
A SHORT MATLAB IMPLEMENTATION OF FRACTIONAL
POISSON EQUATION WITH NONZERO BOUNDARY CONDITIONS ∗

HARBIR ANTIL† AND JOHANNES PFEFFERER‡

Abstract. The purpose of this note is to provide a standalone Matlab code to solve fractional
Poisson equation with nonzero boundary conditions based on Antil, Pfefferer, Rogovs [1] 1. We
will use the approach of Bonito and Pasciak [5] to solve the fractional Poisson equation with zero
boundary conditions. The discretization is carried out using piecewise linear finite element method.
Remarkably enough it is sufficient to have access to the mass and the stiffness matrix for standard
Laplacian to solve such fractional Poisson problems.

All the mathematical results discussed here are already available in the literature.

1. Introduction. Let Ω ⊂ RN with N ≥ 1 be an open, bounded domain with
boundary ∂Ω. For a given f and g we seek u solving the following system

(−∆)su = f in Ω,

u = g on ∂Ω,
(1.1)

where (−∆)s denotes the fractional powers of Laplacian with nonzero Dirichlet bound-
ary condition. This operator was first defined in [1]

(−∆)su :=

∞∑
k=1

(
λskuΩ,k + λs−1

k u∂Ω,k

)
ϕk, (1.2)

with uΩ,k =
´

Ω
uϕk and u∂Ω,k =

´
∂Ω
u∂νϕk. If u|∂Ω = 0 we let (−∆0)s := (−∆)s,

i.e., fractional Laplacian with zero Dirichlet boundary conditions. Here λk, ϕk are the
eigenvalues and eigenvectors for the standard Laplacian with zero boundary condi-
tions, i.e.,

−∆ϕk = λkϕk in Ω, ϕk = 0 on ∂Ω.

Under appropriate regularity assumptions on f , g, and Ω existence and uniqueness
of weak solution to (1.1) is given in [1, Theorem 4.5]. In fact the paper [1] discusses
other boundary conditions such as Neumann and the approach presented there di-
rectly extends to more general boundary conditions such as Robin or mixed boundary
conditions.

To proceed further, we employ the lifting argument as in [1]. We begin by writing
u solving (1.1) as

u = w + vg, (1.3)

where w|∂Ω = 0 and vg is the lifting of the boundary datum g to the domain Ω that
fulfills vg|∂Ω = g. A particular choice of such a vg is the s-harmonic lifting, i.e.,

(−∆)svg = 0 in Ω, vg = g on ∂Ω. (1.4)

Thus w fulfills
(−∆0)sw = f in Ω, w = 0 on ∂Ω. (1.5)
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Whence to solve (1.1) we need to solve (1.4) and (1.5). Indeed (1.5) can be solved
using the existing techniques such as the Dunford-Taylor approach [7, 5, 6]. However,
(1.4) is challenging. In [1] we proved that (1.4) is equivalent to vg being harmonic in
the very-weak sense

−∆vg = 0 in Ω, vg = g on ∂Ω. (1.6)

Here by very weak sense, we meanˆ
Ω

vg(−∆)ϕdx = −
ˆ
∂Ω

g∂νϕds ∀ϕ ∈ dom(−∆) ∩H1
0 (Ω). (1.7)

Notice that in case g ∈ H 1
2 (∂Ω) a very weak solution is just the weak solution, i.e.,

vg ∈ {v ∈ H1(Ω) : v|∂Ω = g} such thatˆ
Ω

∇vg · ∇ϕdx = 0 ∀ϕ ∈ H1
0 (Ω). (1.8)

Thus to obtain u we are reduced to solving (1.5) and (1.7) (and in case g is smooth
enough (1.8)).

Remark 1.1 (s-harmonic extension vs general case). Notice that the approach
discussed in [1] is not limited to the splitting as in (1.3) with vg being s-harmonic but
it can directly applied to (1.1) using the integration by parts formula [1, Theorem 3.3].
We will describe this in Section 3.

Remark 1.2 (General second order elliptic operators). The approach discussed
above directly applies to the case when one is interested in powers of general second
order elliptic operators for instance Ls with

Lw = −div(A∇w) + cw,

where A = (aij)
N
i,j=1 with aij measurable and belonging to L∞(Ω), is symmetric and

satisfy the ellipticity condition. Moreover, 0 ≤ c ∈ L∞(Ω).

2. Finite element discretization. We next present a discretization for (1.7)
and (1.5). We will assume that Ω is polygonal or polyhedral.

2.1. Discretization of very weak formulation. Let TΩ be a conforming,
quasi-uniform triangulation of Ω

Vh := {vh ∈ C0(Ω̄) : vh|T ∈ P1 ∀T ∈ TΩ}, V0h := Vh ∩H1
0 (Ω), V ∂h := Vh|∂Ω

and
V∗h := {vh ∈ Vh : vh|∂Ω = Πhg},

where Πhg ∈ V ∂h denotes the L2-projection of g. Notice that this discretization is

valid for g which are less regular than H
1
2 (∂Ω).

The discrete problem is given by: Find vh ∈ V∗h such thatˆ
Ω

∇vh · ∇ϕh dx = 0 ∀ϕh ∈ V0h, (2.1)

see [4, 2, 3] for further details. Notice that with the above discretization we are solving
the classical Poisson equation with nonzero boundary conditions. There are various
ways of imposing nonzero Dirichlet boundary conditions the above approach is just
one of them that allows functions g which are even less regular than H

1
2 (Ω) with the

help of Πh.
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2.2. Discretization of fractional Poisson problem with zero boundary
conditions.

Continuous problem. In order to realize (1.5) the authors in [5] used the Bal-
akrishnan formula [7]

(−∆)−sζ =
sin(sπ)

π

ˆ ∞
0

µ−s(µ−∆)−1ζdµ.

Going back to the equation (1.5) and using the above formula we obtain that

w(x) = (−∆)−sf(x) =
sin(sπ)

π

ˆ ∞
0

µ−s(µ−∆)−1f(x)dµ

=
sin(sπ)

π

ˆ ∞
−∞

e(1−s)y(ey −∆)−1f(x)dy

where in the last step we have used the change of variables µ = ey. After setting

(−∆ + ey)z = f in Ω, z = 0 on ∂Ω (2.2)

we arrive at

w(x) =
sin(sπ)

π

ˆ ∞
−∞

e(1−s)yz(y)dy. (2.3)

Thus to find w for each y we need to solve (2.2) and then calculate w by computing
the integral in (2.3).

Discrete problem. We follow [5]: We write a discretization for (2.2) in space
and we use sinc quadrature to approximate the integral, i.e., let zh(y`) ∈ V0h solve

ˆ
Ω

(∇zh · ∇vh + ey`zhvh) dx =

ˆ
Ω

fvh dx in Ω, for all vh ∈ V0h (2.4)

then

wh = k
sin(sπ)

π

N+∑
`=−N−

e(1−s)y`zh(y`), (2.5)

where N+ = d π2

4sk2 e, N− = d π2

4(1−s)k2 e, y` = k`, k = 1/ log(1/h).

Thus to approximate w in (2.3) we are reduced to solving (2.4) for each quadrature
point y`. These solves are completely independent of each other.

Finally we obtain approximation of u as

uh = vh + wh

where vh and wh are given by (2.1) and (2.5), respectively.

3. Integration by parts formula. Applying a test function ζ to (1.1) and
using the integration by parts formula from [1, Theorem 3.3] we arrive the following
form of (1.1)

ˆ
Ω

u(−∆0)sζ dx =

ˆ
Ω

fζ dx−
ˆ
∂Ω

g∂νzζ ds ∀ζ ∈ dom((−∆0)s) (3.1)

where zζ solves (−∆0)1−szζ = ζ in Ω and zζ = 0 on ∂Ω.
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Another way to rewrite (3.1) is by first letting

u = w + vg

where w|∂Ω = 0 and vg|∂Ω = g. Here vg is the lifting of the boundary datum g to the
domain Ω. Substituting the expression of u in (3.1) we obtain that

ˆ
Ω

w(−∆0)sζ dx =

ˆ
Ω

fζ dx−
(ˆ

Ω

vg(−∆0)sζ dx+

ˆ
∂Ω

g∂νzζ ds

)
∀ζ ∈ dom((−∆0)s).

(3.2)
Notice by the integration by parts formula of [1, Theorem 3.3] the last term in (3.2)
is simply (ˆ

Ω

vg(−∆0)sζ dx+

ˆ
∂Ω

g∂νzζ ds

)
=

ˆ
Ω

(−∆)svgζ dx.

One way to evaluate
´

Ω
(−∆)svgζ dx in practice is by using (1.4) so that vg is s-

Harmonic. Recall that solving (1.4) is equivalent to (1.7).
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