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Abstract. Following the approach of [22], we derive a system of Fokker-

Planck equations to model a stock-market in which hysteretic agents can take

long and short positions. We show numerically that the resulting mesoscopic
model has rich behaviour, being hysteretic at the mesoscale and displaying

bubbles and volatility clustering in particular.

1. Introduction. In a series of publications [11, 9, 12, 20, 10, 19] we have developed
a model of financial markets that, in common with a number of other models,
reproduces the most important observed statistics of real-world financial systems.
Such heterogeneous agent models are very convenient as they make explicit the
assumptions on the psychology and motivations of traders (so that the plausibility
of the assumptions can be compared across models) and they are also relatively
easy to program. On the other hand, a full and rigorous analysis of such models
is well-nigh impossible. Faced with this difficulty, in recent years much effort has
been expended in deriving mesoscopic versions of heterogeneous agent models (see
[7], for example). In brief, if the agents are structured by a variable s, mesoscopic
models describe the evolution of ρ(x, t), the density of agents having s = x at time
t. Many such models fit into Boltzmann-type kinetic theory and hence can use the
mathematical tools developed for other applications of that theory [13]. In other
words, these models assume that the values of the structuring variable s of a trader
change as a result of a binary interaction with another agent. This framework is
powerful and useful, for example, in discussions of wealth distribution evolution.
However in a stock market context a different situation is more likely to occur,
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one in which all agents are exposed to an information stream and are also globally
coupled via some measure of market sentiment.

A mesoscopic model along these lines, in which coupling between agents is
“mimetic”, i.e. due to herding, has been suggested by Omurtag and Sirovich [22],
the final form of which is a single Fokker-Planck equation. In the present contri-
bution, motivated by our earlier models we modify the approach of Omurtag and
Sirovich in a number of respects, taking it further away from its origin in neuronal
dynamics. To be more precise, we assume that our agents are hysteretic and can
take long or short positions in the market. As in [22] we allow global coupling via
the public information stream. We then proceed in two steps by first defining the
individual dynamics of each trader. We then derive a system of two PDEs for the
mesoscopic variables and simplify them to yield two coupled Fokker-Planck type
equations that govern the evolution of the densities of long and short traders.

We dedicate this paper to the memory of Alexei Pokrovskii, who died unexpect-
edly on September 1, 2010. Apart from his seminal contributions to the mathemat-
ical analysis of systems with hysteresis, Alexei took a keen interest in applications
to financial markets. The day before he died, he completed the first draft of [8], a
combinatorial analysis that shows that arbitrage sequences in the foreign exchange
(FX) market tend to be periodic in nature. The information streams that affect
stock markets considered in the present paper also impact other markets such as
FX [15]. Alexei would, no doubt, have pointed this out and made some lucid sug-
gestions as to how the analysis in this paper could be extended to such market
interactions. The high frequency data sets available for financial markets present
rich opportunities for testing the implications of the hysteresis models pioneered by
Alexei.

2. Microstructure of stock markets. The last two decades have witnessed a
burgeoning literature on the microstructure of financial markets (see [4] for a sur-
vey). This interest has been spurred by a move away from traditional dealer markets
towards electronic methods of executing transactions [16]. Much of the focus has
been on how the adopted trading execution methods affect intra-day trading pat-
terns, with empirical work dealing with high frequency, such as minute-by-minute,
price and transactions data [17]. In relation to stock markets, a seminal study [1]
found that the opening periods of trading on the New York Stock Exchange (NYSE)
were characterised by a higher variance in stock returns than closing periods. This
finding simulated interest in how market institutions and trading rules affect stock
market outcomes.

Traditionally, stock markets were dealer markets. In such a system, coordination
between buyers and sellers is provided by dealers who commit to buying and selling
stocks at their quoted bid (buy) and ask (sell) prices. To provide this coordina-
tion function, dealers have to hold sufficient stock inventories to allow trades to
be executed, the bid-ask price spread being seen as the return for providing this
liquidity.

With the advent of electronic methods of executing transactions, limit order mar-
kets have come to play a dominant rôle in stock transactions. Here stock trades are
coordinated by electronically matching orders, first by price, then by time of submis-
sion: for live order book data see http://data.inetats.com/ds/tools/charts.
Buyers and sellers choose either limit orders, orders to buy or to sell when a given
price is reached, or market orders to buy or sell at the current price in the limit
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order book. Some stock markets, such as the NYSE, are hybrid markets in that,
although most of the trading is conducted via the electronic limit order book, each
stock has a specialist dealer who quotes bid and ask prices for the specialist stock
for trades up to a particular volume, the aim being to maintain a liquid market in
the stock [21].

In the present paper it is assumed that traders face the same external information
streams, none of this information being private. This assumption is more relevant
to a limit order market in which the order flow information contained in the limit
order book can be publicly observed. In a dealer market, where dealers receive
private information on the order flows forthcoming at their quoted bid and ask
prices, information sets will tend to be disjoint.

The end–users in a particular market will have access to private information
streams arising from their own economic activities, as well as to the public infor-
mation coming from, for example, the release of macroeconomic statistics by gov-
ernment or statistical agencies. In markets with fragmented methods for executing
transactions, this end–user private information can be translated into private order
flow information for trades. In the FX market, for example, 21.6% of the global
turnover in 2010 was executed by customer–direct transactions [24, table E.24], giv-
ing the FX dealers involved private order flow information. Analysing the effects of
the arrival of macroeconomic news at five–minute intervals during FX trading days,
one estimate is that around two thirds of the price impact is transmitted by order
flow information, the remaining one third being the direct impact of the news [14].

In the stock market the end–users are the private individuals who own stocks,
often via pension-, life-, hedge-, and other funds, and the firms who issue stocks. All
have potential access to private information streams. The question is then whether
the traders operating on their behalf can exploit this private information. In limit
order stock markets such as Hong Kong, Tokyo, Toronto, EURONEXT and INET,
private information becomes public once the buy or sell orders are placed in the
limit order book (see [3]), so providing an approximation to the assumption regard-
ing information streams used in the present paper. In NYSE, London, Frankfurt,
NASDAQ, MATIF, XETRA, and EUREX stock markets, where dealer market el-
ements are still present, some of the information streams will remain private until
the price impact can be observed.

3. Individual dynamics. We consider a market with a fixed number N of traders
who can be either long or short on a stock. As in [22], we assume that the description
of a trader involves a “propensity for action” variable s. For traders that are long,
the variable s takes values in (−1,∞) and for ones that are short, it takes values in
(−∞, 1). When s lies in the interval (−1, 1) the trader can be either long or short,
depending on whether this interval has been approached from above or from below.
This “lazy relay” is illustrated in Figure 1.

One obvious reason for the distinct thresholds illustrated in Figure 1 is the exis-
tence of commission fees payable to brokers for executing trades. Depending on the
institutional context, other components of the bid-ask price spread have been as-
sociated with inventory costs and asymmetric information amongst traders [4, 17].
Less obvious are the implicit costs associated with deliberations as to whether to
be long or short. There is some evidence of thresholds in the neural processes
linking perception to action [5], and the decision-making processes of investment
funds will usually involve costs sunk in analysis and deliberation that cannot be
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Figure 1. A hysteretic trader

recouped should a buy or sell decision be reversed. Such costs can be large relative
to the more explicit transactions costs [18]. An intuitive interpretation of the trader
thresholds is as the bid and ask limit order prices traders are willing to post in the
limit order book.

Below we will use +(−) to denote that a trader is long (short) and index the
traders by i ∈ 1, . . . , N . If trader i is long, we have

ds+i
dt

= −γ+i s
+
i + I+i (t) (1)

for as long as s+i ∈ (−1,∞). If, at some time t0, s+i (t0) = −1 then trader i goes short
and her propensity variable becomes s−i (t0) = −1. The evolution then continues
following the equation

ds−i
dt

= −γ−i s
−
i + I−i (t), (2)

for t > t0 until s−i (t) = 1.
Here I+i (t) is the information stream of the i-th trader if she takes a + (long)

position, etc. We shall assume that

I+i (t) = I−i (t) = I(t),

i.e. the information is identical for all traders and is state-independent. As dis-
cussed in Section 2, this is tantamount to assuming that all the external information
streams are public in nature, which is more appropriate for limit order markets. We
will discuss the information stream in more detail below. The γ±i are the “inertia”
coefficients of the i-th trader, and again, for simplicity we will assume here that

γ±i = γ,

so that, for example, two long traders are only differentiated by their s+ values. This
γ term can also be thought of as ‘mean-reversion’, ensuring that traders do not drift
arbitrarily far from 0. This is reasonable if one assumes that information will be
‘forgotten’ or become less relevant as time passes; and that if the information stream
is turned off, each agent’s propensity for action will drift to 0 without switching.
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We follow the exposition of [22] to specify the external information stream I(t).
For that, we need the densities of long and short traders, ρ+(s, t), s ∈ (−1,∞)
and ρ−(r, t), r ∈ (−∞, 1), the equations for whose evolution will be derived in the
following sections.

We take

I(t) =
∑
k

ε(k)δ(t− t(k)),

where δ is the Dirac delta, and t(k) is the time at which a piece of information with
impact ε(k) arrives. For simplicity, we allow only information impacts ε+ > 0 and
ε− < 0; the case of ε+ + ε− = 0 is the case of symmetric information impact.

The last question to be settled is the arrival frequency of information. We will
take this to be ν± for positive (negative) information. Omurtag and Sirovich [22]
suggest a simple way of incorporating “mimesis”, i.e. interdependence of decision-
making between the traders, which in our set-up leads to the following argument
for ν±. Let us define the rate of going long for short traders to be

R+ = ν+
∫ 1

1−ε+
ρ−(x, t) dx. (3)

Then if traders interpret the adoption of a long position by others as positive infor-
mation,

ν+ = ν+ex + α+R+, (4)

where ν+ex is the exogenous positive information arrival frequency and α+ is a mea-
sure of positive mimesis. From (3) and (4) we have that

R+ =
ν+ex
∫ 1

1−ε+ ρ
−(x, t) dx

1− α+
∫ 1

1−ε+ ρ
−(x, t) dx

(5)

and

ν+ =
ν+ex

1− α+
∫ 1

1−ε+ ρ
−(x, t) dx

.

Similarly,

ν− =
ν−ex

1− α−
∫ −1
−1−ε− ρ

+(x, t) dx
.

Since ρ± ≤ 1, these quantities are well-defined at least if α± < 1; in our simulations
much larger values of α± (up to α± ≈ 200) also lead to acceptable dynamics.

Clearly, the traders that we are considering are hysteretic in the sense that if we
only know that the propensity for action of i-th trader is anywhere in the interval
(−1, 1), we cannot deduce deduce from that the position of the trader in the market.
A different context where the individual dynamics of (1)-(2) makes sense is a voting
system in which a voter can only switch allegiance between two candidates.

4. Mesoscopic equations. By considering an interval [x, x + ∆x], x ∈ (−1,∞),
and balancing the traders leaving and entering the interval due to drift towards the
origin and jumps due to arrival of information, and then letting ∆ → 0, we arrive
at the following PDE for ρ+(x, t), t > 0.

(ρ+)t = (γxρ+)x + ν+(ρ+(x− ε+, t)− ρ+(x, t)) + ν−(ρ+(x− ε−, t)− ρ+(x, t))

+R+δ(x− 1), (6)
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for x ∈ (−1,∞). Similarly, for ρ− we have

(ρ−)t = (γxρ−)x + ν+(ρ−(x− ε+, t)− ρ−(x, t)) + ν−(ρ−(x− ε−, t)− ρ−(x, t))

+R−δ(x+ 1), (7)

for x ∈ (−∞, 1).
Note that that equations are coupled through ν±, R± and are nonlinear and

nonlocal.

4.1. Fokker-Planck equations. Expanding the jump terms in ε±, we obtain

(ρ+)t = (µρ+)x +
1

2
σ2(ρ+)xx +R+δ(x− 1), (8)

where

µ = γx− ν+ε+ − ν−ε−

and

σ2 = ν+(ε+)2 + ν−(ε−)2 > 0.

Similarly, for ρ− we have

(ρ−)t = (µρ−)x +
1

2
σ2(ρ−)xx +R−δ(x+ 1), (9)

Since we require that

d

dt

(∫ 1

−∞
ρ−(x, t) dx+

∫ ∞
−1

ρ+(x, t) dx

)
= 0,

(Formally) integrating and using (8)–(9), we see that sufficient conditions for
probability conservation are

µρ±(x, t) +
1

2
σ2(ρ±)x → 0 as x→ ±∞, (10)

while at the jump points

−µρ+(−1, t) +R− − 1

2
σ2ρ+x (−1, t) = 0,

µρ−(1, t) +R+ +
1

2
σ2ρ−x (1, t) = 0.

(11)

(10)–(11) are the boundary conditions that we will be using below. Recall that
µ, σ, R± are all functions of the densities, so these are non-local, nonlinear, time-
dependent boundary conditions.

5. Numerics. Below we show some numerical simulations of the Fokker-Planck
equations (8) and (9) using a fully implicit one-step finite difference method de-
veloped by Chang and Cooper [6]. The method is highly stable, computationally
efficient due to the tri-diagonal structure of the finite difference matrix and, as
noted in [23], preserves the non-negativity of the density functions under very weak
conditions on the diffusion and advection coefficients.

In our simulations, the density ρ+ is confined to the interval [−1, 10] and ρ− is
confined to the interval [−10, 1] with zero-flux boundary conditions at −10 and 10
to conserve probability. At each time-step the switching rates R± and the total
information arrival rates ν± are computed via (3) and (4). The masses R±∆t,
where ∆t is the time-step, are moved between the positive and negative densities
at x = ±1 and the boundary conditions (11) are enforced. In all simulations we
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used γ = 0.2, ε+ = −ε− = 0.1; these values were chosen to correspond roughly to
the parameter regime studied in [22].

We start by considering the effect of the mimesis parameters α±. Figure 2 shows
the two density functions at equilibrium with α+ = α− = 0 and ν+ = ν− = 40.
If both α± are kept equal and increased then there is very little difference in the
equilibrium state until, as can be seen from the denominator of (5), eventually the
system becomes both unphysical (as the densities stop being non-negative) and
unstable with either very large and positive or negative values for R±. Noticeable
differences in the equilibrium state are observed for unequal α± values, as can be
seen in Figure 3 where α+ = 50 and α− is kept at 0.
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Figure 2. The equilibrium densities ρ+ (on [−1, 10]) and ρ−

(on [−10, 1]) in the absence of mimesis.

We now turn from equilibrium solutions to the effects of varying the exogenous in-

formation rates ν± over time. Figure 4 plots the total positive density
∫ 10

−1 ρ
+(x) dx

against ν+ which cycles adiabatically between 0 and 40 (whilst keeping the to-
tal information level ν+ + ν− = 40). The resulting loop clearly demonstrates the
existence of hysteresis at the aggregate level.

Finally we consider the effect of randomness in the information streams. In
Figure 5, at each time-step both ν+ and ν− are chosen from the distribution
200|N (0,∆t)| where the time-step ∆t is 0.05 and α+ = α− = 10 (these param-
eters are arbitrary but of the same magnitude as those used in the earlier simula-
tions). Note that as an initial approximation we are assuming that the information
frequencies are uncorrelated, both with each other and themselves.

The plot shows the total positive density

∫ 10

−1
ρ+(x, t) dx, which can be con-

sidered a proxy for price (or the excess of positive over negative sentiment) as a
function of time. The system does not exhibit any tendency to converge to the
mean value of 1

2 with large deviations being the rule rather than the exception.
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Figure 3. An asymmetric equilibrium solution where α+ has been
increased to 50.
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Figure 4. A hysteresis loop caused by adiabatic changes in the
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interior curve until saturation is reached for the first time.
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This can be interpreted as bubbles in the market: in the present framework, a bub-
ble corresponds to the concentration of trader density in one predominant market
position without the fundamentals of the market (measured by ν±ex) justifying it
(e.g. if, as in Figure 5 the expectation of ν+ex equals that of ν−ex).

Furthermore, there appear to be periods of higher volatility associated with larger
and more sudden changes in sentiment. This is more clearly seen in Figure 6 which

plots the changes (first differences) in
∫ 10

−1 ρ
+(x, t) dx from one time-step to the next.

This phenomenon is known as volatility clustering and is an extremely important
property (or ‘stylized fact’) of almost all financial markets. Note that since the
information frequencies are uncorrelated this effect is entirely due to endogenous
dynamics.

The dashed curve in Figure 7 plots the autocorrelations of the data from Figure 6
for time-lags from 1 to 50 timesteps. As is the case with price change data for
real markets, this autocorrelation very rapidly vanishes to zero. However the solid
curve shows the autocorrelations of the magnitudes of the same data (which is a
commonly-used definition of price volatility) and this decays to zero only very slowly
— a quantifiable indicator of the volatility clustering that is present. 1

Finally we consider the other most significant stylized fact, excess kurtosis or
‘fat-tails’. Figure 8 (solid line) shows a cumulative plot of the magnitudes of the
data from Figure 6 on a log-log scale. The dashed line shows the same plot for a
Gaussian distribution with the same distribution as the underlying data. Gauss-
ian distributions have exponentially decaying tails while financial data (and many
other natural and socio-economic phenomena) decay far more slowly, often with
observed approximate power-laws. This is highly significant for risk models that
can underestimate the likelihood of extreme market moves by many orders of mag-
nitude. Figure 8 displays clear evidence of excess weight in the tail and even an
approximate power-law decay as indicated by the near-linear decay.

6. Concluding Remarks. In view of the above numerical simulations, the equa-
tions (8)-(9) are worthy of further study. Global existence in the presence of herding
seems a non-trivial issue. For example, it is not clear how to derive a bound for the
maximal allowable values of α±. We also leave proof of stabilisation and depen-
dence of bubble-formation and volatility clustering on the statistics of ν±ex and α±

to future work. On the other hand, the uniqueness of (continuous in space) steady
states can be easily verified by explicit but cumbersome construction.

The Fokker-Planck type equations proposed here can be used to model systems
with larger number of states, and Preisach-type systems as well. Briefly, for the
latter, if the probability that a short trader goes long at x = u is not a Dirac
delta at u = 1, but is given by a distribution function g+(u) with support in a
neighbourhood u+ of 1 in (−∞, 1], u+ ∩ 0 = ∅, then if we set

r+(u) = ν+g+(u)

∫ u

u−ε+
ρ−(x, t) dx,

1What this means for actual markets is that a day on which there is a large price change (in
either direction) is more likely to be followed by another large-price-change day but it is just as

likely to be a price change in the opposite direction as the same direction.
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Figure 5. A plot of
∫ 10

−1 ρ
+(x, t) dx against time. Even though the

expected values of ν+ and ν− are the same, the system does not
converge to a steady state with equal numbers of agents in each
state.
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Figure 7. The linear autocorrelation of the data plotted in Fig-
ure 6 is shown as the dashed line and rapidly falls to zero. However,
the autocorrelation of the absolute values (solid line) decays very
slowly.

and r+ =
∫
u+ r

+(u) du, then, as before, ν+ = ν+ex + α+R+ and the Fokker-Planck

type equation for ρ+ is

ρ+t = (µρ+)x +
1

2
σ2(ρ+)xx + r+(u)δ(x− u),

with the equation for ρ− being derived using similar logic. However, unlike in clas-
sical Preisach models, the resulting process is not expected to be rate-independent.

We note that in principle more realistic dynamics of individual traders can be
incorporated into (1)–(2) which will be reflected in the diffusion and advection
coefficients of the resulting Fokker–Planck equation and in the coupling terms. From
the economics point of view, it would be helpful to incorporate price dynamics into
the equation, which would pave the way for deriving a mesoscopic version of [11].

At the Alexei Pokrovskii Memorial Conference it was suggested that each trader
might respond to a mixture of public and private information reflecting the presence
of dealers operating alongside the limit order book in hybrid stock markets. While
such a mixed information stream is easily enough incorporated in a heterogeneous
agent model, this would not be straightforward in a mesoscopic model.
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