). To use a physical analogy, S(n) corresponds

to the position at time n of a particle jumping perfectly randomly either one unit

to the left or the right.

In spite of its simplicity the one-dimensional random walk has some highly

counter-intuitive properties 7. These stem from the fact that a random walk does

not ‘revert-to-the-mean’ in the way that most naturally-occurring processes do.

The process S(n) has no memory of where it has been and experiences no restoring

force back towards 0 however far away it may be — this follows immediately from

the independence of the X(n) (instead S(n) has the Martingale Property which

states that the expected value of S(n) at any future time n equals its last known

value).

The basic random walk S(n) can be generalized by replacing the X(n) with

different i.i.d. random variables that take more than just two values and can also

have a non-zero mean allowing for a possible drift or bias in one direction or

the other. Such random walks became the standard description of asset prices

[Fama 1965, Malkiel 1973]. The justification was that the arrival of independent

information, corresponding to the X(n), is translated by the influence it has on

market participants into a random walk process for the asset price S(n).

Discrete-time random walks were soon superseded by continuous-time stochas-

tic processes. The first change we need to make is to replace the evolving sum

7For example the expected value of the random variable that is the time taken to first hit position

−1 is easily shown to be infinite. By symmetry the expected time taken to first hit +1 is also

infinite — even though one of these two events must happen at n = 1!
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of the independent random variables X(n) by a continuous-time Brownian mo-

tion B(t) that represents arriving exogenous information. Pricing models are then

derived as solutions to stochastic differential equations (SDEs) as follows. The

simplest, and most common, pricing model assumes that the price p(t) at time t

solves the SDE

(1) d p = ap dt +bp dB

where d p is the change in price and dB is the change in a standard (drift-free,

variance 1) Brownian motion input B(t) over an infinitesimal time interval dt.

The constant a is the average rate of return per unit time and b multiplies the

effect of the completely random exogenous information/shocks B(t) by a volatility

factor. The reason for the factors p in the right-hand terms is that both the drift

and random shocks will have a multiplicative rather than an additive effect on the

price. 8

Note that there are two critical assumptions being made. Firstly that the ex-

ogenous information stream B(t) is indeed a Brownian motion with independent,

uncorrelated, Gaussian-distributed, increments. This is unlikely to be perfectly

true in practice but this assumption will not be relaxed here. The second assump-

tion is that B(t) is translated perfectly and instantly into independent price in-

crements by the participants. Or, putting it another way, Brownian information

passes through the ‘filter’ consisting of all the market participants and comes out

unchanged as independent, proportional, instantaneous price changes. This as-

sumption will be weakened by adding an additional term to (1) corresponding to

price changes caused by endogenous effects.

The solution to (1), found using the Itô Calculus, is the geometric Brownian

8If the last term in (1) is missing then we have the ODE d p = ap dt, or equivalently d p
dt = ap,

whose (deterministic) solution is the growing or decaying exponential p(t) = p(0)eat depending

upon the sign of a.
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motion (gBm)

(2) p(t) = p(0)exp
(
(a− 1

2
b2)t +bB(t)

)
.

The SDE (1) is very special in that it has an explicit solution. Even more un-

usually the solution (2) depends only upon the current value of B(t) and not the

entire history of the Brownian process {B(s)}ts=0 up to that point. Thus the vari-

able p(t) can be considered an archetype for other variables in economic models

that are assumed to be the outcome of instantaneously equilibrating processes that

are path-independent.

This very close correspondence between the standard assumptions of main-

stream economics and the most basic pricing model in finance is of course no

accident. Separating the history of a mathematical variable from its future evo-

lution makes it far easier to generate models with analytic closed-form solutions

(such as the celebrated Black-Scholes formula [Black and Scholes 1973] for pric-

ing financial derivatives that uses the result (2)). Equilibrium-based thinking is a

direct consequence of this sacrificing of accuracy for mathematical expediency.

It will be more convenient to work with the log-price variable r(t) = ln p(t)

which obeys an equivalent, but simpler, SDE using the same Brownian input B(t).

For constant drift a and volatility b the log-price is given by the solution

(3) r(t) = at +bB(t)

to the SDE

(4) dr = a dt +b dB.

For any given time interval h the changes in log-price r(t + h)− r(t) have a

Gaussian distribution N (ah,b2h). However this is in poor agreement with real-

ity. The ‘stylized facts’ of financial markets (see [Mantegna and Stanley 2000,

Cont 2001]) are a set of statistical observations that appear to hold across all asset

classes, independent of geography, history and trading rules. Two are especially
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important. The first is the presence of ‘fat-tailed’ price returns whereby the oc-

currence of the largest price changes (as measured over intervals of hours up to

months or years) follows an approximate power-law decay contradicting the ex-

ponential decay of Gaussian distributions. Thus the probability of the largest price

moves is underestimated by many orders of magnitude. The second phenomenon

is volatility clustering, whereby large price moves (in either direction) are more

likely to occur shortly after other large price moves.

Without loss of generality, we may choose a = 0 so that r(t) becomes the log-

price relative to the risk-free interest rate plus any risk premium. We may also, by

rescaling time, choose b = 1. In order to do computations we now discretize time

so that the solution at the end of the nth time interval of length h is given by

(5) r(n) = r(n−1)+
√

hη(n)

where η(n) ∼ N (0,1) is the discretized Brownian process, i.e. ∑
n
k=1 η(k) =

B(nh). Note that at the times t = 0,h,2h, . . . this numerical solution coincides

with (3) and so they are effectively equivalent.

Almost by definition, the price changes caused by the (exogenous) Brown-

ian information stream η(n) are effected by agents in the marketplace who a) act

very fast and b) are motivated by the arrival of new information. This perfect

information-to-price translation is justified by supposing that it is as if [Friedman

1953] all agents are continuously, instantaneously and correctly (on average) max-

imizing their respective utility functions. In reality the presence of transaction

costs and the immense computational effort required will mean that for a subset

of M agents trading or shifting of opinions occurs over much longer timescales.

We shall call them ‘slow agents’. We do not assume that slow agents are of uni-

form size (in terms of their trading positions or influence) and thus weight the ith

slow agent by her size wi > 0 and define W = ∑
M
i=1 wi.

Only the slow agents will be simulated directly because of the long timescales

that are our concern here. In the numerics to follow, h will be chosen to corre-
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spond to approximately 1/10 of a trading day. Fast agents include institutions (or

individuals) that regularly trade the asset over a timescale of less than a day, and/or

are motivated primarily by new information. Slow agents on the other hand will

typically shift investment positions or opinions over weeks, months or longer.

In standard pricing models the precise details of the market-clearing mecha-

nism are left unstated and it is merely assumed to be perfectly liquid and efficient.

Since this assumption will not be weakened here we do not describe it either —

only the slow agents are simulated and we assume that the fast agents provide suf-

ficient liquidity so that trades do not need to be matched in order to be executed9.

We now make some assumptions that, it must be emphasized, are not funda-

mental to the modeling philosophy. They merely keep the model simple and are

sufficient for the purpose at hand. Firstly, we assume that over the nth time interval

the ith slow agents can only be in one of two states, the state si(n) = +1 meaning

that she owns wi units of the asset, and the state si(n) =−1 meaning that she owns

none of the asset10. We can thus define the quantity σ(n) = 1
W ∑

M
i=1 si(n)wi which

is a linear measure of the aggregate demand of the slow agents. We shall refer to

σ as the sentiment. Note that σ varies between ±1 with σ(n) =−1 (very bearish)

when none of the slow agents own the asset, +1 when they all do (very bullish),

and 0 when there are equal strengths in each state. Movements in σ are assumed

to affect the price p(t) proportionally via the change in demand. This is equiva-

lent to an arithmetic shift in the log-price and the discretized pricing formula (5)

9The reader is directed to [Lamba 2010] for a discussion of how the model can be modified

for those extreme market conditions where liquidity cannot be assumed. Briefly, under these

circumstances the model reduces to a simulation of an order book and must be run using very

small intervals h and all the agents, both slow and fast, must be explicitly included.
10In reality a slow agent may choose to gradually increase or decrease their holdings, short the

market, or buy derivatives, but this complicates the dynamics of the slow agents without providing

further insights. Also, some of the slow agents may not even represent active traders. They may

be analysts who affect other investors with their weight wi being their influence upon the market.
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becomes

(6) r(n) = r(n−1)+
√

hη(n)+κ∆σ(n)

where κ > 0 and ∆σ(n) = σ(n)−σ(n− 1). The parameter κ is a measure of the

total market depth of the slow agents. Thus one can interpret (6) as stating that

price changes have an exogenous component
√

hη(n) due to new information,

and an endogenous one, κ∆σ(n), caused by changes in the market sentiment. The

value of κ will be larger in a market where endogenous effects are stronger relative

to exogenous ones.

The difference between the equilibrium pricing model (5) and (6) is of course

the extra endogenous term κ∆σ(n). Whereas the solution to (5) is necessarily a

Brownian log-price the solution to (6) will depend upon the dynamical properties

of σ. The extra term reflects the fact that before information can be turned into

price changes it must first pass through a ‘filter’ of imperfect agents.

The equilibrium pricing model (5) can be recovered from (6) in two different

ways. Firstly, we can simply set κ= 0 so that there are no slow agents (or that they

have no effect on the price) and the extra term in (6) simply vanishes. Secondly

(and this is fundamental to our argument) we can suppose that the slow agents

are always in near-equilibrium making σ(n) ≈ 0 ∀n so that the last term in (6)

becomes negligible. This is equivalent to averaging away the effects of imperfect

agents. However, the pricing formula (6) allows for the possibility that endoge-

nous non-equilibrium dynamics amongst the slow agents will affect the price. In

other words we have embedded the standard equilibrium model (5) within a less

restrictive one — one that is capable of dynamical solutions.

This embedding is crucial if we are to avoid the logical inconsistency present

in the analyses of [Akerlof and Yellen 1985, Scharfstein and Stein 1990]. We shall

arrange things so that at a certain parameter value there is indeed a valid averaging

argument that proves σ(n)≈ 0 ∀n. This parameter value corresponds precisely to

the orthodox modelling assumptions. However this averaging will not necessarily
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be valid at nearby parameter values and we will not assume that it is. Instead we

perform numerical simulations at varying parameter values and observe the nature

of the solutions.

Before we carry out this program we shall introduce one further generalization

of (5) by weakening the assumption that the fast (information driven) agents cor-

rectly transform new information into price changes. This is achieved by adding

a (for now unspecified) function f (•) that modifies the effect on prices of new

information entering the market changing (6) to

(7) r(n) = r(n−1)+ f (•)
√

hη(n)+κ∆σ(n).

with the fast agents acting perfectly if f (•)≡ 1.11

Equation (7) does not constitute a closed system because no rules governing

the switching of the slow agents between the−1 and +1 states have been specified

yet. There are many types of rule or trading strategy that could be used, involving

any desired combination of pure utility function maximization, bonus/commission

maximization, inductive learning, imitation among a network of slow agents, tech-

nical trading, bounded rationality, ‘gut instinct’ or animal spirits, imperfect time

discounting, profits, losses, relative performance of other investment options, mar-

ket volatility, fear, greed, margin calls, the weather, and so on. Prior studies such

as the Santa Fe model (see [LeBaron, Arthur and Palmer 1999]) have indeed used

complicated ecosystems of trading strategies and there is much to commend this

approach. However for our current purposes, simplicity is more appropriate than

complexity.

We shall use an approach based upon moving price thresholds developed in

[Lamba and Seaman 2008a] and [Lamba 2010] which is deceptively simple but

11As will be demonstrated numerically, this extra change has very little effect upon the stabil-

ity investigation that is our main concern. But weakening this assumption about the fast agents

induces volatility clustering in a natural way [Lamba 2010] and so we include it just for complete-

ness.
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is capable of introducing various real world influences, market ‘imperfections’,

bounded rationality and psychological biases (see Section A below). At the start

of the nth time interval, the ith slow agent is represented by its state, −1 or +1,

and an evolving open price interval Ii(n) = (Li(n),Ui(n)) where Li(n) < r(t) <

Ui(t) (Figure I). The endpoints Li and Ui are referred to as the lower and upper

thresholds respectively. If, at the end of that time interval, the price has crossed

either threshold agent i is deemed to be no longer comfortable with her current

investment position, switches states, and the interval Ii is updated so that the price

is again an interior point.

For example, an agent who is +1 may be switching to either take profits or

cut losses depending on which threshold is breached and the price at which they

bought. An agent who is −1 and then switches may be motivated by, say, a sell-

off which makes them think the stock is now cheap, or an urge to follow the

momentum of a rising stock or attempt to catch up with a benchmark. Or consider

a market analyst who has a buy rating on the asset but may switch when either

the price becomes too high or when the price falls far enough that they (belatedly)

change their opinion.

Finally, from (7) the action of switching causes a small jump in the sentiment

σ of ±2wi/W and so in the log-price of ±2κwi/W . Each of the M slow agents

has their own interval straddling the current price with the price and all of the

thresholds evolving at each timestep.

Since the intervals Ii are also evolving, it just remains to define the dynamics

of the Li and Ui. These thresholds for each agent will change (usually slowly)

between switchings and correspond to that agent’s evolving strategy12. Or equiv-

alently the intervals can be thought of as agents’ comfort zones within which that

agent is still satisfied with their current investment position — or stated opin-

ion in the case of a market analyst. Note that in the case of an algorithmic

12The strategy is ‘two-sided’ and takes into account the possibility of prices both rising and

falling as any complete strategy should.
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state = +1

r(t)

L (t)
j

U (t)
j

L (t) U (t)
i i

log−price

state = −1

Figure I: A representation of the model showing two agents in opposite states.

Agent i is in the +1 state and is represented by the (interval between) the two

circles, and agent j is in the −1 state and is represented by the two crosses.

‘black box’ or a hyper-rational utility maximizing investor these thresholds will

be consciously/explicitly specified and known by that agent (but no other). A less-

rational slow agent may not even be consciously aware of the threshold values but

will sense when one of them is violated and act to switch.

Our use of thresholds is reminiscent of many models of market microstructure

but there are important differences. Firstly, the microstructure models are con-

cerned with the inner workings of exchanges and the operation of market mech-

anisms over very small timescales. Here, we just assume that the trades can be

executed at close to the current price since we are concerned with mispricings and

disequilibrium over timescales orders of magnitude larger than the time taken to

execute the trades. Secondly, the orders in the microstructure models are typically

generated according to some stochastic distribution whereas here we shall focus

upon the processes leading to the creation of the orders. Or, rephrasing, we are

concerned with why trades are placed rather than how they are executed.

The state of the equilibrium model (5) at any given moment is completely

specified by just one number, the current price (or equivalently the current value

of the Brownian driving process B(t)). The situation for the full threshold model

is very different. To specify the current state of the system completely requires the

additional knowledge of all of the 2M threshold values and the rules specifying
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their dynamics. These endogenous ‘hidden variables’ add a great deal of potential

complexity to the model but we shall make some simplifying assumptions that are

sufficient for addressing the stability issues concerning us here.

Just for the moment, in order to apply a valid averaging argument and prove

that the (equilibrium) solution to (5) can be reproduced at a special parameter

value, we suppose that there are myriad influences on slow agents’ strategies that

can be adequately represented by different, uncorrelated and independent, dynam-

ics applied directly to every agent’s thresholds. These will be a mixture of purely

rational independent analysis, non-rational thought processes, boundedly rational

heuristics, correct and incorrect assumptions, and many other things in differing

proportions for each agent. All these influences will move each upper and lower

threshold either inwards or outwards (towards or away from the current price) thus

making the agent more or less likely to switch states respectively. If we assume

that these myriad influences are statistically independent then we can treat every

threshold as following its own independent random walk, giving

(8) Li(n+1) = Li(n)+δiN (0,h), Ui(n+1) =Ui(n)+δiN (0,h).

where the quantity δi is the volatility of the threshold motion per unit time for the

ith agent. Finally, when an agent does in fact switch at the end of a time interval,

their threshold values should also reset in a way that is independent of the other

agents. Then, on average, equal numbers of slow agents will be switching at each

timestep and, provided that σ(0) = 0 with identical threshold distributions for the

agents in each state at time 0, σ remains close to 0 for all time. The result of these

assumptions on the threshold dynamics is only very small, random, deviations

from the Brownian equilibrium pricing model (5).

To summarize, the model so far sits quite comfortably within the consensus

of mainstream economic schools of thought. The slow agents may not act instan-

taneously upon new information but they have differing expectations about the

future that are independent and, on average, correct and the model simply repro-
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duces the equilibrium price.

We have now, finally, reached the point where we can weaken some modelling

assumptions. These take the form of changes to the slow agents that destroy their

statistical independence and invalidate the above averaging procedure.13 We posit

that agents who are in the minority state (i.e. those who are in state +1 if σ < 0

and state −1 if σ > 0) will have, to a varying degree, some pressure/motivation

to switch and join the majority that builds up gradually over time14. There are

several real-world effects that make this change to the dynamics a natural one to

consider.

Firstly, any substantial change in σ will lead to a drift in price that may be

(mis)interpreted as a fundamental trend causing the minority agents to react ac-

cordingly to the price signal. Secondly, there may be ‘rational herding’ by in-

vestment managers, say, who find themselves chasing a benchmark average so as

not to lose their jobs, bonuses or investment capital 15(see [Keynes 1936, Scharf-

stein and Stein 1990]). A third cause is the actions of momentum investors who

are trying to detect and profit from a nascent trend (or bubble) as part of their

investment strategy. Fourthly, there is the propensity of people, when faced with

uncertainty, to believe that other people are better informed than they are. Next,

people may find it preferable to risk failing conventionally than succeeding uncon-

ventionally ([Keynes 1936]). Finally, there may be purely psychological effects at

work caused by the discomfort of being in a minority, especially within social or

professional networks. We shall refer to all the above effects as causes of herding.

For simplicity we assume that each agent reacts to the current value of σ

13Erroneous assumptions about the independence of the probability of foreclosures in different

housing markets were a major contributor to the financial crisis that started in 2008.
14This is not to say that truly contrarian investors do not exist but, almost by definition, their

numbers are smaller and could be incorporated by making similar changes to some of the major-

ity agents. Furthermore, contrarian-like behavior by some of the slow agents will emerge quite

naturally within the model as a response to extreme mispricing and price corrections
15These effects will be amplified by the short time-horizons of such evaluation periods.
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although in reality agents will have different perceived values of this quantity

(or may be be reacting, in part, subconsciously). Herding is introduced into the

model by supposing that for agents in the minority position only the purely random

threshold motions (8) are replaced by

Li(n+1) = Li(n)+Cih|σ(n)|+δiN (0,h)

Ui(n+1) = Ui(n)−Cih|σ(n)|+δiN (0,h)(9)

while those in the majority are still governed by (8). Note that this change simply

adds an inward drift to the threshold dynamics. Drifting the thresholds inwards

(towards the current price of course) reduces the time to the next switching and can

be interpreted as an agent’s ‘comfort zone’ being squeezed by the majority opin-

ion. Indeed this ability of inward-drifting thresholds to capture the incremental

nature of herding pressures was one of the primary motivations for their inclusion

in the model (Section A outlines several other advantages of using thresholds).

The rate of drift is taken to be proportional to the length of the timestep, h, the

magnitude of the imbalance |σ(n)| and a constant Ci ≥ 0 quantifying the herd-

ing effect for that agent. Note that herding is a positive-feedback effect — as σ

moves away from 0 it, at least initially, provides a mechanism for the imbalance to

increase. It also causes (global) coupling between agents’ strategies that violates

the very strong conditions necessary for the rigorous application of averaging-type

simplifications. This completes the description of the model.

A Justifications for moving thresholds

As mentioned above, once the equilibrium model (5) has been embedded within

a more general non-equilibrium one, (6) or (7), there are various ways to specify

the switching rules of the slow agents. Treating each slow agent as a dynamic

interval (Li,Ui) on the price line (that must at all times contain the current log-

price) is certainly unusual and at first may seem rather unnatural. However using

such pairs of price thresholds offers some compelling advantages.
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Firstly there is the observation that many agents react to price changes over

long periods or to previously specified price targets rather than to incoming infor-

mation. Indeed investment advice and analysis is usually offered in the form of

price triggers, as are the outputs of computerized trading algorithms. Sometimes,

such as in a margin call, the agent has no choice over the pricing point.

A second important issue is that of transaction (or sunk) costs. These are

often neglected via simplifying assumptions16 but they profoundly change the

nature of agents’ behavior. Even if one believes that agents are continuously max-

imizing their utility functions, this process must somehow be translated into an

acceptably infrequent transaction rate since a continuous process of incremental

adjustments would be ruinous. Provided that threshold switchings result in new

threshold values that are a non-zero distance away from the current price, then

moving price thresholds automatically convert continuous strategy updating into

discrete trades/actions. The existence of sunk costs is closely linked to issues of

hysteresis, memory-dependence and irreversibility that will be discussed further

in Section V.

We now turn to behavioral economics. It has already been shown how the

propensity for herding can be included by moving thresholds inwards for agents

in the minority position. However other effects such as anchoring, loss-aversion

[Benartzi and Thaler 1995] and the decision-making processes outlined in Prospect

Theory [Kahneman and Tversky 1974] can also be replicated. Anchoring is al-

most automatic as thresholds are reset around the last trading price while loss

aversion requires slightly more complicated rules that involve keeping track of an

agent’s profit or losses. An extreme, but unfortunately quite common, example

helps demonstrate the idea.

Imagine an individual who buys a dot-com stock at the height of a tech bubble.

16It is amusing to note that many people who rely on such models are actually paid from transac-

tion costs. And all-too-often the possibility of significant transaction fees can skew the information

and research entering the market.
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Immediately the price goes down but, due to loss aversion which is the emotional

difficulty of acting to realize a loss, the lower threshold moves down even faster.

It is likely that the upper threshold is moving downwards too but there is never

enough of a temporary bounce in the stock price to cause a switch which would

cut their losses. Eventually the stock price hits zero without the agent ever selling.

A significant body of work (see [Kahneman and Tversky 1979, Rubinstein

1998, Gigerenzer 2002, Barberis and Thaler 2003, Earl, Peng and Potts 2007])

has formulated plausible heuristics that agents may be using in practice. It should

be possible to recreate many of these rules using moving thresholds17 and then

observe the effects upon aggregate statistics — just as is done in the following

Section for the herding phenomenon.

III Preliminary Numerics

In this Section we provide enough details for replication of the numerical results,

including parameter values and the reasoning behind the choices made, and suffi-

cient simulations to reveal the nature of the non-equilibrium solution. The stability

of the equilibrium solution will then be investigated in Section IV. It must be em-

phasized that no fine-tuning of parameters is required. Indeed the most significant

parameters can be simply estimated and we do so conservatively and as simply as

possible.

Firstly, we choose a timestep h defined in units such that the variance of the

external information stream B(t) is unity for h = 1. This timestep should be small

enough by at least an order of magnitude to catch all the switchings of the slow

agents. An observed standard deviation in price returns of 0.6–0.7% suggests that

h = 0.000004 should correspond to approximately 1/10 of a trading day. The

price changes of 10 consecutive timesteps are then summed to give the daily price

17Furthermore, these rules can be superposed so that an agent can be a mix of rational, behav-

ioral, and even technical trading tendencies.
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returns.

The most important single parameter is κ since this quantifies the effect of

slow agents upon the price in (7). We set κ = 0.2 since this implies that the

difference in price between neutral (σ = 0) and polarized markets σ = ±1 is,

from (7), exp(0.2) ≈ 22%. This value may seem to be on the low side since it

caps the size of any bubble or anti-bubble at just 22% from the fundamental price

and many (anti-)bubbles are far larger. However there is an important feature of

real-world bubbles that we are neglecting — new agents may enter the market

and fuel the bubble, especially if they are speculating or momentum-trading. This

effect will temporarily increase κ until the price correction occurs. We choose to

ignore this important effect for two reasons. Firstly, it only comes into play once

the equilibrium solution has already lost stability. Secondly, it acts as a further

source of positive-feedback away from the equilibrium and so its omission does

not undermine the central findings of this paper.

We next assume that all slow agents have equal weight wi = 1. This could be

replaced by a more realistic distribution, such as a Pareto distribution, but it does

not significantly affect our numerical results and so we shall not do so here. We

can also justify the choice of equal weights as follows. It is not necessary to as-

sume that each slow agent corresponds to just one individual or institution — they

could each refer to a subset of agents with very similar strategies or propensities

in which case they may indeed be of approximately equal influence in the market.

This brings us to the important question of how many slow agents there should

be. There exists a continuum limit as M → ∞ and numerically we observe that

even M = 1000 agents is sufficiently close to the continuum limit for our purposes.

All the simulations below will use M = 100000.

Next we fix how the slow agents’ thresholds are reset after a switching. If

agent i switches at a log-price r∗ then immediately afterwards the interval is reset

to

(Li,Ui) = (r∗−ZL,r∗+ZU)
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where ZL,ZU are chosen from the uniform distribution on the interval [0.05,0.25].

This corresponds to an initial strategy that requires price changes in the range

≈5–25% before another switching (remembering of course that the threshold dy-

namics are altering the strategy as the system evolves).

For simplicity we shall suppose that all the slow agents have the same herding

propensity, i.e. Ci =C, ∀i = 1, . . .M although the numerical results are once again

essentially unchanged if one chooses a distribution of values centred around C.

The above distribution of the thresholds after resetting allows us to estimate C by

supposing that in a moderately polarized market with |σ| = 0.5 a typical minor-

ity agent (outnumbered 3–1) would switch due to herding pressure after approxi-

mately 80 trading days (or 3 months, a typical reporting period for investment per-

formance). From (9) the calculation 80C|σ| = | ln(1− 0.05+0.25
2 )|/0.00004 gives

C ≈ 100. This single number C represents the herding level in the market. Recall

that if C is set to 0 then we have no coupling between the agents and we will obtain

the equilibrium solution.

The parameters δi represent the ‘volatility’ of each agent’s independent strat-

egy (or expectations) and we once again for simplicity assume they are all equal.

Note that if δi = 1 then the volatility of the thresholds is the same as the volatility

in price due to the information
√

hη entering the system in (7). This is almost

certainly too large since the slow agents are not the ones motivated primarily by

new information and should alter their expectations more slowly. Thus we set

δi = 0.2 ∀i. Even if we chose all the δi = 0 the simulations would not be much

affected and so these parameters are not especially relevant here — the coupling

between agents caused by the inward drift of the thresholds is far more significant

than their random (averagable) jitter.

We now consider the fast agents. The function f (•) was introduced in (7) to

weaken the assumption that the fast agents always accurately translate new infor-

mation into price changes18.We shall suppose that at times of non-neutral market

18This is a simple but plausible mechanism for the generation of volatility clustering.
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sentiment, and especially when σ is far from 0, there is excess activity by fast

agents. This may be due to new agents entering the market or by too much signifi-

cance being attached to new information by traders expecting a market correction.

There is some evidence for this (see [Brown 1999]) and it also helps correct for the

fact that in our simple-as-possible model no new agents are allowed and the slow

agents are not allowed to own multiple units of stock. As in previous work on this

model the simplistic but plausible choice f (•) = 1+α|σ| is made with α > 0. We

choose α = 1 so that at the most extreme mispricings, new information moves the

market twice as much as it would if the fast agents were correctly incorporating it.

As shown in the next Section, the presence of the function f (•) has a negligible

effect upon our stability results which suggests that ignoring new agents and/or

allowing agents to buy multiple units of stock is indeed a valid approximation for

stability purposes.
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Figure II: Asset price of a simulation over 40 years with 100000 agents. Note that

the price p(t) is plotted, not the log-price r(t).

Figure V shows a simulation over a (hypothetical) 40 year period with the

above parameters. The initial states of the agents and their thresholds are random-
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Figure III: A plot of σ against time for the simulation in Figure V.

ized. The thicker, more volatile, curve is the pricing output of (7) while the lighter

curve is the output of the geometric Brownian pricing model (that, recall, can be

recovered by either setting κ = 0 or C = 0). A typical characteristic is that mis-

pricings develop slowly and then suddenly reverse and often end up overshooting.

This can also seen in Figure III which plots σ against time.

The incremental mispricing is caused by the endogenous dynamics of the slow

agents under the action of herding effects. The sudden reversals occur when

enough majority agents switch position to start a cascade process (or avalanche)

— as agents switch they cause a change in price (due to the κ∆σ term in (7)) that

trips other agents’ thresholds and so on. These cascades are highly unpredictable,

both in their timing and magnitude, since they are very sensitive to the precise

distribution of threshold values and the exogenous information stream. In particu-

lar there can be many smaller cascades (false tops or bottoms) before the one that

definitively corrects the mispricing. This simple version version of the model is

symmetric with respect to rising and falling sentiment/prices. In practice there are

some important asymmetries [Lamba and Seaman 2008b] but the model contains
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Figure IV: Daily price returns for Figure .

enough flexibility in the vast range of possible threshold dynamics to incorporate

these differences.

Figure IV shows the daily percentage price returns and for comparison the

price changes from the equilibrium model are shown in Figure V. There are

clearly a significant number of large price changes that cannot be explained by the

Gaussian information stream — the equilibrium pricing model only has a handful

of days over the 40 year period where the daily price change exceeds±2%. These

outlier price changes of course correspond to the endogenous cascades.19.

Finally a snapshot of the internal structure of the market is shown in Figure VI.

The density (histograms) of the lower and upper thresholds of each type of agent

(−1 and +1) are plotted relative to the current price (so that for each agent one

threshold is negative and the other positive) at a moment when σ ≈ 0 (the mis-

match between the densities is even more severe when |σ| ≈ 1). The two density

19The frequency and magnitude of these cascades is an important issue but it does not concern us

here since they only occur after the equilibrium solution has already been lost. Interestingly there

is a very close correspondence between the dynamics of these cascades and Queueing Theory that

is described in detail in [Lamba 2010].
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Figure V: Daily price returns of the equilibrium price from Figure .

plots are not identical (as they must be in the equilibrium solution) meaning that

as the system evolves σ will once again move away from 0 because different num-

bers of agents will be switching in either direction.

Figure VI helps illustrate a fundamental fact about the full model — once the

equilibrium solution is lost it will almost certainly never be recovered [Robinson

1962]. The sentiment σ will occasionally pass through 0 but this is correct pricing

only in the sense that a stopped clock is correct twice a day.

In the Appendix we show how the full complexity of the model dynamics

can be visualized in a different way. Instead of each agent being described by

a state (+1 or −1) and two threshold values, we can represent them by a dot

or a cross in two dimensions. Thus each agent is a signed particle moving in

a two dimensional region and switches sign and jumps into the interior when-

ever it hits a boundary. Full details are given in the Appendix and the inter-

ested reader can explore the behavior of the model and vary the parameters at

http://math.gmu.edu/∼harbir/market.html .
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Figure VI: The density of the thresholds along the price axis for agents in each of

the two states. The difference between the two distributions is a ‘memory effect’

of the prior behavior of the system and affects the future evolution.

IV Stability simulations

Recall that if all the Ci are set to C = 0 (ie. the agents are uncoupled) then the

equilibrium solution is recovered. We now address the central question of this

paper which is to try and quantify how the level of disequilibrium depends upon

the strength of the coupling between agents.

We quantify the level of disequilibrium in the system by recording the max-

imum value of |σ| and averaging over 20 runs each for fixed values of C in the

range 0 ≤ C ≤ 40. All the other parameters and the initial conditions are kept

unchanged from those used to generate Figures V–VI.

The results are shown in Figure VII. As can be seen, the equilibrium solution

can be considered a reasonable approximation only for C < 5 which is more than

an order of magnitude below our real-world estimate C = 100 from Section III.

The loss of stability, measured in terms of the maximum deviation of σ from 0, is

gradual and reaches the maximum the system will allow at around C = 40.
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Figure VII: A plot showing the degree of disequilibrium |σ|max averaged over 20

runs for varying levels of the herding parameter C.

Figure VII can be explained as follows. The drift in the threshold dynamics of

the minority agents is a destabilizing (dis-equilibrating) influence, while the diffu-

sion of the thresholds/strategies and the fact that the majority agents do of course

eventually switch out of their position are stabilizing influences. Simple first-exit-

time calculations (not presented here) to compute average switching rates in either

direction confirm that beyond C ≈ 40 the herding pressure is capable of sustain-

ing the system far from equilibrium for long periods of time.20 A mathematical

treatment of these stability issues will be presented elsewhere.

The presence of α 6= 0 in f (•) which modifies the influence of the fast agents

might be responsible for the loss of equilibrium stability. This is ruled out by

Figure VIII which shows that the results with α = 0 are very similar. Thus it is the

lack of independence between agents’ behaviors caused by the herding term that

is responsible for the loss of stability of the equilibrium Brownian solution.

Finally, we consider the parameters δi that govern the diffusion of slow agent

thresholds. In Section III it was argued that this would likely be much lower

20The existence of such competing forces is a common source of interesting dynamics in com-

plex nonlinear systems.
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Figure VIII: The same plot as Figure VII but with α = 0 so that the fast agents are

perfectly translating new information into price changes.

than the price volatility and so was set to δi = 0.2 ∀i. Figure IX sets δi = 1 ∀i
so that their magnitudes are now comparable. A larger variance in the agents’

(independent) changes in strategy should help mitigate the effects of herding and

this is confirmed, although at C = 100 the system is still capable of reaching full

disequilibrium σ≈±1.

V Connections to economic concepts and other non-

equilibrium models

A Equilibria, memory and history-dependence

The notion of equilibrium described in the introduction is a strong one, precluding

the possibility of multiple internal configurations. Nonetheless the absence of

(non-trivial) endogenous dynamics is a prerequisite for models that are reversible

and history-independent with temporary exogenous shocks having no permanent

effect.

A key issue is one of memory at the micro-level. If individual agents have no
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Figure IX: The threshold dynamics are made more volatile by increasing δ to 1.

memory then it becomes much more reasonable to assume that they will near-

instantaneously reverse their actions and expectations when the external influence

is removed. This type of assumption is crucial in justifying the quasi-equilibria

of statistical physics. However economic actors are subject to many effects that

cannot reasonably be modelled in this way.

Perhaps the most significant of the rational factors is the presence of trans-

action (sunk) costs (see [Dixit 1992, Piscitelli, Grinfeld, Lamba and Cross 1999,

Göcke 2002]). These are expenses or other penalties incurred that cannot be re-

couped on reversing the action. As an example suppose that at the current widget

price it is not profitable for a manufacturer to have a factory produce the widget.

However when the price increases to β (perhaps due to a demand shock) the firm

switches a factory over to widget production from something else, incurring costs

such as re-tooling and factory down-time. If the price then falls back below β the

factory will not immediately switch out of production but rather waits until the

price falls below some value α. Thus if one only looks at the current price p and

α < p < β it is not possible to know what the factory is producing — one also

needs to know which of the threshold values α and β was last crossed. In other

words a memory dependence/persistence effect has been introduced.
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This type of memory dependence is referred to as hysteresis21 and the reader

is directed to [Cross, Grinfeld and Lamba 2009] for a fuller description of the

role of hysteresis in economics. The presence of many such factories, all with

differing threshold values, results in many possible alternative internal configu-

rations for the same price level. Each of these possibilities results in a different

future evolution of the system which now displays both irreversibility and history-

dependence22.

At an abstract level, the thresholds used to describe the slow agents in Sec-

tion II are a mechanism for introducing memory/history into the modeling pro-

cess (the fast agents, by assumption, only react to new information and have no

such mechanism). To see this, an agent who has been in the minority state for

a long time and has been influenced by a herding pressure, will on average have

thresholds that are much closer together and so be more likely to switch in the

near future. This information is propagated from one timestep to the next along

with the agent’s current state.23

It is now time to revisit the concept of equilibrium, allowing for the possibility

of multiple endogenous configurations and endogenous effects that involve long

timescales. Some people might say that the market model simulations from Sec-

tion III are still in an equilibrium until just before a sharp reversal. But this is

like saying that a geological fault-line is in equilibrium until just before an earth-

quake. This is true, in that there is a balance of both external and internal forces,

but the statement that the fault-line is in equilibrium just after the earthquake is

21In economics the term ‘hysteresis’ also refers to the persistence of deviations due to shocks at

the macro-level.
22When such effects are observed in macroeconomics a common equilibrium-based explanation

is the presence of a unit-root since, if a system is only marginally stable it will take a long time to

return to its former state after a disturbance. However marginal stability implies that a system is

close to instability and this should be far more worrying to economists than irreversibility!
23As noted in the Introduction the incremental nature of such deviations from rationality are

especially problematic for equilibrium models that have no endogenous timescales.
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then equally true! The ‘before’ and the ‘after’ can be mimicked deceptively well

by unique equilibrium models, but not the transition!24 Again, the issue can be

reinterpreted in terms of timescales. Any earthquake zone looks like it is in a

stable equilibrium on all those days when there are no earthquakes. Indeed any

dynamical process will look like an equilibrium if it is studied over timescales that

are inappropriately short.

It is a widespread misconception that balancing forces, such as aggregate sup-

ply and demand, must result in a unique equilibrium. As noted in the Introduc-

tion, much of mainstream economics is based upon analogies with Newtonian

physics and classical mechanics but it is only in the simplest physical systems

that a ‘balance of forces’ necessarily produces a unique equilibrium. If the sys-

tem has an internal structure then multiple internal configurations may be feasible

for the same set of external conditions. The internal state that is chosen will be

history-dependent and the system may shift very rapidly from one internal state

to a different one (with lower energy in the case of an earthquake). It should be

noted that multiple equilibrium models do exist in mainstream economics with the

initial conditions determining which equilibrium is achieved. However the situa-

tion now is far worse — the set of feasible configurations cannot be enumerated

in advance and depends on the path taken by the process.

B Rational expectations and efficient markets

The consequences of the mainstream acceptance of the hypothesis of memory-

free, efficient, markets cannot be overstated. Although the concepts were intro-

duced by Bachelier in his 1900 Ph.D. thesis, this work was largely forgotten until

the 1960s when they became known collectively as the Efficient Market Hypoth-

esis (EMH) (see [Fama 1965, Samuelson 1965, Fama 1970]).

The three versions of the EMH (weak, semi-strong and strong) all rely upon

24The reader is directed to the quote at the start of the Introduction a second time.
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two qualitatively different classes of assumption. Firstly, there are assumptions

about the infrastructure of the market itself and the processing/dissemination of

information. This information consists of, amongst other things, economic statis-

tics, performance reports, geopolitical events, insider information and analysts

projections.

The second class of assumptions relates to the market participants themselves,

who are deemed to be perfectly rational, correctly incentivized, and capable of

instantaneously incorporating new data into their differing strategies and expec-

tations. However, heterogeneity of agents (or their expectations) is necessary to

ensure that trading occurs in the absence of arbitrage opportunities.25 Thus the

final ingredient in the EMH description is the Rational Expectations Hypothe-

sis (REH) (see [Muth 1961]) stating that the differing expectations driving trades,

when used as predictions, are on average correct26 and do not result in market mis-

pricing. Additional assumptions, such as the absence of transaction costs, yield

the standard formulae used for risk management and derivative pricing which form

the bedrock of modern financial engineering ([Black and Scholes 1973]). It is this

second class of assumptions that have been the focus of this paper.

As described in Section II, if one sets f (•) ≡ 1 in (7), Ci = 0 ∀i, and further

assumes that all threshold dynamics for the slow agents are the result of perfectly

rational, independent, utility maximizing behavior (satisfying the REH) then one

recovers an equilibrium market following geometric Brownian motion and satis-

fying the EMH. Once one weakens these assumptions to allow for more general

dynamics (and motivations), the moving threshold model can be thought of as a

‘perturbation space’ within which one can explore the robustness/stability of the

default EMH model.
25It is the differences between agents’ needs, wants, surpluses and deficits that drive almost all

economic activity. However the first necessary step in most equilibrium models is to average away

these very differences.
26As opposed to being consistent with the modeling assumptions which is the form of the REH

most often used in macroeconomic modeling.
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Even if agents are not perfectly rational and other factors influence the thresh-

old dynamics, the pricing should remain correct provided that the REH still holds.

However the presence of just one REH-violating perturbation invalidates its use.

As was shown in the numerical simulations of Sections III and IV, real-world ef-

fects that induce herding do exactly that, giving rise to price dynamics that differ

greatly over long time periods from the equilibrium model by introducing a form

of coupling between agents’ actions.

Even markets in which bounded rationality exists can be ‘efficient’ in the sense

that investors cannot earn above-average returns without taking on above-average

risk. Indeed, this is a minimal requirement for any predictive market model (see

[Malkiel 2003]). In [Cross et al. 2007] it was shown that there is no statis-

tically significant difference between the the investment performance of agents

with differing herding propensities Ci (and hence nothing to be gained by adap-

tively changing their reaction to herding). Furthermore, when transaction costs

are taken into account the traders with the highest values of Ci, who tended to

trade more frequently, performed the worst, in agreement with previous studies

([Odean 1999]).

One potential criticism of the model is that the fast agents are assumed to be

reacting to new information and converting it into price changes. However there

may also exist true fundamental fast agents who are aware of the mispricing and

view this as a trading opportunity. This would act as an additional equilibrating

(negative-feedback) mechanism. This brings us to the very important issue of the

limits of arbitrage, both in the model and in real markets.

Firstly, as regards the model, σ is assumed to be precisely known by all the

slow agents. This is purely for simplicity and agents may have widely-differing

perceived values that are only approximately (or on average) correct. Also, it

is important to note that no agents are assumed to know the ‘correct’ geometric

Brownian motion price. It is calculated and plotted in Section III but this is only

a visual aid — none of the agents are aware of it. As it stands the model is a
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caricature, albeit one that can be made arbitrarily more complicated and realistic.

As this complexity grows, any potential model-specific opportunities for arbitrage

that might exist will reduce and so now we discuss the limits to arbitrage in real

markets.

Arbitrageurs and/or fundamentalist investors have the potential to counteract

herding effects. However there are severe limitations in practice. Firstly there is

the noise-trader problem (see [Schleifer 2000] and [Shleifer and Vishny 1997])

— arbitrageurs typically have very short time-horizons but mispricings can last a

very long time. Secondly there are speculative traders and short term momentum-

traders who may actually make the mispricing worse. Thirdly, it is extremely

difficult in practice to be sure what the fundamental price actually is. There is no

visible, unambiguous, information stream and all trends may be misinterpreted as

rational — especially by those who subscribe to the EMH. Some evidence for this

may be found in the wide variations over time of even the most basic measures of

value such as the P/E ratio of a stock or price moves versus changes in dividends

[Shiller 1981].

The possibility that positive feedback effects such as herding can be counter-

acted by fundamental valuations should not be dismissed. Indeed many potential

bubbles may get deflated before positive feedback effects take hold. However the

results of Section IV strongly suggest that the battle between equilibrating and

dis-equilibrating forces is far less one-sided than is commonly assumed.

VI Implications and Concluding Remarks

The numerical results of Section IV demonstrate that a hypothetical, but recog-

nizably orthodox, equilibrium pricing model becomes unstable and is replaced

by more complex and far richer non-equilibrium dynamics when non-maximizing

behavior is introduced into a subset of the agents. This appears to contradict

the findings of [Akerlof and Yellen 1985, Scharfstein and Stein 1990] but as was
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pointed out in the Introduction there is a logical inconsistency in those analyses

that can be corrected by using a fully bottom-up agent-based model.

An important aspect of the scientific method is that a model/theory can be

overturned by contradictory experiments alone — no explanation or replacement

is required. The model in this paper is not being offered as an alternative for asset

pricing (although it could indeed be used that way). Rather, it should be viewed

as an experiment that tests the degree to which the stability of the equilibrium

solution can survive changes to the modelling assumptions.

This does not by itself prove that such far-from-equilibrium dynamics occurs

in any actual market, but there are three key observations that suggest this is in-

deed the case. Firstly, the price statistics are much closer to the stylized facts of

financial markets than those of the equilibrium solution. Of particular importance

is the ‘fat-tailed’ frequency of extreme price changes that are caused by sudden

shifts in the internal state of the system. Secondly, the model has a very small

number of easily-estimated parameters and the equilibrium solution loses stability

over a very large region of the parameter space that includes simple but conserva-

tive estimates of the parameters. Thirdly, while the model itself is quantitative and

new it shares important features with more qualitative, but long-standing, critiques

of equilibrium assumptions ([Robinson 1974, Minsky 1992] as well as numerous

others before and after).

The profound differences between equilibrium and far-from-equilibrium solu-

tions have equally profound consequences for their analysis that we now summa-

rize:

• Timescales Any dynamical process will look like it can reasonably be ap-

proximated by an equilibrium model if it is studied over timescales that are

too short. For systems that really are always close to equilibrium there is no

internal timescale and no memory and so a ‘snapshot’ approach is justified

— the last few sets of data points may well be enough to accurately describe

the state of the system. However this is not true for far-from-equilibrium
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systems. In addition to the timescale introduced by barriers to equilibrium

there will also be longer timescales present that are an emergent property

determined by the competition between equilibrating and dis-equilibrating

forces. For example, in the market model presented here the herding influ-

ence is assumed to act over a timescale of weeks or months for any given

agent yet the model produces incremental mispricings that can persist for

several years before suddenly reversing. A similar effect may well be occur-

ring in the multi-year ‘Business Cycles’ and fluctuations in ‘Animal Spirits’.

• Unpredictability All economic systems have a vast number of intrinsically

unknowable variables in terms of the knowledge, propensities, bounded ra-

tionality, expectations and constraints of the agents within them. When

these do not average away they necessarily add a great deal of potential

complexity and uncertainty to the future evolution of the system that is gen-

erated by the system itself. 27 This is especially relevant to the problem of

estimating the probability of extreme events in a highly-leveraged financial

system or debt-fueled economy.

• Model Recalibration Using new data to update or recalibrate a model is an

obvious thing to do in any quantitative field and often works extremely well.

However if the model being used is not an accurate enough representation

of reality then it may cause enormous difficulties. As noted above, the far-

from-equilibrium solutions involve long timescales. Over this time a re-

calibrated equilibrium model may be changed significantly while appearing

to do an acceptably good job over much shorter timescales and thus giving

the user a completely unjustified sense of confidence in its predictions. 28 In

27Furthermore, even very simple dynamical systems, evolving deterministically without any

external influences, have been proved to be inherently unpredictable (see for example [Hirsch,

Smale and Devaney 2004]). Yet, even in the absence of explicit solutions it is still often possible

to quantify both the probabilities of events and the theoretical time limit on meaningful predictions.
28The equilibrium models will look like they are working until suddenly they don’t. The quote
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macroeconomics the problem is magnified because the model output may

be used to direct monetary policy and so feed back into the system itself.

The mathematical description of the model lies within a new class of stochas-

tic partial differential equations (see the Appendix) for which closed-form analytic

solutions almost certainly do not exist and this may be troubling to many. How-

ever, closed-form solutions are the exception rather than the rule in mathematics

and the value of approximate numerical solutions in every other quantitative dis-

cipline is beyond dispute.29

Equilibrium models in economics have been so resistant to their critics be-

cause they are mathematically expedient and most of the time tomorrow really

does turn out to be a lot like yesterday! All the day-to-day seemingly minor devia-

tions of actual economic activity from economic theory, unforeseen but enormous

economic and financial disasters, and the findings of behavioral economics have

not yet coalesced into a single, coherent, organized alternative.

For the field of behavioral economics there is an additional obstacle. It has

largely failed to impact orthodox modeling because in an averaged model there is

nowhere left to incorporate the rules and heuristics that have been uncovered. But

in a non-averaged model these findings are exactly what is needed to define plau-

sible rules for the endogenous dynamics. The moving threshold model presented

here can be used as a ‘laboratory’ in which the interactions between various forms

of bounded rationality and utility-maximizing can be systematically explored. In

fact, because the threshold approach is so flexible it should possible to generate

an entire ecosystem of agents with as much complexity as desired — although

complexity often comes at the expense of clearly delineated assumptions or con-

clusions.30

at the start of the paper is referred to one last time.
29For example, the circumference of an ellipse has no closed-form expression but satellites and

planets are always going to move in ellipses.
30The use of thresholds to specify agent dynamics is a very natural choice but is not required.

Other types of rules and their corresponding perturbations may yield additional insights.
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The framework has also been used to investigate the effects of technical traders

and chartists within a financial market since the most widely-used strategies are

very easy to recreate using thresholds (especially those involving resistance/support

levels). Intuitively, if significant numbers of agents are all reacting in a similar way

to certain patterns in the price then the effects may be comparable to those induced

by herding in this study. In [Krejčı́, Melnik, Lamba and Rachinskii 2013] this was

indeed shown to be the case. The model was exactly the same as used here except

that the herding effect was removed and instead the slow agents were given real-

istic draw-up/draw-down technical trading strategies. Once again the equilibrium

solution was replaced by far-from-equilibrium boom-bust dynamics and in this

particular case it was also possible to rigorously derive the fat-tailed distribution

of price returns and other relevant statistics.31 Furthermore it was proved that the

system has a critical point (see [Sornette 2009] for example) which in this context

is a critical proportion of agents using such strategies. Once this critical value is

exceeded then a system-wide crash becomes inevitable.

The results of both the herding model and the technical trading version help il-

lustrate a more general point. Averaged models in economics as well as their SDE

counterparts in finance assume, via equilibration asumptions, that arriving exoge-

nous information will pass through the endogenous ‘filter’ essentially unchanged.

However this filter possesses various forms of hysteresis, stickiness, memory ef-

fects, contagion processes, bounded rationality, perverse incentives, limits to ar-

bitrage, and lack of independence between agents that can cause very long-lasting

distortions. We have demonstrated that boom-bust dynamics is one possibility that

arises naturally and robustly without requiring any exogenous cause. However,

31There is no clear consensus as to whether technical trading actually produces excess profits

[Brock, Lakonishok and LeBaron 1992, Chan, Jegadeesh and Lakonishok 1996, Malkiel 2003]

but if some strategies do indeed work then another interesting question is why? It may be caused

by the presence of one or more systemic deviations from full rationality or it may in fact be a self-

fulfilling prophesy caused by sufficient numbers of technical traders using that rule themselves.

Questions such as this can also be investigated.
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other kinds of endogenous dynamics may occur in different economic situations.

A systematic exploration of all the possibilities would be invaluable in helping

to determine which deviations from equilibrium theory actually might require an

exogenous explanation.

To this end, it is worth restating more abstractly the process leading from (5)

to the non-equilibrium model. This started with the embedding of an equilibrium

model that implicitly relies upon averaging and/or a representative agent into a

larger framework that explicitly allows for the possibility of endogenous dynam-

ics. Crucially, if the rules governing the endogenous agent dynamics were uncor-

related and independent then the aggregate behavior of the system was unchanged.

Then less restrictive and more realistic micro-founded rules were introduced to de-

scribe the effect under investigation and these were treated as perturbations to the

equilibrium model.

It should be possible to carry out such a program on many other equilibrium

models. Preliminary results from a (very simple) rational expectations DSGE

model suggested endogenous multi-year fluctuations (analogous to those seen in

Figure III) that now correspond to changes in ‘Animal Spirits’ and Business Cy-

cles.

Department of Mathematical Sciences, George Mason University, MS 3F2,
4400 University Drive, Fairfax, VA 22030 USA. E-mail: hlamba@gmu.edu

VII Appendix: The model as a stochastic particle

system with switching and re-injection

In the original model setup the state of each slow agent is defined by a pair of

numbers (an interval) on the real line. An equivalent formulation is to treat each

agent’s state as being a single point in the real plane where the position of the

ith agent is (xi,yi) =
(

Ui+Li
2 − rt ,

Ui−Li
2

)
— the x-coordinate is the distance of r(t)
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from the center of that agent’s interval while the y-coordinate is the semi-width of

the interval.

The slow agents/particles move within the set D⊂R2, D = {(x,y) :−y < x <

y, y > 0} (see Figure X). The M signed particles (with states +1 or −1) move

within D subject to three different motions. Firstly there is a stochastic bulk forc-

ing the x-direction that acts upon every particle and consists of the exogenous

Brownian forcing Bt and the change in κ∆σ. Secondly, each particle has its own

independent two-dimensional diffusion process. Thirdly, for agents in the minor-

ity state only, there is a downward (negative y-direction) drift that is proportional

to the imbalance. Note that the particles do not interact locally or collide with one

another.

When a particle hits the boundary ∂D it is re-injected into D with the opposite

sign according to some predefined probability measure. Finally, when a particle

does switch the position of the other particles is kicked in the x-direction by a

(small) amount ±2κwi
W where the kick is positive if the switching particle goes

from the −1 state to +1 and negative if the switch is in the opposite direction.

In other words, the bulk stochastic motion is due to exogenous noise changing

the price; the individual diffusions are caused by strategy-shifting of the slow

agents; the downward drift of minority agents is due to herding effects; the re-

injection and switching are the agents changing investment position; and the kicks

that occur at switches are due to the change in sentiment affecting the asset price

via the linear supply/demand-price assumption.

This particle system provides an interesting physical analog for the model and

perhaps for economic systems in general. The boom-and-bust nature of the non-

equilibrium dynamics described in this paper can be observed dynamically via a

browser-based interactive simulation at

http://math.gmu.edu/∼harbir/market.html.

One does not need to assume that all the slow agents are of equal size, have

equal strategy-diffusion, and equal herding propensities. But if one does set wi =
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Figure X: All the M signed particles are subject to a horizontal stochastic forcing

and they also diffuse independently. Minority particles also drift downwards at

a rate proportional to the imbalance. When a particle hits the boundary it is re-

injected with the opposite sign and a kick is added to the bulk forcing that can

trigger a cascade (see text).

1, δi = δ and Ci = C ∀i then, in the continuum limit M → ∞ the system can be

defined as a pair of evolving stochastically-forced density functions with coupled

source terms and boundary conditions.
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