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Abstract

We introduce a variable timestepping procedure using local error control for
the pathwise (strong) numerical integration of a system of stochastic differential
equations forced by a single Wiener process. The Milstein method is used to advance
the numerical solution and the stepsizes are determined via two local error estimates
that roughly correspond to leading order deterministic and stochastic local error
components. One advantage of using two error controls is an increased flexibility
that allows for the treatment of both drift and diffusion dominated regimes in a
consistent manner. Numerical results are presented and the generalization of this
approach to wider classes of problems and methods is discussed.

Keywords Error control, numerical integration, stochastic differential equations

1 Introduction

In this paper we are concerned with the development and analysis of variable timestepping
methods for the strong (pathwise) solution to stochastic differential equations (SDEs),
written in It6 form as

dX = f(X)dt + g(X) dW,  X(0)=Xo, te]0,7] (1.1)

or, as an integral equation,

X(t):X(O)+/O F(X(s)) ds+/0 9(X(s)) dW (1.2)

where X(t) € R™ and f,g : R™ — R™. W(t) is a scalar Wiener process (Brownian
motion) and without loss of generality (1.1) is in autonomous form. We assume that a
unique solution exists for all time which has been proved under a variety of Lipschitz
conditions, moment bounds and growth conditions on f and g. In addition we require
that f and g be twice differentiable.

In recent years there has been enormous interest in SDEs and they are now stan-
dard mathematical models in many of the same scientific disciplines that have benefited
from the study of deterministic differential equations in the past. However, at almost
every stage of the modeling process there are additional complications introduced by the
stochastic component and this is also true for the numerical solution of equations such
as (1.1). While the restriction to SDEs forced by a single Wiener process is a severe one,
such systems are still of great practical relevance and form an easier subclass of problems
on which to test and develop numerical strategies.

For ODEs there is a vast and highly successful body of work consisting of basic numer-
ical schemes (most notably Taylor, linear multistep and Runge-Kutta methods) together
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with extremely robust and highly efficient implementation strategies often involving vari-
able timestepping. For SDEs there are currently only relatively few schemes available.
This is primarily due to the greatly increased complexity of the Taylor series expansions
of the exact and numerical solutions, even when the equations are defined in Stratonovich
rather than Ito form, and the resulting increase in the number and complexity of the order
conditions that must be satisfied. The reader is referred to standard texts such as [13, 19]
for any necessary background material. To date the literature on variable timestepping
algorithms for SDEs is rather sparse (see for example [1, 3, 4, 7, 12, 18, 20, 15]) but it is
to be anticipated that the development of such algorithms will play an important role in
the numerical solution of at least some classes of SDEs.

The most common strategy for variable timestepping using a local error control in the
deterministic case can be broken down into three basic components:

e The underlying numerical scheme used to advance the integration.

e An estimate of the local (one-step) error which must be bounded from above at every
step by some quantity based upon the user-defined tolerance 7. If this criterion is
not met then the step is rejected and a smaller timestep is chosen.

e A timestep selection mechanism that attempts to choose candidate timesteps as
large as possible consistent with the local error criterion.

We shall take a similar approach. The stochastic method used to advance the numer-
ical solution is the Milstein scheme which has strong order 1 and this paper will focus
upon the choice of possible error estimates and timestep selection strategies. Much of
the analysis that follows is either specific to the Milstein method or, at the very least,
to methods of strong order 1. This is the maximal order, for a scalar stochastic forcing,
that can be attained if only values of W (t) are available. Higher-order methods or SDEs
with multi-dimensional forcing require the independent generation of additional stochas-
tic integrals of W(t). Indeed a fundamental, as yet unanswered, issue concerning SDE
solvers is to determine the point at which the very significant additional complexity of
higher-order methods outweighs the benefits for a ‘typical’ user with ‘typical’ accuracy
requirements. This increase in complexity also carries over to the problem of efficiently
adapting timesteps. For ODEs the efficiency gains of adaptive timestepping are very
impressive and almost entirely independent of the order of the method. For SDEs the
efficiency gains are not as striking and carry increasing computational overheads as the
complexity of the underlying method increases. It therefore seems entirely possible that an
efficient adaptive scheme based upon a low-order numerical method may be the algorithm
of choice for many applications.

The approach outlined in this paper is based upon the fact that for the Milstein
method applied to (1.1) it is possible to (very cheaply) obtain two local error estimates,
one based upon the drift component and the other based on the diffusion. This allows



for an algorithm that can behave differently for drift or diffusion-dominated regimes, in
particular with regard to how candidate timesteps are chosen. For example, in a drift-
dominated (low diffusion) regime the choice of candidate timesteps could be chosen by
a procedure close to that employed in adaptive ODE solvers, with little regard to the
stochastic error. Another feature is that, when the diffusion is important, timesteps
can be rejected with a high degree of certainty if the jump in the Wiener process on that
timestep is deemed to be outside a suitable range, but before the Milstein approximation is
calculated. Yet another advantage of introducing these two separate local error estimates
is a demonstrable and dramatic improvement in the mean-square stability properties of
the algorithm over the fixed-timestep Milstein method. These stability results will be
reported elsewhere.

In Section 2 we define the Milstein method for a problem of the form (1.1) and, based
upon leading-order terms of the local error expansion, define the local error estimates
that will be controlled. Then in Section 3 we describe in detail how to generate, as and
when needed, values of the Wiener process allowing for arbitrary stepsize changes and
rejections. While the underlying mathematical result is elementary and fairly well-known,
a precise description of the algorithmic procedure appears to be lacking in the adaptive
timestepping literature and so this is included for completeness. Section 4 describes
a complete algorithm by combining the analyses of Sections 2 and 3 with a timestep
selection strategy. This strategy is far from definitive, rather it is designed to highlight
the degree of flexibility inherent in the dual error control approach. Numerical results
on standard test problems are also presented. Finally, in Section 5 we comment upon
the development of adaptive algorithms for higher-order schemes and/or for SDEs with
multi-dimensional forcing. We also demonstrate that the class of analytically solvable
test problems, now becoming standard in the literature, may not be sufficiently general
to adequately test adaptive algorithms.

2 The Milstein method and local error estimates

We start by briefly describing an archetypal adaptive algorithm for ODEs based upon an
embedded Runge-Kutta pair of orders p — 1 and p. Let us suppose that the numerical
integration has reached the n'" step with value X,,. Then for a candidate timestep h
the local error estimate E(X,,h) is defined as the norm of the difference between the
two approximations. The user-defined tolerance is denoted 7 and a timestep will only be
accepted, and the solution advanced, if

E(X,, h) <o(X,,7)h* (2.1)
for some quantity o closely related to 7. This allows for absolute, relative or mixed error
control (by choosing for example 0 = 7, 0 = || X,,||7 or 0 = Tmax(1, || X,||) respectively).

The choice p = 0 corresponds to an error-per-step (EPS) strategy and p = 1 to an
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error-per-unit-step (EPUS) strategy. Note that F(X,,h) is, strictly speaking, an error
estimate for the lower-order method but it is common to advance the solution using the
higher-order method since it has already been calculated, an idea known as exztrapolation.

Whether or not the error criterion (2.1) is satisfied using a timestep h, the next
candidate timestep A’ (for the same step if h was rejected and for the next step if h was

accepted) is given by
X, T) P
W = min [ hue, 08 (25T 2.2
mm( | (E(Xn,m) ) 22)

where X, is the latest computed numerical value. The quantity hmac is a maximum
timestep that is often a function of the integration time 7". The exponent p%p appears
since the leading terms in the local error estimate E(X,,h) are elementary differentials
premultiplied by constants of order O(h?) (see for example [5]) and so, for a given X,,,
| E(X,, h)|| &= Kh? for some constant K in the limit as h — 0. Thus, ignoring the factor
0 in (2.2), b’ should be close to optimal while still satisfying the local error criterion. The
‘safety factor’ # < 1 reduces the number of stepsize rejections. A typical value for 6 is
0.8 and it is expected that the ratio of rejected to accepted steps tends to zero as 7 — 0
for any 6 < 1. Even in the deterministic case there are many possible modifications and
improvements that can be applied to the above basic strategy, see for example [8, 9, 21].

A very general convergence proof for a class of adaptive ODE algorithms can be found in
[14].

We now return to SDEs and define the Milstein scheme used to advance the numerical
solution of (1.1). This is

Xpi1 =X, +hf(X,) + AWg(X,) + %g’(Xn)g(Xn)(AW2 —h) (2.3)

where h is the stepsize used, X,, and X, ; are the numerical approximations at times
t, and t, + h respectively and AW = W(t,, + h) — W(t,). A numerical scheme for (1.1)
is defined to converge with strong order p if, for fixed timesteps h, there exists C' > 0
(independent of h), h* > 0 such that
E(]ine% | X (t,) — Xn||) < Ch? Vh <A
n<

where X () is the exact solution at time ¢ and p > 0 is as large as possible. The Milstein
scheme has strong order 1.

The convergence of a general adaptive algorithm to the exact solution as the user-
defined tolerance 7 — 0, is proved in [7][Corollary 4.4] under the assumptions that the
underlying method has strong order > 1 and the maximum accepted stepsize also tends
to zero. It should be noted however that the maximum stepsize need not necessarily tend
to zero in the neighbourhood of fixed points and when the error control locally fails to
adequately approximate the true truncation error. This is a subtle point, for a discussion
of the ODE case see for example [10, 11] and for the SDE case [15].
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In our analysis of the leading terms of the local error it will be convenient to work
with Stratonovich, rather than 1t6, Taylor expansions. Thus we rewrite (1.1) as

dX = f(X)dt + g(X) o dW,  X(to) = X, (2.4)

where f(X) = f(X) — 1¢/(X)g(X) and rewrite (2.3) as

2

Xnp1 = Xo + hf(Xn) + AWg(X,) + %g'(Xn)g(Xn)AW2. (2.5)

The Stratonovich-Taylor expansions of both the exact and numerical solutions of (2.4)
are linear combinations of elementary differentials that consist of both functions f and g
and various combinations of their derivatives. The reader is directed towards [3, 13] for
further details. The local error of the Milstein method has the following expansion

1 1
Jif'g+ Jond f + ngg”gg + ng’(g’)zg + O(h?) (2.6)

where Jq, Jig and Jy; are the multiple Stratonovich integrals defined by

tn+h tn+h S1 tn+h S1
Jl == / odW = AVV, Jl() = / / odW dSl, J()l = / / ds o dW(Sl)
tn tn tn tn tn

From (2.6) we see that the leading order local error consists of 4 terms of O(h?), with

the 3 different multiple Stratonovich integrals Jyg, Jo; and J; appearing as factors. This
is to be contrasted with the deterministic case where, for a method of order p, all the
leading order elementary differentials in the local error are simply multiplied by h?*,
meaning that we only have to control A?*1 irrespective of which elementary differential(s)
are dominating the local error. Note also that the quantities Jiy and Jy; cannot be derived
from the values W (t,,) and W (¢,, + h) which is why the maximal strong order of a method
that only uses values of W (t) is 1. However, the final term depends only upon g and
¢’ which have already been calculated. So we proceed by assuming that controlling this
final term will result in an acceptable control of the actual local error. This assumption
is similar in nature to that underlying extrapolation, namely that controlling a quantity
closely related to the actual truncation error effectively controls this error.

Therefore we define our first local error estimate to be
1
E(Xn, 1) i= AW gl 199100 (2.7)
which is an upper bound for the co-norm of the last term in (2.6) that only requires the
additional calculation of ||¢'||~ and thus avoids a matrix-vector multiplication. Our EPS
error control is therefore

E(X,, h) < 0(X, 1) (2.8)
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for some choice of the function o.

However, F(X,, h) is independent of the drift term f in (2.4). Therefore the algorithm
cannot reasonably be expected to operate efficiently in the weak-diffusion limit where a
more appropriate mode of operation would be one closer to the deterministic paradigm.
And of course it may not be known a priori whether or when the numerical solution enters
a weak-diffusion regime so it is important that a robust algorithm be able to deal with this
case. Furthermore, for an SDE with additive noise the Milstein method, while retaining
its strong order of 1, simply reduces to the Euler-Maruyama method and F(X,,h) = 0
causing the error control to fail completely. For both these reasons we introduce a second
local error estimate based upon the drift term.

If we consider the O(h?) terms in (2.6), then the leading order term that is defined
solely by the drift is $h?f'f since the Milstein reduces to the deterministic Euler method
when applied to ODEs. So, in the weak-diffusion limit, this is a better quantity to control
than E(X,,h). Alternatively, we could also use %hQ f'f depending upon whether f'f or
f'f is easier to compute. This will often depend upon whether the SDE being solved was
originally derived in Ité or Stratonovich form.

We therefore introduce an additional EPS error control by approximating either %hQ S ! f

or $h2f'f as the difference between the Euler method and the improved Euler (Heun)
method applied to either of the ODEs

dX dX
=f(X) or —-=f(X).

dt
This results in a second local error estimate
h * * *
B )= 30 (4 R0 = 57 06)| (29)

for the cost of one extra function evaluation of either f* = f or f* = i’ and in addition
to (2.8) we also enforce
E; <o(X,,T). (2.10)

We also note that £ = O(h2) and Eg = O(h?) so that unless 7 and therefore h are
sufficiently small, these error estimates may still be of comparable size far from the weak-
diffusion limit. Indeed numerical experiments suggest this is the case and provide a further
justification for the inclusion of a second error control that includes the drift.

3 Adaptive generation of the Wiener Process

In any variable timestepping algorithm that allows for the possibility of stepsize rejections,
it is necessary to be able to generate new intermediate values of certain stochastic integrals
(in our case just values of the Wiener process itself) at some time ¢ conditional upon
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known values at times t = and ¢, with ¢t <t < t,. In the case of ODEs the simplest, and
indeed historically one of the first, timestep selection mechanisms is simply to halve the
candidate timestep immediately after a stepsize rejection or to double it if the local error
criterion is satisfied by a sufficient amount. However it is now generally accepted that
timestep selection mechanisms based upon asymptotic considerations and without the
halving-or-doubling restriction result in significantly more efficient algorithms. Most of
the existing variable timestepping algorithms for SDEs based upon local error control also
employ a halving-or-doubling strategy, using the known conditional distribution for the
value at the midpoint of a Wiener process whose end values are known. These algorithms
also have restrictions upon when doubling can occur (see [7] for details) but even with
this very limited choice of stepsizes, the benefits of being able to vary the timesteps
are apparent. A possible advantage of the halving-or-doubling restriction is that the
Wiener process can be stored in a binary tree structure. But it would appear that in
many practical applications this is unnecessary, especially if no other simulations are
required using the same realization of the Wiener process (another reason for the halving-
or-doubling restriction is due to the problem of approximating Lévy areas in the case of

multi-dimensional forcing for non-commutative problems [6, 7, 17] but that is not relevant
here).

The following elementary lemma (see for example [16]) defines the probability distri-
bution of W(t) given the values W (t_) and W(ty) for all t_ < ¢ < t; and will allow us
to generate intermediate values of the Wiener process without any restrictions.

Lemma 3.1 Let {Wy;t > 0} be a Wiener process and fir 0 < t_ < ty < oo and t €
(t_,t+) Then the random variable W(t), conditioned on W (t_) = a and W (ty) = v, is
normally distributed with mean

a+(t—t)(y—a)/(ty—t)

and variance

(=t )ty =)/ (s — 1)

Lemma 3.1 will be used to generate the scalar Wiener process W (t) at the endpoints
of each candidate integration interval [t,,t, + h| via the following procedure, which is
based upon the Markovian properties of W(t). For completeness we include a detailed
description of this procedure.

Let us suppose that the integration has proceeded successfully as far as some time ¢,
and a timestep h has been chosen by the timestep selection mechanism. There are two
cases to consider if W(t,, + h) has not already been generated. First suppose that there
are no currently generated values of W(t) for ¢t > ¢, + h and that the last known value
of W(t) is at time ¢ty > t,. Then W(t, + h) — W(t;) will be normally distributed with
mean 0 and variance (¢, +h —t;) and can be computed using a pseudo-random number
algorithm. For the remaining case we define the times t_ and ¢, to be the closest times
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tot, +h witht <t,+ h <t, and then use Lemma 3.1 to generate W (¢, + h) from the
correct distribution.

An obvious but crucial observation is that although stepsizes can be rejected if the
local error criterion is not satisfied, generated values of W () must never be rejected (or
ignored at a later integration step) since this would certainly generate a biased stochastic
forcing. Therefore once the value of W (t) has been generated it must be stored and
utilized until no longer required, i.e. until the numerical integration has passed time ¢.

There are some important points to note about the above procedure. Firstly, the
complete algorithm will not necessarily produce a solution output at all the times for
which the Wiener process is generated. However the values at any of these times may be
used by the timestep selection mechanism to help determine the choice of new timestep.
Secondly, the algorithm can either generate a brand new Wiener process as the integration
proceeds (no preprocessing or prior generation of the forcing is required as in [7, 18]) or it
can take a Wiener process from a previous run and use this sequence of times ¢ and values
W (t) as an additional input. The augmented Wiener process consisting of this inputted
data together with all the new values generated during the run can then be considered as
an additional output. In this way a sequence of runs could be performed using the same
underlying Wiener process (for example, decreasing the tolerance with each run). We also
note that in the case of multi-dimensional stochastic forcing for commutative problems
(which is not considered here) the above procedure can be used exactly as above, with a
Wiener process being generated for each dimension.

4 A prototype adaptive algorithm and numerical re-
sults

We now describe a straightforward error-per-step timestep selection strategy intended to
provide a basic yet robust algorithm that displays the inherent flexibility of the adaptive
approach. Throughout, any values of W(t) required must be generated from the correct
conditional probability distributions described in Section 3. Perhaps the most interesting
feature of the algorithm is that timesteps can be rejected after generating AW but before
calculating the Milstein approximation if the magnitude of the Brownian increment |AW |
is deemed to be either too large or too small. Thus a 'near-optimal’ value of AW can be
sought before an updated solution is calculated.

This can result in a significant computational saving but also introduces new issues.
In particular, the relative cost of performing one step of the Milstein method versus the
cost of generating a new Gaussian random variable becomes significant. For example, if
the functions f,g and ¢’ are very expensive to compute, then the algorithm should make
more of an effort to find near-optimal values of h and the corresponding AW (that will be
accepted with a high probability) before calculating a Milstein approximation and testing



it against the error controls. This will result in a possibly large number of evaluations
of the Brownian at times where the numerical solution is not calculated, but hopefully
very few rejections of the numerical approximations themselves. On the other hand, if
f,g and ¢’ are very cheap to compute, then the algorithm should relax the requirements
on whether particular values of h and AW are acceptable for the Milstein approximation
to be computed, and be more willing to tolerate rejected solution updates.

The first case is the more interesting for expository purposes as it justifies a more
sophisticated timestep selection process. It is also relevant to situations where even if f, g
and ¢’ are not especially complicated functions, Gaussian random variables have either
already been calculated and stored, or perhaps where parallel computation is available.
With this very firmly in mind we now define a prototype algorithm designed to minimize
the number of stepsize rejections (after the Milstein approximation has been calculated)
while attempting to satisfy the error controls as closely as possible. As the numerical
results of the next section will show, this can be achieved relatively easily.

In the description of the algorithm, the quantities h, AW, E and E; always refer to the
values of those variables from the most recent calculation of the Milstein method and the
error estimates, whether or not that timestep resulted in an advancement of the numerical
solution. We introduce the variables k, k4, AW, and o that will appear in the algorithm.
These are defined as

K= E, Kq = %, AWpr = 0.9/1’%|AW|, o= %
o o Vh
The quantity AW, is an estimate for a near-optimal value of AW consistent with meeting
the error criterion (2.8) (with a safety factor of 0.9 included). When we are attempting
to control F it will be our aim to find a choice of timestep with an absolute Brownian
increment close to but less than AW,,. The quantity a is the number of standard
deviations from the mean of the Brownian increment AW.

In order to start the algorithm an initial candidate timestep h;,; must be chosen.
. . 2 . 2

Since asymptotically as 7 — 0 we expect h ~ O(73) we simply choose Ay, = 73. Now
let us suppose that the Milstein approximation and F, E/; have just been calculated at
some point X,, using a timestep h and corresponding Brownian increment AW. Then the
solution is updated using the Milstein approximation if and only if max(F, F,;) < 0. Now
a new candidate timestep must be selected and we consider two cases, depending upon
the relative magnitudes of £ and Ej.

Case 1 Let us first suppose that Ey > E. If the numerical solution is in a drift-dominated
regime this would suggest a timestep selection strategy closer to that for the deterministic
paradigm (2.2) for the Euler-Heun pair and so we define the quantity

_1
h' = min(Aupay, 1.50, 0.8hrk, ?).

Of course it may be that F; > E due to an unusually small value of |AW| and hence
E (since E oc |[AW?3| it is highly variable from one timestep to the next). For this
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reason the maximum timestep ratio is kept relatively low at 1.5 and we choose the next
candidate timestep hnew = kh'/3 for k = 1,2 or 3 where k is chosen as follows. Define
AW; as the Brownian increment for the timestep jh'/3 and k' = max{l : |AW;| <
AWype V5 = 0,...,1}. Then k = min(max(k’,1),3). Note that this additional testing of
the Brownian increments for timesteps h'/3 and 2h'/3 is equivalent to rejecting potential
timesteps (either because |AW/| is too large or too small) before calculating the Milstein
approximation, but at the expense of generating extra values of the Brownian motion.

Case 2 Now suppose instead that F; < E. We choose hpe, by comparing the Brownian
increments for h/3,2h/3,....2h. Define AW; as the Brownian increment for the timestep
jh/3 and k' = max{l : |[AW;| < AWyp V5 = 0,...,1}. We define hyew = kh/3 where
k is defined as follows. If the latest timestep h was rejected (i.e. if £ > o) we ensure
that hnew < h by defining £ = min(2, max(k’,1)). If £ < o and a < 2 then k =
min(4, max(k’, 1)) otherwise £ = min(6, max(k’, 1)). Thus we have an effective maximum
timestep ratio of 4/3 unless the last Brownian increment AW was an outlier (more than
2 standard deviations from the mean) in which case we increase the maximum stepsize
ratio to 2.

Finally, we define h = hye, using the corresponding AW to calculate the Milstein
approximation and the error estimates and the process then repeats.

That completes the description of our prototype algorithm. It is not intended to be
definitive, either in its algorithmic structure or for the optimality of any of the param-
eters used (the algorithm appears to be robust to moderate and sensible changes in the
parameter values). More elaborate strategies that, for example, automatically calculate
and optimize the trade off between the number of evaluations of W (t) and the coefficients
of the SDE are certainly possible. Indeed the scope for modifications is very large.

Finally we remark that if the above algorithm is applied to an SDE with additive noise
then it simply reduces to a standard deterministic error control and should complete the
integration successfully although its unmodified use is not necessarily recommended on
such problems.

4.1 Numerical results

We now introduce numerical results for four test problems with exact analytic solutions
and compare the numerical solutions generated by the algorithm described above to an
equivalent fixed timestepping Milstein method. The algorithm was run using the absolute
error criterion o = 7 and the maximum timestep was chosen to be T'/16 in each case.

Our first two test problems are, in It6 form,
dX = —(1+°X)(1 — X?) dt + B(1 — X*)dW,  X(0)=0 (4.1)

with § = 0.1 and 1.5 over the integration range [0,10]. Even though the functions f, g
and ¢’ are all very cheap to evaluate, we shall proceed on the basis of the comments at
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Table 1: Numerical results for 8 = 0.1.
‘ T ] Method H # Acc. Steps ‘ # Rej. steps ‘ Error ‘

102 | Variable | 33 1 0.028
Fixed 0.063
1072 | Variable | 63 1 0.0094
Fixed 0.032
10~* | Variable || 160 2 0.0031
Fixed 0.013

the start of the section. Note that § = 0.1 corresponds to a very weak stochastic forcing
and is included to demonstrate the efficacy of the program in the weak-diffusion limit.
Similar test problems also appear in [4, 18, 20] and the exact solutions are

o228 () _ |

X(t) = e—20+28W () 4 1°

Since f(X) = X?—1is cheaper to evaluate than f(X) we choose that as the basis of our
deterministic error control.

Table 1 shows numerical results for 8 = 0.1 with 7 = 1072,1073, 10~*. For each value
of 7, 100 simulations were run and the average number of accepted and rejected stepsizes is
recorded. By a rejected stepsize, we mean a stepsize that was used to generate a Milstein
approximation and error estimates but was not accepted. Since the exact solution tends
to £1 as t — oo with probability 1, we record the average of the maximum absolute error
E(max, «r | X(t,) — X,|) over the entire integration interval [0, 10] rather than just the
errors at t = T'. The Milstein method was then run for 100 Wiener processes with a fixed
stepsize corresponding to the integration time divided by the average total (accepted plus
rejected) number of steps. The maximum error committed by the variable timestepping
algorithm is about 3 times smaller than that committed by the fixed timestepping equiv-
alent for each value of 7. There also appears to be approximate tolerance proportionality
occurring. As expected, for each tolerance, Fy > FE for almost every timestep so the
algorithm performs in a very similar manner to an ODE adaptive solver.

Table 2 was produced in exactly the same way for 8 = 1.5. The adaptive algorithm
now outperforms its fixed timestepping counterpart by approximately a factor of 10.
The last column displays the percentage of accepted timesteps on which F; > E. As
expected, reducing the tolerance results in a decrease in the proportion of steps where the
drift error estimate dominates. This is because £ = O(h?) while Ey = O(h?) and so E
will increasingly dominate as the timesteps decrease in size. However, the most striking
feature is the very low number of stepsize rejections, approximately 2-3%, which was one
of the main aims of the timestep selection procedure. This should be compared with the
much higher rejection rates reported for other algorithms [4, 18], typically 25% or more.

12



Table 2: Numerical results for § = 1.5.

‘ T ‘ Method H # Acc. Steps ] # Rej. steps ‘ Error ‘ E;>FE ‘
102 | Variable || 127 3 0.081 | 42%
Fixed 1.02
10=3 | Variable || 350 12 0.032 | 32%
Fixed 0.28
10=* | Variable || 1585 39 0.0079 | 23%
Fixed 0.081
Table 3: Numerical results for Test Problem 3.
‘ T ‘ Method H # Acc. Steps ‘ # Rej. steps ‘ Error ‘ Ey>FE ‘
10=2 | Variable || 43 1 0.052 | 50%
Fixed 0.16
1073 | Variable || 172 6 0.011 | 39%
Fixed 0.0309
10~* | Variable || 761 26 0.0029 | 24%
Fixed 0.014
The third test problem (see [13] and [20][4.4.27]) in 1t6 form is
dX = —sin(X)cos®(X) dt + cos*(X)dW, X(0)=0 (4.2)

with exact solution
X(t) = tan_l(W(t))

over the interval [0, 5]. However, when written in Stratonovich form we see that f(z) =0
and so is not suitable for use in the deterministic error control. This point is explored
further in the next section and is due to the very special nature of SDEs with exact
analytic solutions. The algorithm was in fact tested twice, once on (4.2) and once on
(4.2) but with the diffusion term modified to cos*(2X). This modified SDE does not
have an exact analytic solution but has similar characteristics to (4.2). In each case
the deterministic error control was based upon the Ito drift and the simulation results
were recorded exactly as for the first two test problems (for the modified version, the
numerical solution was compared against an extremely accurate fixed-timestep Milstein

approximation). The results were very similar and so only those for (4.2) are given in
Table 3.

The final test problem, also in It6 form is
1
dX = §X% dt+ X3dw,  X(0) =1 (4.3)
with exact solution .
X(0) = (1+ 5w ()
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Table 4: Numerical results for Test Problem 4.
‘ T ‘ Method ‘ # Acc. Steps ‘ # Rej. steps ‘ Error ‘ E;>FE ‘
1072 | Variable | 19 0 0.0027 | 22%
Fixed 0.0074
1072 | Variable || 55 1 0.00086 | 19%
Fixed 0.0032
10~* | Variable || 235 3 0.00011 | 17%
Fixed 0.00086

and T"= 1. Once again f = 0 but, as for the third test problem, this characteristic does
not appear to affect the performance of the algorithm significantly one way or the other.
The results are shown in Table 4. Once again there is a very low percentage of rejected
Milstein updates and a favorable comparison with the fixed Milstein scheme in terms of
required function evaluations to obtain a given accuracy.

5 Conclusions

The development and analysis of adaptive SDE solvers is still at a very early stage.
Even for problems with a single stochastic forcing being integrated using a low-order
method, the complicated nature of the local error expansion makes adaptivity a more
difficult and less rewarding task than in the ODE case. This complexity gets significantly
worse for multi-dimensional stochastic forcing (and also when using higher-order methods)
and the potential usefulness of adaptive methods in such cases has not yet clearly been
demonstrated.

The algorithm described above introduces two novel features, the use of a second (de-
terministic) error estimate and the possibility of early rejection of a candidate timestep
by simply examining the Brownian increment AW. Both these features are easily in-
corporated into the above algorithm because of the simple form of the Milstein method,
but variations of these ideas should also be applicable to algorithms based upon other
underlying schemes. The control of two error estimates, one using only the drift term and
the other using only the diffusion, also imparts desirable stability properties that will be
reported elsewhere (a detailed analysis of the stabilizing effects of adaptive error control
for ODE solvers can be found in [22]).

We conclude by demonstrating the potential inadequacy of certain model problems
such as those in Section 4, for testing sophisticated adaptive algorithms. The vast majority
of test problems that have been used in the literature to date have analytic, computable
solutions where at time ¢, X(¢) depends only upon W (t) (see [13][Chapter 4] for an
extensive list). Furthermore, they are derived either by setting f = 0 (as in (4.2) and
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(4.3)), or g = K f for some constant K # 0 (as in (4.1)) and then transforming to a linear
SDE. Both cases result in

fa=df (5.1)
and this induces considerable simplifications in the Taylor series of both the exact and

numerical solutions. For example, substitution of (5.1) into (2.6), together with the
relation Jig + Jo1 = hJ; results in a leading order local error for the Milstein method of

1 1
hJif'g + ngg”gg + an(g’)Qg +O(h?).

The additional numerical data, gathered from test problems similar to (4.1) (4.3) but not
satisfying (5.1), suggests that the numerical results in Section 4 are not due to the special
nature of the test problems.

However, for certain numerical methods, the effect of (5.1) upon the local error ex-
pansion may be even more significant. As an example we consider the explicit stochastic
Runge-Kutta method

m = Xn
2 2
o= X,+ ghf(m) + ngg(m)
1 3 1 3
X1 = X, + th(ﬁl) + th(772) + EJlg(m) + ZJ19(772)-

This method was introduced in [2] and has strong order 1 with minimized leading order
error constants. However, when applied to problems satisfying (5.1), this method results
in a greatly simplified truncation error

1
5/1(d) g+ OR?).

Thus test problems satisfying (5.1) may not always be suitable for evaluating the perfor-
mance of algorithms on more general problems.
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