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Abstract. We consider the behaviour of certain adaptive timestepping methods, based upon
embedded explicit Runge-Kutta pairs, when applied to dissipative ODEs. It has been observed
numerically that the standard local error controls can impart desirable stability properties, but this
has only been rigorously verified for very special, low-order, Runge-Kutta pairs.

The rooted-tree expansion of a certain quadratic form, central to the stability theory of Runge-
Kutta methods, is derived. This, together with key assumptions on the sequence of accepted
timesteps and the local error estimate, provides a general explanation for the observed stability
of such algorithms on dissipative problems. Under these assumptions, which are expected to hold for
‘typical’ numerical trajectories, two different results are proved. Firstly, for a large class of embedded
Runge-Kutta pairs of order (1, 2), controlled on an error-per-unit-step basis, all such numerical tra-
jectories will eventually enter a particular bounded set. This occurs for sufficiently small tolerances
independent of the initial conditions. Secondly, for pairs of arbitrary orders (p−1, p), operating under
either error-per-step or error-per-unit-step control, similar results are obtained when an additional
structural assumption (that should be valid for many cases of interest) is imposed on the dissipative
vector field. Numerical results support both the analysis and the assumptions made.
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1. Introduction. We consider adaptive timestepping ODE solvers applied to
initial value problems for an autonomous system of ODEs

du

dt
= f(u), u(0) = U (1.1)

where u(t) ∈ R
m. Furthermore, the Lipschitz continuous vector field f satisfies the

following structural assumption
(D) ∃α ≥ 0, β > 0 : ∀u ∈ R

m, 〈f(u), u〉 ≤ α − β‖u‖2,
where the norm ‖ · ‖ is that induced by the inner product 〈·, ·〉.

A bounded closed set B is a bounded absorbing set for (1.1) if ∀U ∈ R
m, ∃t∗ =

t∗(U) such that u(t) ∈ B ∀t ≥ t∗. If a bounded absorbing set exists then (1.1)
is termed dissipative. Under the structural assumption (D), (1.1) is dissipative as
stated in the following theorem [16].

Theorem 1.1. Let B(v, r) be the closed ball with centre v, radius r using the
norm ‖ · ‖. Then assumption (D) implies the existence of bounded absorbing sets
B = B(0,

√

(α + ε)/β) ∀ε > 0.
The structural assumption (D) has played an important role in nonlinear sta-

bility theory, where the aim is to find conditions under which numerical schemes,
when regarded as discrete dynamical systems, preserve various qualitative asymp-
totic features of the original ODE (such as the existence of bounded absorbing sets).
However, the vast majority of this body of work only applies to methods employing
a fixed timestep, whereas most algorithms used in practice allow the timesteps to
change from one step to the next. In the algorithms considered here, the timesteps
are chosen so as to control an estimate of the local (one-step) error and this adaptive
timestepping approach can result in extremely impressive efficiency gains.
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Even though the standard error controls were not designed with stability in mind,
it has been observed that such adaptive timestepping algorithms often have much
better stability properties than their fixed-timestepping counterparts. This paper
addresses the questions of when, and how, the stepsizes induced by the local error
control will confer desirable stability properties upon the adaptive numerical method.

As mentioned above, there have been many investigations into the stability prop-
erties of Runge-Kutta methods with a fixed timestep, under various structural as-
sumptions (e.g. [2, 1, 5, 9, 18]). We now provide a brief outline of the relevant results
for dissipativity. Consider a general (implicit or explicit) s-stage Runge-Kutta scheme
for (1.1) with timestep h

ηi = Un + h

s
∑

j=1

aijf(ηj), i = 1, . . . , s , (1.2)

Un+1 = Un + h

s
∑

i=1

bif(ηi) (1.3)

and define the vector b = (b1, . . . , bs)
T and matrices A and B by A(i, j) = aij and

B = diag(b).
Equations (1.2) and (1.3), after standard manipulations (see, for example, [18]),

imply that

‖Un+1‖
2 = ‖Un‖

2 + 2h
s
∑

i=1

bi〈ηi, f(ηi)〉 − h2
s
∑

i,j=1

mij〈f(ηi), f(ηj)〉

where mij = M(i, j) with M = BA + AT B − bT b. Under the structural assumption
(D), with B positive semi-definite, and using the same norm ‖ · ‖ and inner product
〈·, ·〉, we obtain

‖Un+1‖
2 ≤ ‖Un‖

2 + 2h

s
∑

i=1

bi(α − β‖ηi‖
2) − h2

s
∑

i,j=1

mij〈f(ηi), f(ηj)〉. (1.4)

The Runge-Kutta method is termed algebraically stable if the matrices M and B are
both positive semi-definite. The condition on M ensures that the quadratic form

h2
s
∑

i,j=1

mij〈f(ηi), f(ηj)〉 (1.5)

is non-negative while the condition on B is used to show that the quantities bi(α −
β‖ηi‖

2) are negative outside a ball of sufficiently large radius in the norm ‖ · ‖. To-
gether these imply the existence of bounded absorbing sets for the discrete dynamical
system defined by the numerical scheme for all h > 0. Thus the algebraic stability of
the numerical scheme ensures that the property of dissipativity is transferred to the
numerical approximation. However, M cannot be positive semi-definite for explicit
Runge-Kutta methods and so all algebraically stable methods are necessarily implicit.
Indeed, explicit Runge-Kutta methods using a fixed timestep often have very poor
stability properties.

We now return to our discussion of adaptive schemes. While the quadratic form
(1.5) cannot be forced to be non-negative for a non-algebraically-stable method, we
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shall show that, under certain conditions, the constraints imposed upon the timestep
sizes by the local error control will also effectively bound the magnitude of (1.5) (as
opposed to its sign). Then, for a Runge-Kutta method with B positive definite, outside
a ball of sufficiently large radius the single-summation term in (1.4) will be shown to
dominate and the norm of the numerical solution decrease. This idea underlies the
approach introduced in this paper.

The class of adaptive schemes that will be analyzed is now defined. We set U0 = U
and iteratively generate Un+1 from Un using a timestep hn. The equations defining a
general embedded explicit Runge-Kutta pair with s stages are

ηi = Un + hn

s
∑

j=1

aijf(ηj), i = 1, . . . , s, (1.6)

Vn+1 = Un + hn

s
∑

i=1

bif(ηi), (1.7)

Wn+1 = Un + hn

s
∑

i=1

bif(ηi). (1.8)

Such a Runge-Kutta pair, with orders p−1 and p, will be referred to as a (p−1, p) pair.
We shall assume that the higher-order method is represented by the weights b1, . . . , bs

and the lower-order method by b1, . . . , bs. Thus Un+1 = Vn+1 when the higher-order
method is used to advance the solution (extrapolation mode) and Un+1 = Wn+1

otherwise (non-extrapolation mode). To complement the definitions of A,B and b,
let b = (b1, . . . , bs)

T and B = diag(b).
The local error estimate E(Un, hn) is defined as the difference between the two

approximations,

E(Un, hn) := Wn+1 − Vn+1.

The user defines a tolerance τ , and the timesteps must satisfy the following standard
local error control

‖E(Un, hn)‖ ≤ σ(τ, Un)hρ
n (1.9)

where ρ = 0 for error-per-step control and ρ = 1 for error-per-unit-step control.
The quantity σ(τ, Un) is a quantity closely related to the tolerance τ , and indeed may
simply be equal to τ . However we wish to allow for the possibility of absolute, relative
and mixed error controls. There are various ways in which this can be done but for
simplicity we shall require only that there exists some constant C1 > 0 such that

σ(τ, u) ≤ C1τ‖u‖ ∀u ∈ R
m. (1.10)

It should be noted that absolute or mixed error controls will need to be modified
on some neighbourhood of the origin in order to satisfy (1.10). However we will
be concerned exclusively with trajectories that lie entirely outside of (large) balls
centred upon the origin and the choice of (1.10) will help to streamline the analysis.
For simplicity, the norms used in (1.9) and (1.10) and throughout the rest of the paper
are the same as in (D).

We thus have four possible modes of operation depending upon the choice of
solution-advancing method and type of error control. EPS and EPUS will denote
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error-per-step and error-per-unit step modes respectively in non-extrapolation mode
while XEPS and XEPUS are their extrapolation counterparts. We also assume the
existence of a maximum timestep hmax, independent of τ , which is a very common
feature of adaptive algorithms. Throughout, we assume that the vector field f is
sufficiently smooth on R

m. These smoothness requirements are determined only by
the order of the Runge-Kutta methods used to form the local error estimate. Note
that no further details of the algorithm need to be specified, in particular the way in
which candidate timesteps are generated. All that is required is that the error control
(1.9) is satisfied at every timestep.

While no explicit Runge-Kutta method can be algebraically stable, it has been
observed [6, 18] that adaptive timestepping methods based upon explicit schemes do,
for certain combinations of dissipative test problems and mode of operation, seem
to have some desirable stability properties (see also [13] for a discussion of stability
with regard to the existence of spurious fixed points). In particular, the numerical
schemes appear to be dissipative. Of course, no amount of numerical testing can
prove the existence of a bounded absorbing set for all initial data but the results do
suggest that, with an extremely high degree of certainty, numerical trajectories enter
and then remain within an ‘absorbing set’ close to B(0,

√

α/β).
There have been previous analyses of the behaviour of adaptive methods on dissi-

pative ODEs that have attempted to explain this phenomenon. In [17], it was proved
that very special, embedded explicit Runge-Kutta pairs generate a solution that, at
each step, is a small perturbation of the solution generated by using a corresponding
(implicit) algebraically stable method. In this way, the stability characteristics of this
related scheme are transferred to the explicit pair. Such pairs were termed essen-
tially algebraically stable and an order barrier for (p − 1, p) pairs, namely that p ≤ 5,
was proved. For these pairs, applied to ODEs satisfying (D), under no additional
assumptions and with an absolute error control, two different results were proved.
The first, which is a discrete analogue of Theorem 1.1, stated that when such a pair
is used in EPUS or XEPUS modes the numerical scheme has a bounded absorbing
set for all sufficiently small tolerances τ , independent of the initial data. The second
result, which is significantly weaker, states that for the same pairs operating in EPS
or XEPS modes, each numerical trajectory will again eventually enter a particular
bounded absorbing set but now the required tolerance does depend upon the initial
data.

The independence of τ with respect to initial conditions is desirable, not just
from a computational point of view, but also theoretically since it allows us to regard
the numerical method, for a fixed sufficiently small tolerance, as a dynamical system
with similar asymptotic behaviour to the underlying ODE for all initial conditions.
However, the set of essentially algebraically stable pairs forms a very small subset of
pairs currently employed and are necessarily of low-order.

A second analysis [8] took a different approach. There it was assumed, for a
general adaptive method under EPUS control, that the actual one-step truncation
errors T (Un, hn) (rather than the one-step error estimates) were correctly controlled
at every step, in particular that

T (Un, hn) ≤ K(U)τhn

occurred at every timestep, for some constant K(U). Using this assumption that the
error control works correctly, positive stability results were proved for general adaptive
schemes but only in the much weaker sense that the required tolerance depended upon
the initial data.
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Any stability properties introduced to an explicit Runge-Kutta method via a
local error control are due to the size of the accepted steps. However neither of the
analyses described above explicitly consider the actual timestep sequences generated
by the method (and they also only considered the case of absolute error control). In
order to obtain tighter and/or more general results it is therefore natural to consider
closely the timestep sequence itself, and this forms another motivation for our analysis.

The paper is organized as follows. In section 2, for a Runge-Kutta method of order
r, an expansion of the quadratic form (1.5) is derived and the leading order term is
proved to be at least O(hr+1). In Section 3 we then use this expansion, together with
the corresponding expansion of the local error estimate E(Un, hn) at each timestep,
to state and justify our two key assumptions on the numerical trajectory. The first
assumption takes the form of an upper bound on the timesteps used at each point in
the phase space. The second assumption is that controlling the local error estimate
also bounds the magnitude of the quadratic form (1.5) at each timestep. It must be
emphasized that the justification for these assumptions is that they are expected to
hold for every timestep along ‘typical’ numerical trajectories but it seems likely that
for most vector fields satisfying (D) there will be ‘atypical’ numerical trajectories
where, at one or more timesteps, they do not hold. Even when these extreme events
occur, the fact that the assumptions hold for most of the timesteps should help to
preserve the qualitative asymptotic features of the numerical trajectory.

We do not attempt to quantify the ways in which our assumptions can be violated
and this is unsatisfactory from a rigorous mathematical viewpoint. However, using
these assumptions, we shall gain valuable insights into how these algorithms behave on
most simulations. The studies [15, 11, 12] have shown that even when considering the
convergence to the exact solution, as τ → 0, of adaptive timestepping algorithms over
finite time intervals and compact sets of initial data — arguably a more fundamental
property — there are mechanisms that can give rise to the breakdown of convergence.
These arise because of the possibility that the leading term of the error estimate
may vanish at some point along the exact trajectory, resulting in a local increase in
the size of the accepted timesteps and potential loss of convergence (or, more likely,
a reduction in the rate of convergence). However, at least for generic vector fields,
the probability of convergence failure is extremely small. These previous studies
have therefore already demonstrated that a ‘worst-case analysis’ is not necessarily
appropriate in the context of ODE solvers, since the very small probability of failure
to converge is outweighed by the superior efficiency of adaptive algorithms. In fact
the situation facing us here, where we are concerned with stability properties, is very
much better than that for convergence properties. This is because convergence can
be destroyed by a single ‘bad’ timestep whereas asymptotic qualitative properties are
very likely to be robust in the presence of such extreme events. Nevertheless, it is
hoped that the analysis presented here will stimulate further work into justifying or
weakening the assumptions made.

In Section 4, we present the main results. Firstly, for embedded explicit Runge-
Kutta pairs of order (1,2), operating in EPUS or XEPUS modes with B positive-
definite, any numerical trajectory satisfying the assumptions of Section 3 will even-
tually enter a particular bounded set, for all sufficiently small τ independent of U .
Secondly, motivated by the analysis, we introduce an additional structural assumption
on the vector field f :

(D′) ∃γ > 0, R > 0 : 〈f(u), u〉 ≤ −γ‖f(u)‖‖u‖ ∀‖u‖ ≥ R.

Intuitively this structural assumption implies that, for sufficiently large ‖u‖, the vector
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field points inwards everywhere at some definite minimum non-zero angle and holds
for many ODEs of interest. In particular, vector fields satisfying (D) or (D′) (or both)
are not necessarily globally Lipschitz. Assuming that (D), (D′) and the assumptions
on the numerical trajectory hold, then for sufficiently small τ independent of initial
data, for arbitrary embedded (p − 1, p) pairs with B positive-definite in any mode of
operation, a similar result is proved. Finally in Section 5, we present numerical results
that support both the assumptions made in Section 3 and the results of Section 4.

2. Order Conditions and the matrix M . The Taylor series expansions in
powers of h of both the exact solution to (1.1) and the one-step Runge-Kutta approx-
imation, over some time interval [s, s+h], consist of multiples of expressions involving
f and its higher derivatives which rapidly become very complicated. We therefore first
recall some necessary definitions and terminology from the rooted tree description of
Taylor series expansions. This theory was developed by Butcher and the reader is
directed towards [3, 4] for full details of all the notation, definitions and results up to
and including (2.3).

A rooted tree is an unlabeled connected graph containing no cycles and with one
node identified as the ‘root’. Each rooted tree with precisely n nodes corresponds
uniquely to one term (of many) appearing at order hn in the Taylor series. Each
term is a multiple of an elementary differential of order n and this correspondence
is achieved as follows. Let f i

j1,j2,...,jr
denote the rth partial derivative of the ith

component of f with respect to the components j1, j2, . . . , jr. Now attach the label
i to the root of the tree and labels j, k, l . . . to the other nodes. Then for each node,
write down f with a superscript equal to the label of that node and subscripts given
by the other nodes that are directly connected to it on the side away from the root
node. For example, the rooted tree

i

j

k

m

o p

q

n

l

corresponds to the product f i
jnf j

klf
kf l

mfmfn
opqf

ofpfq (using the summation conven-

tion over repeated indices) which is the ith component of one particular elementary
differential of order 9. Repeating the above process for each value of the index i
provides each component of the elementary differential corresponding to the above
(unlabeled) rooted tree. The elementary differential corresponding to a particular
tree t will be denoted by the function F (t) : R

m → R
m.

The set of all rooted trees, denoted by T , is defined recursively as follows. The
rooted tree consisting of a single node is defined as τ and any rooted tree t can be
built up by joining trees t1, . . . , tk to a new root. The rooted tree t is then written as
t = [t1, . . . , tk] (note that the order is unimportant) and m repetitions of a tree ti are
denoted by tmi .

We now recall some important functions that can be defined on the set T . The
function ρ(t) is simply the number of nodes in t. The next three functions γ(t), σ(t)
and α(t) have important combinatorial interpretations ([3][Section 144]) and also allow
for an elegant statement of Taylor series expansions. However the following recursive
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definitions, also due to Butcher, are the more relevant for our purposes:

γ(τ) = 1, = γ([t1, . . . , tk]) = ρ([t1, . . . , tk])

k
∏

j=1

γ(tj) (2.1)

and

σ(τ) = 1, σ([tn1

1 , . . . , tnk

k ]) = n1!n2! . . . nk!
k
∏

j=1

σ(tj)
nj

where the trees t1, . . . , tk are all distinct. Finally the function α(t) is defined by

α(t) =
ρ(t)!

γ(t)σ(t)
.

In [3] it is then proved that the Taylor series for the exact solution of (1.1) at time
s + h is

u(s + h) = u(s) +
∑

t∈T

α(t)

ρ(t)!
hρ(t)F (t)(u(s)). (2.2)

The one-step numerical approximation, ũ(s + h) can also be expressed in terms
of elementary differentials. For a given rooted tree t and Runge-Kutta method (de-
termined by (1.2) and (1.3)) we define the elementary weight Φ(t) as follows. Label
the root of the tree i and attach labels to the other vertices. For every edge con-
necting vertices u and v, write down a factor auv where u is the vertex closer to the
root. Insert a final factor bi, corresponding to the root, form the product of the above
factors and then sum every index over all of the stages. Thus the elementary weight
corresponding to the tree drawn above is

Φ(t) =

s
∑

i,j,k,l,m,n,o,p,q=1

biaijajkajlalmainanoanpanq.

Now the numerical approximation can be expanded as

ũ(s + h) = u(s) +
∑

t∈T

γ(t)α(t)Φ(t)

ρ(t)!
hρ(t)F (t)(u(s)). (2.3)

By comparing (2.2) and (2.3), Butcher proved that a necessary and sufficient condition
for a Runge-Kutta method to be order precisely p is that Φ(t) = 1/γ(t) for all rooted
trees t with ρ(t) ≤ p, but not for at least one tree t with ρ(t) = p + 1.

The above definitions and results now enable us to prove a new expansion for the
quadratic form (1.5).

Lemma 2.1. Let the stages η1, . . . , ηs be generated by a Runge-Kutta method of
order r using a timestep h from a solution value u. Then there exists an integer
q ≥ r + 1 and scalar-valued functions G1(u) and G2(u, h) such that G2(u, 0) = 0 and

h2
s
∑

i,j=1

mij〈f(ηi), f(ηj)〉 = hq(G1(u) + hG2(u, h)). (2.4)
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Proof. Consider an arbitrary rooted tree t. Comparison of the Taylor series
expansion of the numerical solution (2.3) with (1.3) shows that each of the terms
hf(ηi) can be expanded as

hf(ηi) =
∑

t∈T

γ(t)α(t)Φi(t)

ρ(t)!
hρ(t)F (t)(u)

where each term Φi(t) is derived from Φ(t) by deleting both the factor bi and the
summation over the index i. Note that each Φi(t) has precisely ρ(t) − 1 factors. Let
us now fix trees T1 and T2 (not necessarily distinct) and consider the coefficient of
〈F (T1)(u), F (T2)(u)〉 in the expansion of (1.5). Using the definition of the matrix M ,
this is

(2 − IT1=T2
) hρ(T1)+ρ(T2)

α(T1)α(T2)γ(T1)γ(T2)

ρ(T1)!ρ(T2)!

s
∑

i,j=1

[Φi(T1)Φj(T2)biaij + Φi(T1)Φj(T2)bjaji

−Φi(T1)Φj(T2)bibj ] (2.5)

where IT1=T2
= 1 if T1 = T2 and 0 otherwise.

We now introduce some new notation. Given two trees T1 = [s1, . . . sm] and
T2 = [t1, . . . tn] (where m = 0 or n = 0 correspond to T1 = τ or T2 = τ respectively)
we define the tree T1 ↗ T2 := [s1, . . . , sm, T2], which is the tree with ρ(T1) + ρ(T2)
nodes obtained by adding a single edge between the roots of T1 and T2 and keeping
the root of T1 as the root of the new tree. Similarly, T2 ↗ T1 := [t1, . . . , tn, T1]. Thus
the first term in the summand of (2.5), after summation, corresponds to Φ(T1 ↗ T2),
the second term corresponds to Φ(T2 ↗ T1) and the third term to Φ(T1)Φ(T2).

Let us now assume that ρ(T1) + ρ(T2) ≤ r. Then this coefficient vanishes if

Φ(T1 ↗ T2) + Φ(T2 ↗ T1) = Φ(T1)Φ(T2). (2.6)

But since the Runge-Kutta method is of order r this is equivalent to the condition
that

1

γ(T1 ↗ T2)
+

1

γ(T2 ↗ T1)
=

1

γ(T1)γ(T2)
. (2.7)

This is easily proved via (2.1), the recursive definition of γ. For let us suppose first
that T1 6= τ 6= T2. Then

γ(T1) = ρ(T1)γ(s1) . . . γ(sm)

γ(T2) = ρ(T2)γ(t1) . . . γ(tn)

γ(T1 ↗ T2) = [ρ(T1) + ρ(T2)]ρ(T2)γ(s1) . . . γ(sm)γ(t1) . . . γ(tn)

γ(T2 ↗ T1) = [ρ(T1) + ρ(T2)]ρ(T1)γ(t1) . . . γ(tn)γ(s1) . . . γ(sm)

and (2.7) easily follows. The remaining cases when either T1 = τ or T2 = τ are also
easily verified.

Thus

h2
s
∑

i,j=1

mij〈f(ηi), f(ηj)〉 = hq(G1(u) + hG2(u, h))
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for some q ≥ r + 1, with the function G1(u) being the sum of inner products of
elementary differentials where the nodes in the corresponding rooted trees sum to
precisely q, and the function G2(u, h) comprising the higher-order terms.

The possibility of q > r + 1 in the statement of Lemma 2.1 arises because, for a
pair of trees T1, T2 with ρ(T1) + ρ(T2) = n > r, the Runge-Kutta method being of
order n is a sufficient, but not a necessary, condition for (2.6) to be satisfied. This is
in fact the case for the improved Euler (Heun) method where (2.6) is also satisfied for
the unique pair of rooted trees whose nodes sum to 3. Thus q = 4 even though r = 2.

3. Assumptions. We now turn to the assumptions necessary for the analysis
and results of Section 4. Once again, the purpose of these results is to provide an
explanation of the observed behaviour of explicit Runge-Kutta pairs for ‘typical’ nu-
merical trajectories of ‘typical’ vector fields. For the vast majority of adaptive schemes
(i.e. apart from ones utilizing essentially algebraically stable pairs) it would appear
that no results are possible without such assumptions. As mentioned in the introduc-
tion, similar problems arise when proving convergence results for adaptive algorithms,
even for finite-time initial value problems on compact domains. This is because any
method based upon a local error estimate can behave badly, even if only for a single
timestep, by a sufficiently unfortunate (or devious) combination of vector field, so-
lution value and candidate timestep. However, both of the assumptions stated and
justified below are numerically verified for every single timestep used to advance the
solutions in the numerical experiments of Section 5.

Assumption 1. If the local error estimate is derived from a (p − 1, p) explicit
Runge-Kutta pair then, for all sufficiently small τ > 0, there exists a constant K1 > 0,
independent of U , such that for each accepted timestep hn

hp−ρ
n ≤ K1

σ(τ, Un)

‖f(Un)‖
. (3.1)

The intuitive reason for this assumption can be seen by following [15, 11] and
expanding the local error estimate as

E(Un, hn) = hp
n (B1(Un) + hnB2(Un, hn)) (3.2)

= hp
n‖f(Un)‖

(

B̃1(Un) + hnB̃2(Un, hn)
)

. (3.3)

In (3.3) the expansion has simply been rescaled by a factor of ‖f(Un)‖. Now let us
suppose that the function ‖B1(u)‖ is bounded away from zero along the numerical
trajectory. Then if the error control is working correctly (for sufficiently small τ),
and the accepted timesteps are controlled by the (non-vanishing) leading-order term
of the expansion (3.2), we see that (3.1) immediately follows.

In [15, 11, 10], rigorous proofs of the upper bound (3.1) on the sequence of accepted
timesteps are obtained via induction arguments for sufficiently small τ , but only for
numerical trajectories lying inside a predefined compact set on which B1(u) is bounded
away from zero. By restricting ourselves to ODEs satisfying (D), we now argue that
(3.1) will only fail to hold in exceptional cases, for any initial data.

Note first that under assumption (D), f(u) 6= 0 outside the ball B(0,
√

α/β).
Thus, outside this ball, the leading order term of the error estimate can only vanish
if B̃1 does. But B̃1 : R

m → R
m and so, for typical vector fields will only vanish at

isolated points in the phase space. In order to obtain (3.1) from (3.3), we assume the
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existence of constants K,K ′ > 0 (independent of τ and Un) for τ sufficiently small
such that at each step of the numerical trajectory

σ(Un, τ) ≥ ‖E(Un, hn)‖/hρ
n ≥ Khp−ρ

n max (B1(u), hnB2(Un, hn))

≥ Khp−ρ
n ‖B1(u)‖

≥ KK ′‖f(Un)‖hp−ρ
n

leading immediately to (3.1) with K1 = 1/KK ′. The existence of the constant K > 0
is equivalent to assuming that at each step no catastrophic cancellation occurs between
B1 and hnB2. In order to justify the existence of the constant K ′ > 0 we need to
demonstrate that, under assumption (D), ‖B̃1(u)‖ does not tend to 0 as ‖u‖ → ∞ in
any direction. We achieve this by showing that at least one of the rescaled elementary
differentials comprising B̃1(u) cannot vanish as ‖u‖ → ∞.

Let us suppose that the lower-order method of the pair does not increase its or-
der on linear constant-coefficient problems.1 Then B1(u) must contain an elementary
differential of the form cf ′(u)p−1f(u) with coefficient c 6= 0 (the rooted trees cor-
responding to such elementary differentials are often referred to as ‘tall trees’ and
contain no branches). Under the structural assumption (D), ‖f(u)‖ must increase at
least as fast as O(‖u‖) for sufficiently large ‖u‖ in any given direction. Thus ‖f ′(u)‖
and ‖cf ′(u)p−1f(u)‖/‖f(u)‖ cannot tend to 0 as ‖u‖ → ∞ (although for pathologi-
cal vector fields, f ′(u) may equal zero on arbitrarily large compact sets in the phase
space). We now appeal once again to the principle that catastrophic cancellation (this
time between the weighted and rescaled elementary differentials comprising B̃1(u)) oc-
curs negligibly often, giving B̃1(u) 6→ 0 as ‖u‖ → ∞ in any direction. This completes
our justification of (3.1).

It should be noted that for a linear constant-coefficient ODE satisfying (D),
‖B̃1(u)‖ is a non-zero constant but for certain nonlinear problems we can expect
‖B̃1(u)‖ to grow as ‖u‖ grows. Thus for particular classes of nonlinear problem it
may be possible to strengthen the upper bound on the timestep sequence in Assump-
tion 1 considerably (this is confirmed by numerical computations but we shall not
explore this point further).

The second assumption states that the error control, which is of course designed
to bound the local error estimate, also provides a bound on the magnitude of the
quadratic form (1.5) for typical timesteps.

Assumption 2. For all sufficiently small τ there exists a constant K2 > 0,
independent of U , such that at each timestep along the numerical trajectory

∣

∣

∣

∣

∣

∣

h2
n

s
∑

i,j=1

mij〈f(ηi), f(ηj)〉

∣

∣

∣

∣

∣

∣

≤ K2σ(τ, Un)h1+ρ
n ‖f(Un)‖ (3.4)

where the matrix M is the stability matrix for the higher-order method of the (p-1,p)
Runge-Kutta pair.

1If this mild condition is violated then the method behaves substantially differently for such
problems. Indeed if the (p−1, p) pair has precisely p stages then the local error estimate E(u, h) ≡ 0
and the error control fails completely. The reader is directed to [11] for further discussion of this
point. We simply note that most embedded pairs used in practice satisfy this criterion.
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We start our justification of Assumption 2 by defining

Ê(Un, hn) :=

∣

∣

∣

∣

∣

∣

hn

s
∑

j=1

〈E(Un, hn), f(ηj)〉

∣

∣

∣

∣

∣

∣

(3.5)

=

∣

∣

∣

∣

∣

∣

h2
n

s
∑

i,j=1

(bi − bi)〈f(ηi), f(ηj)〉

∣

∣

∣

∣

∣

∣

. (3.6)

The enforcement of the local error control (1.9) now allows us to bound Ê(Un, hn)
from above, since

Ê(Un, hn) ≤ hn

s
∑

j=1

‖E‖ ‖f(ηj)‖

≤ sσ(τ, Un)h1+ρ
n max

j=1,...,s
‖f(ηj)‖. (3.7)

We now compare the expansion (3.6) for Ê with that of the (absolute value of
the) quadratic form for the higher-order method (1.5). From the proof of Lemma 2.1,
(1.5) is a linear combination of inner products of elementary differentials. Reverting
to the rooted tree description of elementary differentials, the only inner products
〈F (T1)(u), F (T2)(u)〉 appearing in the expansion are those for which ρ(T1) + ρ(T2) ≥

p+1, and their coefficients are of order h
ρ(T1)+ρ(T2)
n . The corresponding expansion for

Ê contains those inner products 〈F (T1)(u), F (T2)(u)〉 for which max(ρ(T1), ρ(T2)) ≥

p, once again with coefficients of order h
ρ(T1)+ρ(T2)
n .

Note that the expansion of (1.5) therefore contains a (finite) number of additional
inner products not appearing in that of Ê. However these inner products are closely
related to others that are common to both expansions and so our assumption reduces
to the observation that control of the quantity Ê should effectively control (1.5) to
within some constant. Assumption 2 now follows immediately from (3.7) by assuming
that maxj=1,...,s ‖f(ηj)‖ is always close to ‖f(Un)‖, which of course should be the case,
barring any catastrophic cancellations in the formation of the error estimate.

In principle, Assumptions 1 and 2 could be weakened considerably by, for example,
only requiring that (3.1) and (3.4) hold, for a given K1 and K2, on a sufficiently
large proportion of the numerical timesteps. However an analysis resting on such
assumptions would become far more difficult, without generating any new insights
into the mechanisms leading to effective numerical stability.

4. Results. Using Assumptions 1 and 2 we are now ready to prove the main
results. We start by considering the case of embedded explicit Runge-Kutta pairs
with order (1,2) in either EPUS or XEPUS modes.

Theorem 4.1. Consider an embedded explicit Runge-Kutta pair of order (1,2),
under either EPUS or XEPUS control, where the higher-order method has positive
weights. If Assumptions 1 and 2 are satisfied and the ODE (1.1) satisfies (D) then
∃τ∗ > 0 such that ∀τ ≤ τ∗ the numerical trajectory eventually enters a compact set
independent of τ, U .

Proof. The tolerance τ is chosen sufficiently small such that Assumptions 1 and 2
are satisfied. We first consider advancing the numerical solution using the higher-order
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method (extrapolation mode). From (D) we have

‖Vn+1‖
2 = ‖Un‖

2 + 2hn

s
∑

i=1

bi〈ηi, f(ηi)〉 − h2
n

s
∑

i,j=1

mij〈f(ηi), f(ηj)〉 (4.1)

≤ ‖Un‖
2 + 2hn

s
∑

i=1

bi(α − β‖ηi‖
2) − h2

n

s
∑

i,j=1

mij〈f(ηi), f(ηj)〉. (4.2)

We now proceed by bounding the absolute value of the last term and, for sufficiently
small τ , absorbing it into the previous one. From Assumptions 1 and 2 and (1.10),

∣

∣

∣

∣

∣

∣

h2
n

s
∑

i,j=1

mij〈f(ηi), f(ηj)〉

∣

∣

∣

∣

∣

∣

≤ K2σ(τ, Un)h2
n‖f(Un)‖ (4.3)

≤ K1K2hnσ(τ, Un)2 (4.4)

≤ C2
1K1K2hnτ2‖Un‖

2. (4.5)

Now fix 0 < β̃ < β and substitute (4.5) into the last term of (4.2) with

τ <

√

2b1(β − β̃)

C2
1K1K2

.

Noting that η1 = Un for explicit Runge-Kutta methods, we obtain

‖Vn+1‖
2 ≤ ‖Un‖

2 + 2hn

s
∑

i=1

bi(α − β̃‖ηi‖
2) (4.6)

The proof now proceeds exactly as in [17][Lemma 4.2 and Theorem DC1] by showing
that the norm of the numerical solution strictly decreases until it enters, for any ε > 0,

the compact set S = B(0,
√

α+ε

β̃
+ hmaxK) where

K = max
‖ηi‖≤γi






2

s
∑

i,j=1

bieij〈ηi, f(ηi)〉 + hmax

s
∑

i=1

bi

∥

∥

∥

∥

∥

∥

s
∑

j=1

eijf(ηj)

∥

∥

∥

∥

∥

∥

2





(4.7)

and

eij := bj − aij , γ2
i :=

α

β̃bi

.

We now consider the non-extrapolation case. From the local error control (1.9),

‖Wn+1‖
2 − ‖Vn+1‖

2 = 〈Wn+1 + Vn+1,Wn+1 − Vn+1〉

≤ ‖Wn+1 + Vn+1‖ ‖Wn+1 − Vn+1‖

≤ ‖Wn+1 + Vn+1‖σ(τ, Un)hn

≤ 2‖Vn+1‖σ(τ, Un)hn + σ2(τ, Un)h2
n.

While the numerical trajectory is outside the compact set B(0,
√

α+ε

β̃
+ hmaxK), we

have already proved that, for sufficiently small τ , ‖Vn+1‖ ≤ ‖Un‖ implying

‖Wn+1‖
2 − ‖Vn+1‖

2 ≤ 2‖Un‖σ(τ, Un)hn + σ2(τ, Un)h2
n

≤ 2C1τ‖Un‖
2hn + C2

1τ2‖Un‖
2h2

n. (4.8)
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Thus, the bound on ‖Vn+1‖
2 from (4.6) may be invoked in (4.8) to give

‖Wn+1‖
2 ≤ ‖Un‖

2+2hn

s
∑

i=1

bi(α−β̃‖ηi‖
2)+2C1τ‖Un‖

2hn+C2
1τ2‖Un‖

2hnhmax. (4.9)

The argument now concludes in a very similar fashion to the extrapolation case.
After reducing the tolerance τ further if necessary, the last two terms of (4.9) can
be absorbed into the preceding term by reducing β̃ once more, and then redefining
(increasing) K to K̃ via (4.7). This then proves that the numerical solution enters a

set B(0,
√

α+ε

β̃
+ hmaxK̃) as required.

Theorem 4.1 only states that numerical trajectories will enter a particular compact
set, which is not necessarily close to the set B(0,

√

α/β). However, once a numerical
trajectory has entered this set, finite-time convergence results, such as those in con-
tained in [15, 12], can be applied to prove that typical numerical trajectories (possibly
after a further reduction in τ) will enter and remain within O(τ) of the absorbing set
B(0,

√

α/β) of the ODE (1.1). Furthermore in [10], and under additional assump-
tions, the existence of a (local) numerical attractor that is upper-semicontinuous to
the global attractor of (1.1), can be proved.

We now prove a more general result, applicable to embedded Runge-Kutta pairs
of any order and under any mode of operation. Note also that Assumption 1 is no
longer required.

Theorem 4.2. Consider an adaptive embedded Runge-Kutta pair of any order
(p− 1, p), operating in EPS, XEPS, EPUS or XEPUS modes, where the higher-order
method has positive weights. If Assumption 2 holds and the ODE (1.1) satisfies both
(D) and (D′) then ∃τ∗ > 0 such that ∀τ ≤ τ∗ the numerical trajectory eventually
enters a compact set independent of τ, U .

Proof. Again we consider the extrapolation case first. From Assumption 2 and
(1.10),

∣

∣

∣

∣

∣

∣

h2
n

s
∑

i,j=1

mij〈f(ηi), f(ηj)〉

∣

∣

∣

∣

∣

∣

≤ K2C1‖Un‖ ‖f(Un)‖τh1+ρ
n

which upon substituting into (4.1) gives

‖Vn+1‖
2 ≤ ‖Un‖

2 + 2hn

s
∑

i=1

bi〈ηi, f(ηi)〉 + K2C1‖Un‖ ‖f(Un)‖τh1+ρ
n

= ‖Un‖
2 + hnb1〈η1, f(η1)〉 + 2hn

s
∑

i=1

b̂i〈ηi, f(ηi)〉

+K2C1‖Un‖ ‖f(Un)‖τh1+ρ
n

where b̂1 = 1
2b1 and b̂i = bi, i = 2, . . . , s. We now assume that ‖Un‖ > R and using

(D′) obtain

‖Vn+1‖
2 ≤ ‖Un‖

2 − hnb1γ‖Un‖ ‖f(Un)‖ + 2hn

s
∑

i=1

b̂i〈ηi, f(ηi)〉

+K2C1‖Un‖ ‖f(Un)‖τh1+ρ
n
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Choosing

τ ≤
b1γ

K2C1 max(1, hmax)ρ

and applying (D) we have

‖Vn+1‖
2 ≤ ‖Un‖

2 + 2hn

s
∑

i=1

b̂i(α − β‖ηi‖
2).

Next we define β̃ = β/2 to give

‖Vn+1‖
2 ≤ ‖Un‖

2 + 2hn

s
∑

i=1

bi(α − β‖ηi‖
2) − hnb1(α − β‖η1‖

2)

≤ ‖Un‖
2 + 2hn

s
∑

i=1

bi(α − β̃‖ηi‖
2) − hnb1α

≤ ‖Un‖
2 + 2hn

s
∑

i=1

bi(α − β̃‖ηi‖
2). (4.10)

which is identical to (4.6). Thus the proof continues in a very similar manner to that
of Theorem 4.1, via the construction of a compact set S outside of which

2hn

s
∑

i=1

bi(α − β̃‖ηi‖
2) ≤ 0.

While the numerical trajectory is outside the set S∪B(0, R) its norm strictly decreases
until the set is eventually entered.

For the non-extrapolation case, from (4.10) and (4.8) we once more obtain (4.9).
Again, reducing τ, β̃ and increasing K if necessary, the numerical trajectory eventually
enters some compact set S ′ ∪ B(0, R).

5. Numerical Results. Some numerical examples are now presented to support
Assumptions 1 and 2 and Theorems 4.1 and 4.2. We shall consider various embed-
ded Runge-Kutta pairs in different operational modes. The algorithms used are all
modifications of the ode23 routine supplied with MATLAB Version 4.2. This code
was used (rather than, for example, the more sophisticated ODE routines in later
MATLAB versions) because the timestep mechanism is particularly straightforward,
containing only elements common to all such adaptive algorithms. Note that none
of the previous analysis relies upon a detailed description of the timestep selection
mechanism, merely that the local error control is satisfied.

Two examples of vector fields that satisfy both (D) and (D′), are the scalar ODE

ut = −u|u| (5.1)

and the linear constant-coefficient problem

xt = −y − εx (5.2)

yt = x − εy

for ε > 0. Note that for scalar ODEs (D) implies (D′).
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A vector field that satisfies (D) but not (D′) is, for ε > 0,

xt = −y
√

x2 + y2 − εx (5.3)

yt = x
√

x2 + y2 − εy

while a vector field that satisfies neither, yet still has an absorbing set, is

xt = y − ε
x

√

x2 + y2
(5.4)

yt = −x − ε
y

√

x2 + y2
.

Up to this point, we have not considered how the numerical algorithm generates
candidate timesteps since we only require that the error control is satisfied. However,
for the sake of completeness, we shall explicitly describe the timestep selection mech-
anism used in the numerical simulations. This algorithm is based upon asymptotic
considerations (see for example [14, 7, 12]) as the tolerance τ , and thus the timesteps,
tend to zero. If hlast was the last attempted timestep (successful or otherwise), then
the next attempted timestep is defined by

hnext = min

(

hmax, θ

(

σ(τ, U)

E(U, hlast)

)
1

p−ρ

hlast

)

where U is the most recent solution value. The constant θ < 1 is a ‘safety-factor’
ensuring that, provided the exact solution lies in a compact set, the proportion of
rejected timesteps along numerical approximations will tend to 0 as τ → 0.

We first consider the behaviour of order (1,2) pairs with error-per-unit-step con-
trol. Figure 5.1 plots the Euclidean norm of the numerical solution against integration
time for the ODEs (5.1) through (5.4) using the embedded Runge-Kutta pair consist-
ing of the Forward Euler and Heun methods, defined by

A =

(

0 0
1 0

)

, b =

(

1
0

)

, b =

(

1
2
1
2

)

, (5.5)

in extrapolation mode with τ = 0.1, θ = 0.9 and the norm of the initial data set to
‖U‖ = 105. Here, as in all subsequent results, a relative error criterion defined by

σ(τ, u) = τ‖u‖2

was used as this results in larger timesteps and thus provides a more severe (and,
arguably, more relevant) test than a pure absolute error control. Even for this rela-
tively large value of τ , the results are in agreement with Theorem 4.1. The reduction
in norm of the numerical solution for sufficiently small τ is guaranteed for (5.1) —
(5.3) since this pair is essentially algebraically stable. For (5.4) the norm of the so-
lution increases with this value of τ . If τ is reduced sufficiently then stability of the
numerical solution is recovered for this initial data but the instability reappears as
‖U‖ is increased further i.e. τ depends upon the initial data. In Figure 5.2, we test
Assumptions 1 and 2 by plotting the calculated values of

k1(Un, hn) =
hp−ρ

n ‖f(Un)‖

σ(τ, Un)
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Fig. 5.1. Figures a), b), c), d) plot the norms of the numerical solution using the embedded
pair (5.5) in XEPUS mode for (5.1) — (5.4) respectively. The values of ε used in b), c) and d) are
0.1, 1, 1 and in each case τ = 0.1.

and

k2(Un, hn) =

∣

∣

∣
h2

n

∑s
i,j=1 mij〈f(ηi), f(ηj)〉

∣

∣

∣

σ(τ, Un)h1+ρ
n ‖f(Un)‖

The maxima of these quantities along the numerical trajectory are the effective values
of K1 and K2 respectively and, if Assumptions 1 and 2 are justified, these quantities
should remain bounded as ‖Un‖ → ∞. This is indeed the case for all four trajectories
in Figure 5.1 and in Figure 5.2, k1 and k2 are plotted for just two of the test problems,
namely (5.1) and (5.3) (for the linear ODE (5.2), these quantities are constant along
the entire numerical trajectory).

Figure 5.3 is generated exactly as Figure 5.1 but using the non-essentially alge-
braically stable embedded pair

A =

(

0 0
2 0

)

, b =

(

1
0

)

, b =

(

3
4
1
4

)

. (5.6)

As can be seen, the results are very similar to those using the essentially algebraically
stable (EAS) pair (5.5) and suggest that, although EAS pairs have guaranteed stability
properties, there is little difference between EAS and non-EAS pairs in practice.

We now consider Theorem 4.2. Figure 5.4 is generated identically to Figure 5.1
except that now the method (5.5) is being used in XEPS mode rather than XEPUS.
The interesting case is c), corresponding to the vector field (5.3) which satisfies (D)
but not (D′). Now the norm of the numerical solution increases rather than decreases
and, for any given tolerance, this phenomenon appears to occur for sufficiently large
initial data.

16



0 20 40 60 80 100
0

0.2

0.4

0.6

0.8

||u||
2

 k
1 

0 20 40 60 80 100
0

0.01

0.02

0.03

0.04

0.05

||u||
2

 k
2 

0 2 4 6 8 10
0

0.2

0.4

0.6

0.8

||u||
2

 k
1 

0 2 4 6 8 10
0

0.01

0.02

0.03

0.04

0.05

||u||
2

 k
2 

a) b) 

c) d) 

Fig. 5.2. Figures a), b) show the computed values of k1 and k2 for a numerical trajectory of
(5.1) while Figures c), d) are for (5.3). Apart from the initial data all the parameters are the same
as used in Figure 1 a), c).

Finally we present results for a higher-order pair. Figure 5.5 shows the numerical
results obtained using the Fehlberg (4,5) pair in XEPS mode. Note that this embedded
Runge-Kutta pair, whose coefficients are listed in [3][Page 306], does not satisfy the
condition that the weights of the higher-order method are positive, but the results are
similar to those obtained for other pairs that do satisfy this condition, suggesting that
this condition could be weakened somewhat. Again, the importance of the additional
structural assumption (D′) is revealed in Figure c).
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Fig. 5.4. Figures a), b), c) d) are generated exactly as in Figure 1 but using the method (5.5)
in XEPS rather than XEPUS mode.
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Fig. 5.5. Figures a), b), c) d) are generated exactly as in Figure 5.1 but using the Fehlberg
(4,5) pair in XEPS mode.
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