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Abstract

We continue an investigation into a class of agent-based market models that are

motivated by a psychologically-plausible form of bounded rationality. Some of the

agents in an otherwise efficient hypothetical market are endowed with differing tol-

erances to the tension caused by being in the minority. This herding tendency may

be due to purely psychological effects, momentum-trading strategies, or the rational

response to perverse marketplace incentives.

The resulting model has the important properties of being both very simple

and insensitive to its small number of fundamental parameters. While it is most

certainly a caricature market, with only boundedly rational traders and the globally

available information stream being modeled directly, other market participants and

effects are indirectly replicated. We show that all of the most important ‘stylized

facts’ of real market statistics are reproduced by this model.

Another useful aspect of the model is that, for certain parameter values, it

reduces to a standard efficient-market system. This allows us to isolate and observe

the effects of particular kinds of non-rationality. To this end, we consider the effects

of different asymmetries in agent behaviour and show that one in particular leads

to skew statistics consistent with those seen in some real financial markets.

1 Introduction

The standard models of mathematical finance have provided a rigorous intellectual frame-

work within which to analyze and quantify one of the most complex aspects of modern

society. The key assumptions underlying much of this work are collectively known as the
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Efficient Market Hypothesis (EMH)[15, 16] and they have enormous influence in both

economic theory and the day-to-day operations of financial markets.

However, in recent years two things have become apparent. Firstly, work by exper-

imental economists and psychologists has shown that human beings often behave irra-

tionally even in very simple economic games — in direct conflict with the EMH. This

phenomenon is not confined to ‘unsophisticated’ people and it is not random — there

would appear to be fundamental psychological pressures that result in statistically pre-

dictable and experimentally reproducible deviations from rationality. Secondly, numerous

analyses of data from financial markets show some agreement with EMH predictions (such

as uncorrelated price returns except over the very shortest time-scales) but also significant,

and surprisingly consistent, anomalies such as non-Gaussian log-price returns3. These core

observations have become known as the stylized facts of real markets and appear to be

largely independent of geography, trading systems, culture and so on [9]. They also do

not appear to have diminished significantly over time even though, with the advent of

computerized trading and vastly superior information flow/processing speeds, one might

feel that potential violations of the EMH ought be much reduced from earlier decades or

centuries.

A key element of the EMH, over and above the existence of heterogeneous rational

agents who are capable of maximising their individual utility functions, is the concept of

rational expectations. This states that although the agents will have differing predictive

models and future expectations, their average behaviour is correct and therefore so are

the price changes caused by the arrival of new globally available information. One likely

explanation for the existence of the stylized facts is the breakdown of the rational ex-

pectations assumption due to significant coupling developing, albeit temporarily, between

agents as the market evolves in time. In order to investigate such possibilities various

heterogeneous agent models (HAMs), requiring direct simulation of the agents rather

than just the calculation of averaged properties, have been developed (see for instance

[10, 17, 20, 21, 27, 31, 33, 39, 40, 55]).

In this paper we study a particularly simple class of such models, previously introduced

3It should be noted that non-Gaussian price returns are not logically inconsistent with efficient,

memory-free markets, since the possibility of infinite variances in the independent price increments would

invalidate the Central Limit Theorem, but they are certainly suggestive of the possibility that efficient

pricing is not occurring.
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in [12, 50]. The original motivation for this research was to develop a methodology

whereby psychological (and irrational) effects could be systematically introduced into an

otherwise efficient market and then to compare the output of the model against the stylized

facts. This is in contrast with most extant HAMs where it is difficult, if not impossible,

to disentangle the chain of cause-and-effect between particular agent properties and the

stylized facts. Our primary mechanism for providing coupling between agents will be a

herding tendency. While an individual/organization is holding a minority opinion/position

they feel an increasing pressure to conform that eventually becomes unbearable, at which

point they will change to join the majority (unless enough of the agents with majority

positions switch first). This ‘threshold’ approach is psychologically plausible in that it

mimics the human decision-making process — a gradual accumulation of pressure and/or

new information results in a sudden action. Different agents will have different threshold

levels that are, to some extent, a reflection of their personality or trading philosophy (at

the extreme are self-confessed momentum traders).

However, the herding phenomenon is not just applicable to (amateur) individual in-

vestors and although it is tempting to describe such behaviour as ‘irrational’, or ‘bound-

edly rational’ in the sense of Simon [53], this is not a correct characterization for many

types of agent. Some would lose their job/bonus/investment capital if they significantly

underperformed the average market return for even a short time — when herding, they

are exhibiting behaviour that is no more irrational than animals herding when surrounded

by predators. The use of complex, possibly automated, trading strategies may help to

mitigate the herding pressure but it is unlikely to completely remove it. For example,

buy/sell signals from automated trading programs may unwittingly be reacting to the

herding effects of other agents.

The models that we propose are constructed in such a way that, for certain values of

the system parameters, an efficient pricing model is recovered. This is a valuable property

when it comes to investigating the effects of agent-coupling in markets. It allows us to

assume the existence of an underlying, hypothetical, efficient market whose statistical

properties are well understood. The mechanisms by which prices are set, orders are

carried out, information is propagated and so on do not need to be specified. We merely

presuppose that they are in place and constant, and then change parameter(s) to introduce

particular types of agent-coupling into the model. This will allow us to directly relate

specific agent-behaviour modifications to the emergence of stylized facts, at least within
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our modeling paradigm. It is important to note that we shall not require all agents to

be subject to the herding tendency. Many agents may either be immune or be trading

solely for reasons of pure hedging, say. We do not simulate such agents directly – instead

we assume that the rational expectations assumption still applies to them and focus the

model on those agents where significant coupling is likely to occur.

We now outline the paper. In Section 2 the complete market model is introduced.

Then in Section 3 we recall the stylized facts of market behaviour and compare these with

the output of our model. This statistical analysis is far more detailed than that of [12] and

we show that all of the important details are replicated, over a wide range of parameter

values. In Section 4 we show how the model can be used as a laboratory to investigate

the effects of boundedly rational behaviour by focusing upon observed asymmetries in

stock market returns. Since the models studied in Section 3 and in [12] are completely

symmetric with respect to rising and falling prices, we investigate various ways of breaking

this symmetry that result in similarly skewed market data. In Section 5 we offer some

concluding remarks and directions for future research.

2 The Model

The system is evolved in discrete timesteps of length h which will be chosen to correspond

to one trading day for the simulations in this paper. There are M investors, all of equal

size, who can be either long or short in the market over the nth time interval. The market

price at the end of the nth time interval is p(n). For clarity p(0) = 1 and we assume

that the expected price is drift-free so that, in reality, p(n) corresponds to, say, the price

corrected for the risk-free interest rate plus equity-risk premium or the expected rate of

return.

There are two, essentially separable, components to the model. The first is the market

pricing model which describes how p(t) depends upon both new extraneous information

and the internal market dynamics. The second is the set of rules by which each agent

determines if and when to switch positions.

We start by postulating the existence of a globally available, uncorrelated information

stream that is external to the market. This takes the form of Gaussian increments
√

hηn

with variance h that represent all new information generated and disseminated over the

4



nth time period. This allows us to define, for each time n, a fundamental or ‘correct’ price

pF (n) via a standard geometric pricing model

pF (n + 1) = pF (n) exp
(√

hηn

)

. (2.1)

Such a market pricing model (after the introduction of an Itô drift term that has been

omitted here for clarity of exposition) is in perfect agreement with the strong EMH and

leads directly to the standard theory of financial mathematics. Thus our first objective

is to modify (2.1) by introducing additional sources of information and pricing pressure

that are generated by the market itself.

Denote the position of the ith investor over the nth time interval by si(n) = ±1 (+1

long, −1 short), and the sentiment of the market by the average of the states of all of the

M investors

σ(n) =
1

M

M
∑

i=1

si(n). (2.2)

The change in market sentiment from the previous time interval is defined by ∆σ(n) =

σ(n) − σ(n − 1) and the resulting pricing pressure is incorporated into the model via

p(n + 1) = p(n) exp
(√

hηn + κ∆σ(n)
)

,

where κ, the market depth, is a parameter that defines the relative importance of market

sentiment versus new information on the asset price. This linear relationship between

price and sentiment/buy-bid pressure has been often used in the literature, although

there is evidence that the relationship is better described by a concave function [49].

Our second modification is to include a parameter that reflects the excess influence

of new information
√

hη on market prices during times of extreme sentiment (i.e. when

|σ| is close to 1). Such a relationship between market volatility and sentiment is very

natural and can be explained both by the increase in very short-term speculators (e.g.

day traders who are not directly simulated in our model) and the increased attention that

is paid to such information by all traders during highly polarized markets. This leads us

to introduce the following price update formula

p(n + 1) = p(n) exp
(√

hηn(1 + α|σ(n)|) + κ∆σ(n)
)

.

It was noted in [12] that any non-trivial causal relationship between market sentiment and

volatility will result in volatility clustering since the market sentiment typically displays
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long-time correlations. To date however there seems to have been very little, if any,

research quantifying the correlation between the two.

In order to close the model we must now specify how the states of the individual agents

are determined, i.e. how the ith agent decides when to switch. This of course is where the

individual agents’ bounded rationality enters the model and we first consider the herding

tendency caused by being in the minority. We imbue each agent with a fixed threshold

Ci > 0 which determines their tolerance to being in the minority. At time n, her herding

tendency level is denoted by ci(n). This level is incremented via ci(n+1) = ci(n)+h|σ(n)|
(i.e. increased by an amount proportional to the length of the time interval and the

severity of the inconsistency) whenever si(n)σ(n) < 0. Otherwise, the investor’s herding

level remains unchanged from one timestep to the next and ci(n + 1) = ci(n). As soon as

ci(n) exceeds Ci, the investor switches market position and ci is reset to zero.

Of course, now some mechanism is required to ensure that at least some agents even-

tually abandon the majority. This is achieved by introducing an ‘inaction’ tension — as

the current price moves further away from the one at which agent i last traded, she feels

an increasing desire to switch positions. Note that although we are introducing this effect

as a psychological tension, it does have other interpretations (see below) and indeed is

the very core of the model. Let Pi be the price at which the ith investor last switched

positions and let Hi > 0 be an inaction threshold, chosen randomly from an interval

[HL, HU]. Then, as long as the current price p(n) stays within the geometric interval

[Pi/(1 + Hi), Pi(1 + Hi)], the investor maintains her position. But if the current price

p(n) leaves this interval, the investor switches.

The model is completely defined as follows:

p(n + 1) = p(n) exp
(√

hηn(1 + α|σ(n)|) + κ∆σ(n)
)

. (2.3)

1. The herding tension level for investor i at time n, ci(n), is updated via

ci(n + 1) = ci(n) + h|σ(n)| if si(n)σ(n) < 0 (2.4)

ci(n + 1) = ci(n) otherwise. (2.5)

2. Let Pi be the price at which the ith investor last switched. If either p(n + 1) 6∈
[Pi/(1 + Hi), Pi(1 + Hi)] or ci > Ci (or both) then the long/short position of the

investor is reversed, Pi is reset to the current price, a new Hi is chosen from the

uniform distribution on [HL, HU] and ci is also reset to zero.
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The only difference between the model presented above and the final model of [12]

is that the inaction thresholds Hi are reassigned after each switching rather than being

fixed throughout the simulation. Thus many of the simplifications and assumptions that

have been implicitly made in the above model have already been discussed there. For

example, each agent may have a different value of the perceived overall sentiment, close to

but different from the true value. Details such as these can be incorporated into the model

very easily but appear to make very little difference, if any, to the qualitative statistical

behaviour of the model and its ability to replicate the stylized facts. Another important

feature of the model is that it appears to be extremely robust — no fine-tuning of the

parameters or the way in which the inaction and herding tensions are updated/interact

is required. Furthermore, most of the parameters can easily be ‘ball-parked’ and, in

principle, could be refined further via suitable statistical analyses of market behaviour

and psychological experimentation. It is to be hoped that new models, such as presented

here, will help stimulate such investigations.

At this point it is worthwhile to step back and compare the complete model with a real

financial market, especially with regard to the different jobs and roles of the people and

institutions involved. This is because the model does not attempt to directly simulate all

the market participants, merely those whose bounded rationality is most significant over

the timescales of interest. We reiterate that our modeling philosophy is to systematically

examine the effects of agent-coupling on an otherwise efficient market, not to create as

realistic a model as possible (or at least not yet).

Firstly, the information stream
√

hηn is created by companies themselves, myriad gov-

ernment departments, accounting firms, research institutions and analysts whose job is

to collect, examine or publish data on particular firms or the economy as a whole. While√
hηn cannot be observed directly (in the presence of either κ > 0, α > 0) we are assum-

ing implicitly that all this information/research is correct/unbiased and instantaneously

available to all the agents (via the financial press, for example). In recent years these

assumptions have become increasingly suspect, especially with regard to research that

has become compromised and with regard to dubious accounting practices. Nevertheless,

it is not our intention to relax those parts of the EMH here.

In the standard financial model (2.1), which corresponds to κ = 0, α = 0 in (2.3),

arbitrageurs and market makers will determine the ‘correct’ price pF (n). We suppose

that they are still present, and operating in the same manner, but do not consider them
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directly. In particular, we do not specify the particular mechanism used by the market

maker to determine the price. The stylized facts are prevalent in almost all financial

markets, independent of whether they are, for example, limit-order or market-order driven.

The M agents themselves are those herding-influenced traders whose timescale is

longer than h but shorter than the duration of the simulation. Agents with longer

timescales need not be considered (since they will not trade much, if at all); those with

shorter timescales, such as day traders, are incorporated into the term 1 + α|σ|; and

those with no herding tendency are collectively assumed to be covered by the rational

expectations assumption.

Finally, the thresholds Hi can be interpreted as modeling several different effects si-

multaneously: a predetermined price range that reflects the agent’s predictive model and

expectations; as a limit to the price changes that can be tolerated by the agent before

needing to either cut losses or take profits; or the point at which the agent, if she is in the

majority, believes that sentiment is about to switch. The first interpretation shows how

such analysts (and inductive learning) are indirectly included in the model. Of course,

in reality the quantity Hi may be a number that changes in real-time, rather than be-

ing fixed a priori at the time of the last switch in position, but simulations suggest that

this unnecessarily complicates the model. Furthermore, as noted in [12], the presence

of the inaction thresholds leads to hysteresis in the agents’ individual market responses

[11] and is capable of directly replicating other effects such as transaction costs and the

phenomenon of ‘anchoring.’ This occurs when the value placed upon an asset or estimate

by an individual is influenced by her recent exposure to other numerical quantities (in this

case, the price at which she last traded) and has been well-documented by behavioural

economists and psychologists [30, 52].

There are two interesting limits to consider with respect to the main model parameters.

Firstly, as stated above, in the limit κ → 0, α → 0, the pricing formula decouples from

the trading model, and the fundamental price pF generates Gaussian log-price statistics.

Nonzero values for κ, α provide the linkage between the pure information stream pF (n) and

the overall market sentiment σ(n). The market then becomes non-Markovian since the

current and future behaviour of agents is strongly dependent upon their trading history

and previous values of σ and the price p.

There is however a second, more illuminating, limit via which we can recover the

efficient-market price pF (n). If we let α = 0,M → ∞, Ci → ∞ then herding effects
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vanish and all trading is due to inaction thresholds being violated. Assuming that the

initial sentiments of all the participants are sufficiently mixed, σ(n) will remain arbitrarily

close to 0 for all n, implying that the price p(n) is arbitrarily close to the fundamental price

pF (n) in (2.1). Therefore, in this limit, we have created a market in which agents have

a rationale for trading (interpreting the interval [Pi/(1 + Hi), Pi(1 + Hi)] as being based

upon the ith agent’s market analysis) and which is always in a quasi-equilibrium with long

and short agents being balanced. This is philosophically very close to the hypothetical

markets of standard mathematical finance operating under the strong EMH and rational

expectations — trading occurs as a consequence of differing expected future performance

and market analysis of individual traders, yet coupling does not occur and the market

price remains correct.

3 Stylized facts and numerical simulations

For the numerical simulation we shall use the same values as in the initial investigation

[12]. There is no characteristic timescale in the model — this is introduced via the pa-

rameter h which corresponds to the variance of the information stream over one timestep.

If this is to reflect one trading day, and we suppose that the standard deviation of daily

price moves is of the order of 0.6–0.7%, then this motivates a choice of h = 0.00004. All

simulations will be for 10000 timesteps, i.e. for a 40 year period. As demonstrated in [12],

the number of agents M = 100 appears to be sufficient — unlike many other HAMs in the

literature, the dynamics are not dependent upon the size of M provided it is sufficiently

large.

Once h has been fixed, we suppose that the Ci are chosen from the uniform distribution

on [0.001, 0.004], as this leads to herd-induced switching on the timescale of weeks and

months for those agents in the minority. The price ranges for the inaction tension are

chosen randomly after every switching from the uniform distribution on the interval 10%−
30%, i.e. [HL, HU ] = [0.1, 0.3]. Day traders would of course have much smaller values

but our choice of h means that we cannot attempt to directly model changes occurring

over such short timescales. The value of the market-depth κ is, in our model, a measure

of the relative ability of extraneous information versus internal dynamics to influence the

market price. Simulations using the above parameters suggest that a value of κ = 0.2

results in dynamics that are strongly influenced by both, being correlated to pF (n) but
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differing significantly during periods of extreme market sentiment. Finally, we choose

α = 2 so that the effect of extraneous news, good or bad, is to move the market three

times as much during a completely polarized market than during a neutral one.

As mentioned earlier, this model is the same as that introduced in [12], except that the

inaction thresholds for individual agents are randomized after every switching. This allows

the model to mimic the agents’ own market analysis and research (possibly including

other effects such as inductive learning). The agents’ herding propensities, as measured

by the thresholds Ci, are kept constant throughout the simulation as we consider this to

be reflective of an agents’ personality or trading philosophy and therefore less likely to

change with time. The model is surprisingly robust with respect to both major changes

in the switching rules and the parameters. No fine-tuning was required (or attempted)

and all of the statistical and qualitative observations that follow appear to arise very

naturally from the fundamental premises upon which the model was founded. Figure 1

shows results for a typical run. Figure 1a) shows both the price p(n) (solid line) and
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Figure 1: Numerical simulation over a 40-year period. See the text for full details.

fundamental price pF (n) (dashed line). There are significant long-lasting deviations from

pF over several years, often ended by sudden and dramatic trend reversals. This is also

reflected in Figure 1b), which plots the market sentiment σ(n) versus time. Figure 1c)
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shows the daily log price returns r(n) = log( p(n)
p(n−1)

). Note that there are several days over

the simulation period during which the price change is of the order of 10%. The kurtosis

of r(n) was ≈ 37, as opposed to 3 for a Gaussian dataset (i.e. an excess kurtosis of 34),

but this quantity fluctuates to a large degree between runs, typically ranging between 10

and 100.

There is also clear visual evidence of both an excess of extreme events and volatility

clustering. This is confirmed by Figures 1d) and 1e). Figure 1d) shows the cumulative

absolute returns (i.e. the number of absolute daily price changes larger than a given

percentage). If the price returns were Gaussian then one would expect an approximate

straight line on this semilog scale. Instead there is a clear excess of days on which high

price moves (> 3%) occur. Figure 1e) shows the autocorrelations between daily returns

(the almost flat curve) and the absolute daily returns (the price volatility). Thus we

see that there is negligible autocorrelation in the price returns even with just a one-day

timelag, but that the volatility autocorrelation decays very slowly over a timescale of

months – clear evidence of volatility clustering.

The above observations form the basis for the more detailed numerical and statistical

investigations that follow. In particular, we visit each of the following ‘stylized facts’ in

turn and compare the output of our model against previous studies of real market data:

• uncorrelated price returns

• excess kurtosis in the price return data

• fat-tails in the price return data

• volatility clustering

• Hurst exponent ≈ 1
2

for price returns

• Hurst exponent 6= 1
2

for volatility

• Slow convergence to Gaussian returns over long time-scales.

Other non-Gaussian phenomena have been noted (such as the price return asymmetry

to be explored in Section 4) but the above list forms a core set of properties that a model

should be capable of reproducing.
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Uncorrelated price returns

There are two very closely related measures of price returns that are both used in the

literature, the daily log price returns r(n) defined above and the daily percentage price

change R(n) = p(n)
p(n−1)

− 1. None of the simulations showed any significant difference

between the two and, in particular, there is no evidence of correlations between either

r(n) or R(n) over periods of a day or longer. This is in agreement with the very many

studies of real market data, see for instance [1, 13, 15, 23, 45].

Excess kurtosis

Our observed kurtosis range of 10–100 is consistent with many previous statistical studies.

For instance, Longin [36] studied an index of the most traded stocks on the New York

Stock Exchange and reported that the distribution of the logarithm daily percentage had

excess kurtosis of 22. Pagan [45] reported excess kurtosis ranging from approximately two

to approximately 200 when measuring stock returns, changes in bond rates and changes

in exchange rates. Cont and Bouchard [10] reported that the distribution of returns of

almost all financial stocks exhibits excess kurtosis, which ranges between 2 and 50 for

daily returns. The high variability of this statistic is due to the fact that it is so sensitive

to the number and magnitude of the the largest fluctuations in the time-series.

Fat-tails

In order to quantify the fat-tails in the price-return data we examine the cumulative

distribution of the absolute returns |r(n)| normalized by dividing by their standard de-

viation. This is plotted on a log-log scale in Figure 2 together with two similar plots for

the positive returns and the negative returns taken separately. (The reason for displaying

negative and positive returns separately is to emphasize that the model, as it stands, is

completely symmetric with respect to price changes in either direction. Modifying this

behaviour is the subject of Section 4).

As can be seen, all three data sets are well-approximated by a power-law decay with

very similar exponents. This exponent was estimated to be in the range [2.8, 3.2] for every

simulation tested. This is in strong agreement with empirical measurements of real market

data. For instance, Gopikrishnan et al [22] studied a database of every trade for all stocks

in three major US stock markets from January 1994 through December 1995 and reported

an asymptotic power-law behavior for the cumulative distribution with an exponent of

approximately 3. Similar values were reported in [35]. In another study, Plerou et al

[48] studied the stock price fluctuations of individual companies and found that the tails
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Figure 2: The cumulative distributions of the log price returns (positive only, negative

only and absolute value) along with the line of best fit.

of the distributions could be well described by power-law decay, characterized by an

exponent 2.5 < α < 4, for time-scales from five minutes up to approximately 16 days.

Dacorogna et al [14] studied foreign exchange rate returns and found that all estimates

of the tail exponent were greater than three but less than five. See also, for example,

[23, 36, 37, 38, 43].

Finally we note that the existence of fat-tails can be directly linked to the herding

effect. For if the herding tendency is removed by setting Ci = ∞ ∀i (but keeping α

unchanged), then the fat-tails vanish.

Volatility clustering

Another extremely important stylized fact is the phenomenon of volatility clustering.

Whilst the price returns are uncorrelated over all but the very shortest time-scales, their

absolute value (the volatility) shows a slow autocorrelation decay over periods on the

order of months. Figure 3 shows this autocorrelation plotted on a log-log scale from 1—

100 days. An approximate power-law decay is consistent with many previous empirical

studies [41]. Using linear regression to estimate the decay exponents resulted in values

typically between −0.3 and −0.6 for all simulations. This range agrees well with, for

example, the value of −0.37 obtained by Cont in his recent study of S&P Index future
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Figure 3: Decay of correlation of volatility and approximation with power law.

prices [8] and the value of -0.3 reported in [35] for S&P 500 price data.

It turns out that the volatility clustering can be directly related to the presence of

α 6= 0 in the model. When α is reduced to 0, the fat-tailed price returns and kurtosis

remain but volatility correlations disappear except over time-scales of 3–5 days. This

phenomenon was previously reported in [12].

Hurst exponent for price returns

The Hurst exponent H of a time-series is closely related to the existence of autocorrelations

and the decay rate of the power-law spectrum [57]. In particular, for a pure uncorrelated

Brownian motion H = 1
2
. Data with H > 1

2
are said to demonstrate ‘persistence’ and

show positive correlation effects while H < 1
2

is referred to as ‘anti-persistence.’

We estimated the Hurst exponent of time-series generated in the simulated market

using the Detrended Fluctuation Analysis (DFA) method, full details of which can be

found in [47]. Prior to using this implementation of the DFA method to estimate the

Hurst exponent of time-series data generated by the simulated market, we compared the

DFA method to the well-known R/S method which goes back to Hurst himself [42]. We

also tested both methods for bias by running each method through three tests: both

the DFA method and the R/S method were tested on true Brownian motion, H = 0.5,

and on fractional Brownian motions with known Hurst exponents equal to 0.25 and 0.75
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True fBM R/S DFA

0.25 0.315 0.256

0.50 0.537 0.491

0.75 0.744 0.748

Table 1: Computed Hurst exponent by each method compared to the Hurst exponent of

the fractional Brownian motion (fBM) used as input.

(all time-series were of length N = 10, 000). The Brownian motions, both true and

fractional, were generated from an algorithm that creates a time-series of known Hurst

exponent [46]. Both methods detected the correct Hurst exponent reasonably well, but

our results showed that the DFA method was the more accurate. The results of these

tests are summarized in Table 1. Using DFA, the Hurst exponents of both r(n) and R(n)

were to be H = 0.49 ± 0.01, close enough to H = 0.5 for the time-series to display no

‘memory’ and mimic an efficient market. This value of H = 0.49 for the simulated market

is consistent with measures of the Hurst exponent in many real, well-developed financial

markets. Carbone, Castelli and Stanley [6] reported on measuring a time-dependent

Hurst exponent in financial time-series of the German stock market index DAX and a

government bond market BOBL. Log returns for the DAX stock index produced a Hurst

exponent of H = 0.490 with a standard deviation of ∆H(%) = 4.16. Over this same

time period, the Hurst exponent for the log returns of the BOBL averaged H = 0.486

with a standard deviation of H(%) = 3.23, although H ranged from approximately 0.46

to approximately 0.54. Lipka and Los looked for persistence in the time-series of prices,

returns and logarithms of price returns of indices of eight European stock markets using

seven different methods [34]. The eight Hurst exponents reported were in the range

[0.41, 0.55].

However it is interesting to note that some estimated values of H for real markets have

varied significantly from 1
2
. In their study of the evolution of market efficiency in Latin

American and Asian markets, Cajueiro and Tabak [5] measured Hurst exponents and

found them to range widely between H = 0.45 and H = 0.75. Also, in their recent study

[57], Kyaw, Los and Zong report higher values of Hurst exponents, indicating long-term

dependence of financial time-series in several Latin American markets — especially those

markets that are comparatively small, less liquid and generally considered as ‘emerging.’

It would be very interesting to see whether suitable changes to our model and the agents’
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Time unit Kurtosis

day 16.69

week 19.47

month 13.88

year 3.03

Table 2: Mean kurtosis for the normalized distribution of relative price changes computed

for selected time intervals. The kurtosis for a Gaussian distribution is 3.

behaviour could reproduce this significant difference between newer and more established

markets.

Hurst exponent for volatility data

Over ten runs, the average Hurst exponent was H = 0.86 for both |r(n)| and |R(n)|.
Such a large Hurst exponent indicates highly-significant long-term dependencies in the

time-series and is in strong agreement with the value H ≈ 0.9 for the volatility of the

S&P 500 as reported in [7].

Slow convergence to Gaussian returns over long time-scales

Price returns often exhibit slow convergence to a Gaussian distribution as the time interval

increases, i.e. yearly price returns display far less excess kurtosis compared to monthly,

weekly and especially daily returns. Previous work on actual market data can be found

in [23, 48].

To investigate this phenomenon, we ran our model 100 times and computed the mean

kurtosis using time-scales reflecting daily, weekly, monthly and yearly price changes. The

numbers reported in Table 2 are in broad agreement with the very wide range of empir-

ically determined kurtosis reported in the literature and over yearly time intervals the

excess kurtosis is negligible (see, for example, [25, 45, 26]).

4 Introducing asymmetries into agent behaviour

The model introduced in Section 2 is completely symmetric with respect to falling or rising

prices. However many aspects of agent behaviour, as repeatedly verified by experimental

economists and psychologists, are asymmetric [2, 4, 3, 19, 24, 30, 44, 51, 56]. It has also

been noted that for many financial assets there are more large drawdowns in prices but not
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equally large upward movements (gain/loss asymmetry) [9, 28, 29]. In order to examine

possible causal relationships between asymmetric agent behaviour and market statistics,

we now consider some asymmetric modifications of the inaction and herding tensions.

People, on average, are far quicker to realize a gain than a loss, often trading too soon

in the first case and too late in the second [44, 51]. In order to replicate this effect, the

inaction interval for the ith trader is shifted so that it is asymmetric with respect to the

last trading price Pi. To be explicit, for an agent who has just switched from short to

long, it is redefined as

[Pi/(1 + 3Hi/4), Pi(1 + Hi/4)]

while for an agent who has just switched to being short it is

[Pi/(1 + Hi/4), Pi(1 + 3Hi/4)].

However, no resulting asymmetries were noted in the price returns. On reflection, this is

not surprising since the modification that was introduced is asymmetric with respect to the

position held by an individual agent, but not with respect to the market price. Variations

on the above approach that shifted the interval consistently in one direction were also

attempted. These represented other possible effects, such as the fact that short-selling

is more difficult than owning a stock (and has potentially unlimited liabilities) or selling

induced by margin calls. However none of them introduced any noticeable asymmetries

into the price-return data. This is not to say that such effects are unimportant or do not

result in asymmetries, merely that their inclusion via shifting the inaction thresholds does

not result in asymmetric data.

Next, an asymmetry was introduced into the herding threshold. The basic premise

is that the herding pressure is significantly stronger in a bullish market than a bearish

one. In other words, one is made to feel more foolish, more quickly, being contrarian in a

bullish environment. To induce this effect in our model we simply keep the thresholds Ci

unchanged but increase the rate at which the tensions ci increase when σ > 0:

when σ > 0 : ci(n + 1) = ci(n) + 2h|σ(n)| if si(n)σ(n) < 0

when σ < 0 : ci(n + 1) = ci(n) + 1
2
h|σ(n)| if si(n)σ(n) < 0.

With the above change in place, the price returns now display marked asymmetries.

In Figure 4 (to be compared with Figure 2) the (normalized) positive and negative log
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Figure 4: Distribution of normalized logarithmic returns separated into increases (posi-

tive) and decreases (negative).

returns are plotted separately and there is a marked majority of decreases over increases

that exceed a given (large) magnitude.

In fact, this modification has another immediate consequence, namely that price re-

turns should display noticeably different behaviours in bull markets as opposed to bear

markets. Recent work by Kaizoji [32] on the Japanese Nikkei from 1975 to 2002 provides

support for this assertion. In that paper, the Nikkei data was split into two parts —

the bullish period before December 1989 and the bearish one after. Kaizoji showed that

the pre-December 1999 returns were well-replicated by a power-law distribution, and the

post-December 1999 by an exponential one.

In order to attempt a comparison with the results of [32], we split our time-series

into ‘bullish’, ’bearish’ and ‘sideways’ markets according to whether σ > 1
3
, σ < −1

3
or

σ ∈ [−1
3
, 1

3
] respectively. The log price return cumulative distributions were calculated

over the bullish and bearish periods and plotted in Figures 5 and 6, respectively. The

tail of the bull market returns is well-fitted by a power-law decay, as before, but the

bearish periods are better-fitted by an exponential (note the linear x-scale). Intuitively,

this difference can be explained by the fact that as the importance of herding effects

is reduced, the market is closer to a Gaussian one in which exponential tails are to be
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Figure 5: Cumulative distribution of bull market normed absolute value of relative price

changes.

5 Conclusions

In this paper we have showed that a very simple psychology-based heterogeneous agent

model can reproduce all of the most important stylized facts. Given the robustness of the

emergent statistics with respect to the small number of parameters, this closeness of fit

to real market data is especially noteworthy.

To be more specific, in [12] it was demonstrated that the introduction of a threshold-

type herding tendency into a pure EMH model results directly in excess kurtosis and

fat-tailed returns. Here we have demonstrated that the rate of decay of the tails is

consistent with a power-law exponent of ≈ 3, closely matching observations of real data.

Similarly, in [12] the inclusion of the term α 6= 0 into (2.3) induces a long-term volatility

correlation and here it was shown that again it has the correct functional form and decay

exponent. Finally, in Section 4 we showed that skewed statistics can be achieved by

certain asymmetries in agent behaviour related to the herding tendency (but not by more

obvious changes to the inaction thresholds).

19



 1

 10

 100

 1000

 10000

 0  5  10  15  20  25

Normed Absolute Value Relative Price Change

N
u

m
b

er
 o

f 
O

cc
u

rr
en

ce
s 

E
xc

ed
in

g
 a

 G
iv

en
 V

al
u

e bear
Fitted line

Figure 6: Cumulative distribution of bear market normed absolute value of relative price

changes.

Much of the simplicity (and appeal) of the model comes from the fact that it contains

no spatial information (such as neighbour-neighbour interactions) or inductive learning.

That it replicates the stylized facts so well does not mean that these extra complications

are unimportant in real marketplaces, but it does suggest that they may not be necessary

for a deep understanding of the causes of the stylized facts.

Finally, we remark that the mere existence of power-laws in such a simple system is

extremely interesting. Some previous explanations for the existence of inverse-cubic price-

return decays [54, 18] are predicated upon the fact that the distribution of agent sizes

follows a Pareto law with known exponent. However, the above results show that the same

exponent can be observed in a model with all agents of equal size. A deeper theoretical

understanding of how power-law statistics can be induced by threshold descriptions of

herding may yield important insights.
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