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Overview of PDE-Constrained Optimization

The Basic Workflow of PDE-Constrained Optimization

The basic workflow from modeling to numerical solution is as follows.

Modeling: PDE, additional constraints, and objective function.

Theory: control-to-state map, existence and optimality conditions.

Algorithms: function space-based methods (optimize-then-discretize).

Numerical Solution: discretize (FD, FEM, wavelets, NN,...) and solve.

Incorporating uncertainty into this workflow adds several new tasks:

Modeling: where/how to include random inputs, model risk preference.

Theory: measurability, integrability, & differentiability: an “extra step”.

Algorithms: sample uncertainty as-you-go versus before-you-go.

Numerical Solution: when to stop, how to interpret the solution.
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Overview of PDE-Constrained Optimization Modeling

What is the right PDE model for my application?

PDE models for applications in the natural sciences can be complicated.

Example (Optimization of Optoelectronics)

We need a model that accounts for...

...elasticity of the structure (linear elasticity)

...optical properties (Helmholtz and photon number equation)

...electronic properties (van Roosbroeck)

coupled by the layout of the materials Ge, Si, SiN, SiO4, air (decision variables).

The objective function should simultaneously ensure...

...tensile strain inside Ge-region is maximized

...bulk of support of (at least) first eigenmode

coincide.
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Overview of PDE-Constrained Optimization Modeling

What is the right PDE model for my application?

Example (Optimization of Optoelectronics)

Theoretically, we know the physical effects of the topology (layout).

What is the simplest effective model?
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Overview of PDE-Constrained Optimization Modeling

What is the right PDE model for my application?

Example (Optimization of Optoelectronics)

What is the simplest effective model?

Optimizing only considering elasticity and first eigenmode yields:

Figure: Optimal material layout (l.) and its corresponding strain field (r.).
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Overview of PDE-Constrained Optimization Modeling

What is the right PDE model for my application?

Example (Optimization of Optoelectronics)

Simulations of the drift-diffusion system indicate success!
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Figure: current-gain characteristics of initial and optimized device (l.) modal gain g |Θ|2 [cm−1]
optimized design (r.)

It’s good to know the “true” model, but a simplification might be enough!
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Overview of PDE-Constrained Optimization Modeling

What is the right PDE model for my application?

Musings

Even if I know the “true” model, do I...

...know all the real input parameters?

...have I estimated them from data?

What if I don’t fully believe the “true” model?

Can I use a simpler model by replacing the inputs with random parameters and learning their
distributions from data?

We don’t wish to quantify uncertainty, but make optimal decision in the face of uncertainty.

These thoughts lead to the focus of our course:
Optimizing PDEs with Random Inputs.
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Overview of PDE-Constrained Optimization Modeling

What kind of restrictions on my decisions should I expect?

Aside from the PDEs, bound constraints present further difficulties.

Domain D ⊂ Rn open, bounded; a, b,T : D → R a < b; Φ : Z → R, γ ∈ R.

Control constraints: decisions z : D → R must fulfill

a(x) ≤ z(x) ≤ b(x) for a.e. x ∈ D or Φ(z) ≤ γ.

State constraints: solutions u of PDE u : D → R must fulfill

u(x) ≤ T for a.e. x ∈ D.

Existence, uniqueness, etc. of Lagrange multipliers not always guaranteed.

Sometimes the multipliers are only signed measures µ : P(D)→ [0,∞].

Example

Topology opt.: z ∼ material density, a ≡ 0, b ≡ 1, Φ(z) =
∫
D
z dx .

State constraint: T max. allowable deflection, temperature, current, etc.
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Overview of PDE-Constrained Optimization Modeling

What kind of restrictions on my decisions should I expect?

After incorporating uncertainty:

The decision/design/control z : D → R is made in anticipation of uncertainty and should be
deterministic.

The state u will be a random element u : (Ω,F ,P)→ X (D), where X (D) is some space of
functions v : D → R.

Example (Stochastic State Constraints)

Option A: p ∈ (0, 1)

ϕ(u) := P({ω ∈ Ω |u(x , ω) ≤ T (x) a.e. x ∈ D }) ≥ p.

Option B: p = 1
P({ω ∈ Ω |u(x , ω) ≤ T (x) a.e. x ∈ D }) = 1.

- Option A is mathematically hard: continuity, differentiability of ϕ nontrivial
- Option B is closer to deterministic case. May be too restrictive.
- Plenty of ongoing work, see reference list.
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Overview of PDE-Constrained Optimization Modeling

What exactly would I like to optimize?
Example (Optimization of Optoelectronics)

ϕ ∼ layout of materials, u ∼ material displacement, Θ ∼ first eigenmode.∫
Ω
j(ϕ,Θ)tre(u) dx ∼ force overlap of Ge, high tensile strain, suppΘ

αfGL(ϕ, ε) ∼ regularizes material boundaries

J(ϕ,Θ, u) :=
∫

Ω
j(ϕ,Θ)tre(u) dx + αfGL(ϕ, ε).

Example (Optimal Control: Tracking-Type Functionals)

Minimize distance of u to ud (desired state) with minimal cost α > 0.

J(u, z) :=
1

2
‖u − ud‖2

L2(D) +
α

2
‖z‖2

L2(D).

Example (Minimal Compliance in Topology Optimization)

Find a material density z : D → R that minimizes compliance

J(z) := (F ,S(z))L2(D)

F fixed force in the bulk; traction forces g on ΓN ⊂ ∂D also possible.
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Overview of PDE-Constrained Optimization Modeling

New: How can I model my risk preferences in this setting?

If we include uncertainty in the PDE, then we will be confronted with optimization problems of the type

min
z∈Zad

J (S(z))(ω) + ρ(z)

z ∈ Zad decision variables, designs, controls, etc. (deterministic)

z 7→ S(z) solution of the random PDE. (stochastic)

J objective. (either deterministic or stochastic)

ρ cost or regularization term.

Since J (S(z))(ω) is a random variable, this problem doesn’t make sense yet.

What does it mean if my objective is a random variable?

What can I hope to achieve?
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Overview of PDE-Constrained Optimization Modeling

New: How can I model my risk preferences in this setting?

Example (A Simple Example)

f (x , ω) := 1
2
(α1(ω)x2

1 + α2(ω)x2
2 )− (β1(ω)x1 + β2(ω)x2).

αi ∼ U(0, 1), βi ∼ N(0, 1) for i = 1, 2.

The stochastic optimization problem
min
x∈R2

E[f (x)]

has unique solution (x?1 , x
?
2 ) = (0, 0). Thus, f (x?, ·) is a degenerate r.v.

Solving iteratively, the sample cdf’s converge as expected:
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Overview of PDE-Constrained Optimization Modeling

New: How can I model my risk preferences in this setting?

This is an extreme example.

But it illustrates the point: We choose the numerical surrogate for risk that shapes the
distribution of the random variable

Xz?(ω) := J (S(z?))(ω) + ρ(z?)

in a desired way.

For example, if Xz ≥ a for all z ∈ Zad, then ideally the length of the interval [a,F−1
Xz?

(0.95)] is as
small as possible.

F−1
Xz?

(0.95) is the upper 95% quantile of Xz? .

F−1
Xz?

(0.95) := inf{α : P(Xz? ≤ α) ≥ 0.95}

We go into more detail below in Section 2.
For now, we will consider the objectives R[J (S(z))] and specify R later.
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Overview of PDE-Constrained Optimization Theory

What do I know about the forward problem?

In general, the PDE-constraint can be viewed as

e(u, z) = 0,
where

e : U × Z →W ,

U is the state space,

Z is the control space,

W is typically a less regular space, e.g., the dual space U∗.

Much of the literature works under the assumption that

There exists a continuous, differentiable mapping z 7→ S(z) such that

e(S(z), z) = 0,

so the PDE can be treated implicitly.

S is often called the “control-to-state mapping.”

Reduced space approach
17 / 63



Overview of PDE-Constrained Optimization Theory

What do I know about the forward problem?

D ⊂ Rn open, bounded set with Lipschitz boundary Γ.

f ∈ L2(D), g ∈ H−1/2(Γ), u0 ∈ H1(Γ), η > 0.

Example (Linear Elliptic Boundary Value Problem (Neumann))

There exists a unique solution u ∈ H1(D) that solves the weak form of

−∆u + u = f in D

∂nu = g on Γ

The mapping (g , f ) 7→ u is bounded and linear.

Example (Nonlinear Boundary Value Problem (Allen-Cahn))

There exist solutions u ∈ H1(D) of

−∆u + u − u2 + u3 = f in D

∂nu = η(u − u0) on Γ

18 / 63
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Overview of PDE-Constrained Optimization Theory

What do I know about the forward problem?

Without S(z), theory and algorithmic approaches are more difficult.

A minimal regularity assumption requires continuous Fréchet derivatives eu(u?, z?), ey (u?, z?)
exist at a solution pair (u?, z?) and

e′(u?, z?) is surjective .

Full space approach.

In either case, the workflow becomes

Does there exist a well-defined control-to-state mapping S(z)?

What regularity does u have? (e.g. u is in H1(D)? H2(D)?)

Is S differentiable? What PDE does w = S ′(u)h solve?

We consider more problems in the Examples section below.
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Overview of PDE-Constrained Optimization Theory

What do I know about the forward problem? (New)

After adding random inputs, the general PDE-constraint can be viewed as

e(u, z ;ω) = 0 P-a.s..

This adds a few questions to the workflow (assume reduced space approach):

Is u : (Ω,F)→ U (strongly) measurable?

Is u : (Ω,F)→ U integrable or essentially bounded?

The regularity, continuity, and differentiability questions now need to be posed in Lebesgue-Bochner
spaces Lp(Ω,F ,P;V ).

These spaces are typically considered in the context of deterministic parabolic and hypebolic PDEs
with time interval [0,T ] replacing Ω.
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Overview of PDE-Constrained Optimization Theory

A Model Forward Problem

Domain and Inputs

(Physical Domain:) D ⊂ Rn is an open bound subset with sufficiently smooth boundary Γ ⊂ Rn.

(Inputs:) A : D → Sn×n, f : D → R are measurable mappings.

Data Assumptions

(Differential Operator:) For x ∈ D, A(x) ∈ Sn×n satisfies the usual boundedness and uniform
ellipticity conditions.

(Forcing Terma:) f is square-integrable on D, i.e., f ∈ L2(D).

aCan be relaxed to, e.g., f ∈ H1(D)∗ or f ∈ H−1(D).

Deterministic Problem

Find u : D → R such that
−div (A(x)∇u(x)) = f (x), for x ∈ D,

u(s) = 0, for s ∈ Γ.
(1)
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Overview of PDE-Constrained Optimization Theory

A Model Forward Problem

Deterministic Solution Space, Weak Form

1 For u ∈ C∞c (D), define the norm ‖ · ‖U by

‖u‖2
U :=

∫
D

∇u(x) · ∇v(x).

Recall: The closure of C∞c (D) w.r.t. ‖ · ‖U is a real separable Hilbert space, usually denoted by
H1

0 (D); here, often by U.

2 For u, v ∈ U, define

a(u, v) :=

∫
D

A(x)∇u(x) · ∇v(x)dx , L(v) :=

∫
D

f (x)v(x)dx .

3 Consider weak/distributional/variational problem associated with (1): Find u ∈ U such that

a(u, v) = L(v), ∀v ∈ U. (2)

A simple application of the Lax-Milgram Lemma shows that (2) admits a unique solution.
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Overview of PDE-Constrained Optimization Theory

A Stochastic Forward Problem

Adding Random Inputs

(Random Domain:) Ω is a sample space, F ⊂ P(Ω) a σ-algebra, P : F → [0, 1] a probability
measure such that (Ω,F ,P) is a complete probability space.

(Random Inputs:) A : Ω→ L∞(D, Sn×n), f : Ω→ H−1(D) measurable mappings.

A Parametric Problem

Find u : Ω→ H1
0 (D) such that

−div (A(ω, x)∇u(ω, x)) = f (ω, x), for x ∈ D,

u(ω, s) = 0, for s ∈ Γ.
(3)

holds for all ω ∈ Ω.
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Overview of PDE-Constrained Optimization Theory

A Stochastic Forward Problem

Bochner Spaces

Lq(Ω,F ,P;U) (q ∈ [1,∞)) is the space of all (strongly) measurable functions y : Ω→ U:

EP[‖y‖qU ] < +∞.

L∞(Ω,F ,P;U) is the space of all bounded (strongly) measurable functions y : Ω→ U:

ess supω∈Ω‖y(ω)‖U < +∞.

Variational Form (Stochastic Case)

Let U := L2(Ω,F ,P;U), a : U × U → R, L : U → R be defined by

a(u, v) = E
[∫

D

A(ω, x)∇u(ω, x) · ∇v(ω, x)dx

]
, L(v) = E

[∫
D

f (ω, x)v(ω, x)dx

]
.

Find u ∈ U such that
a(u, v) = L(v) ∀v ∈ U . (4)

If f ∈ L2(Ω,F ,P;U∗), and a is U-coercive, then there exists a unique solution u ∈ U .
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Overview of PDE-Constrained Optimization Theory

A Stochastic Forward Problem: Remarks

It can be shown that u ∈ U solves (4) if and only if u(ω) ∈ U solves (3) w.p.1.

u : Ω→ U is measurable and inherits the integrability provided by A and f .

With more structure on A and f , u : Ω→ U may even be continuous or smooth.

For optimization or optimal control, we might consider the problem

a(u, v) = 〈B(·)z , v〉+ L(v) ∀v ∈ U ,

where B : Ω→ L(Z ,U∗) is, e.g., bounded and measurable in Ω.

This defines a continuously Fréchet differentiable control-to-state mapping z 7→ S(z).
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Overview of PDE-Constrained Optimization Theory

Challenges: Nonlinear and Evolution Equations

Remarks

The classical theory yields not only existence and uniqueness of a solution, but also measurability,
integrability, etc. for the linear case.

The situation is more challenging for nonlinear elliptic PDE, e.g.,

−ξ(ω)∆u + N(u, ω) = f , in D, a.e. ω ∈ Ω,

ξ(ω)∂nu = z , on Γ, a.e. ω ∈ Ω,

as there is no general means of obtaining measurability and integrability.

Problems involving time-dependence, e.g.,

∂u

∂t
− ξt(ω)∆u = f , in D × (0,T ), a.e. ω ∈ Ω,

ξt(ω)∂nu = z , on Γ× (0,T ), a.e. ω ∈ Ω,

u(0) = u0

present an even greater challenge (ξt stochastic process). (OPEN PROBLEM)!
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Overview of PDE-Constrained Optimization Theory

Why do I think this is a hard problem?

If z is not a static decision variable, but time-dependent, then other than z(0), the controls need
to be adapted to the underlying stochastic process ξt .

As more information is revealed in time, z(t) will be dependent on the realization of stochasticity
in the time 0 < s < t.

This usually leads to dynamic programming problems, which even in finite dimensions suffer
from the curse of dimensionality.

Now, z depends on time t, uncertainty ω, space x ∈ D or s ∈ Γ. This only deepens the curse.

Open loop and multistage perspectives are also possible, as has been done in stochastic
programming for decades, but what does it mean in this context?

Example (A thought experiment)

Suppose z? should give us an optimal policy for drug administration based on a stochastic tumor
growth model.

If z?t (ω) ∈ L2(Γ) is the optimal control, how do I know what to do?

Should I (assuming I could) blindly administer whatever a sample path of this process tells me?
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Overview of PDE-Constrained Optimization Theory

Does my mathematical model possess a solution?

In the deterministic setting, we are usually confronted with problems of the type:

min
z∈Zad

J (z) (Reduced Space)

or
min

(u,z)∈U×Zad

{J(u, z) | e(u, z) = 0} . (Full Space)

We work with academic models of real phenomena, we should know that a solution z? exists.

(Reduced Space)
-Prove that J : Zad → R is weakly lower semicontinuous,
-Zad nonempty, weakly sequentially closed,
-levαJ ∩ Zad is weakly sequentially compact for some α ∈ J (z0) with z0 ∈ Zad.

(Full Space)
- Do essentially the same but over feasible set {(u, z) ∈ U ×Zad | e(u, z) = 0}
(Stochastic Case)
- Reduced Space: Weak lsc of z 7→ R[J (S(z))] requires extra steps and assumptions.
- Full Space: Potentially more challenging due to compactness issues...I haven’t tried.
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Overview of PDE-Constrained Optimization Theory

Does my mathematical model possess a solution?

In the deterministic setting, we are usually confronted with problems of the type:

min
z∈Zad

J (z) (Reduced Space)

or
min

(u,z)∈U×Zad

{J(u, z) | e(u, z) = 0} . (Full Space)

We work with academic models of real phenomena, we should know that a solution z? exists.

(Reduced Space)
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Overview of PDE-Constrained Optimization Theory

How can I characterize the solutions?

As in all branches of optimization, we characterize solutions using optimality conditions.

There are several ways of doing this for PDE-constrained optimization depending on whether the
reduced space or full space approach is considered.

(Reduced Space)
-Prove that J : Z → R is Gâteaux differentiable,
-Assuming Zad nonempty, closed, and convex, we have

J ′(z?)(z − z?) ≥ 0 ∀z ∈ Zad.

- Using adjoints (see page 32), “unfold” this into a set of of equations and inequalities in
z?, u? = S(z?) and λ? (adjoint state).
- Generally requires implicit function theorem to differentiate S at z?.

(Full Space)
- Uses optimization theory in Banach spaces.
- Requires constraint qualifications (as usual in optimization) to guarantee existence of
Lagrange multipliers, e.g., e′(u?, z?) is surjective.
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Overview of PDE-Constrained Optimization Algorithms and Numerical Solution

How can I solve the optimization problem numerically?

As mentioned above, there are two approaches

Reduced space approach

Full space approach

We highlight the main points for the deterministic reduced space approach.

The full space approach is especially important for PDEs with non-unique solutions, e.g., stationary
Allen-Cahn (p. 17 above).
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Overview of PDE-Constrained Optimization Algorithms and Numerical Solution

Reduced space approach

The PDE is now implicitly satisfied.

There may still exist control and state constraints.

The PDE-constraint is formulated in function spaces U,Z ,W , which are typically Hilbert spaces;
in some settings general Banach spaces.

Efficient algorithms need to be “aware” of the original function spaces:

1 Inner products, dual norms, etc. should be implemented with the proper discrete
counterpart.

2 Gradients/Hessians of the objective, constraints, and solution operators should be
calculated using the associated discrete Riesz mappings.

This ensures (usually) mesh independent behavior and proper scaling by mesh refinements.
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Overview of PDE-Constrained Optimization Algorithms and Numerical Solution

Reduced space approach

Example (Gradient Computation of J (S(z)) = J(S(z), z))

Given z ∈ Z , calculate state u = S(z) by solving e(u, z) = 0.

Given u, solve adjoint equation for λ = P(z): eu(u, z)∗λ = −J ′u(u, z).

Given z , u, λ calculate the full gradient

∇J (z) = ez(u, z)∗λ+∇Ju(u, z).

The latter might require an additional solve to ensure that the true discrete gradient is being
using. (More in Part II.)

In the linear case, we only require the solution of several (typically) sparse structured linear
systems to determine ∇J .

Without the use of adjoints, the gradient would contain large dense matrices associated with the
solution operators S ,P.
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Overview of PDE-Constrained Optimization Algorithms and Numerical Solution

Reduced space approach

Example (Hessian Computation of J (S(z)) = J(S(z), z))

Define the Lagrangian L(u, z , λ):

L(u, z , λ) = J(u, z) + 〈e(u, z), λ〉W ,W∗

Given z ∈ Z , calculate u = S(z) by solving e(u, z) = 0.

Given u, solve the adjoint equation for λ = P(z): eu(u, z)∗λ = −J ′u(u, z)

Given u, z , direction v , solve the linearized state equation for w :

eu(u, z)w = ez(u, z)v .

Given u, z , λ,w , v solve the adjoint equation for p:

eu(u, z)∗p = L′′uu(u, z , λ)w − L′′uz(u, z , λ)v .

Given u, z , λ,w , v , p yields

∇2J (z)v = ez(u, z)∗p −∇zuL(u, z , λ)w +∇zzL(u, z , λ)v .
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Overview of PDE-Constrained Optimization Algorithms and Numerical Solution

New: How should I treat uncertainty numerically?

There are essentially two possibilities (assume for now R = E)

Sample-before-you-go: Replace underlying P by approximation PN solve

min
z∈Zad

∫
Ω

J (S(z))(ω)dPN(ω) =
N∑
i=1

πiJ (S(z))(ωi )

where πi are given weights for the samples i = 1, . . . ,N.

Sample-while-you-go: For fixed step sizes γ1, . . . , γN approximate the solution z? using
stochastic gradients

Gi := S ′(zi , ω
i )∗∇J (S(z i , ωi )) i = 1, . . . ,N

with a sequence {z i} given by (for example)

z i+1 = ProjZad
(z i − γ iGi ).

Batches and second-order information can be incorporated.
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Overview of PDE-Constrained Optimization Algorithms and Numerical Solution

New: How should I treat uncertainty numerically?

We discuss the pros and cons in detail in Part II of the course.

Brief Comments I

“Sample-before-you-go” covers all manner of empirical approximations: Monte Carlo,
Quasi-Monte Carlo, Deterministic Quadrature, ...

Sometimes called Sample Average Approximation (SAA)

Yields a deterministic PDE-constrained problem that can be solved with existing approaches.

These are not optimization algorithms.

Brief Comments II

“Sample-while-you-go” has its origins in Stochastic Approximation.

Many variants with different step size rules, half-steps, extrapolations, etc.

Immensely popular in machine learning

These are (typically first-order) algorithms.
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Overview of PDE-Constrained Optimization Algorithms and Numerical Solution

New: How should I treat uncertainty numerically?

Knowing when to stop with sample-before-you-go is easy: Use the usual stopping criteria from
nonlinear programming.

E.g. Check the relative change in the residual of the first-order system: Define

resk := zk − ProjZad
(zk − EPN [J (S(zk))])

and stop when
‖resk‖ ≤ τrel‖res0‖+ τabs,

where τrel and τabs are absolute and relative tolerances, respectively.

Knowing when to stop the sample-as-you-go algorithms is more difficult.

The basic convergence theory usually only provides statements on the objective functions. More
comments in Part II.

In both settings, the “solution” z?(PN) is dependent on the realization of random processes.

Ideally, we would know what happens to z?(PN) as N → +∞. More comments in Part II.
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Examples Examples

Example: A Contaminant Mitigation Problem

Find optimal placement of mitigating factors z by solving:

min
z∈Zad

{
R
[
κs

2

∫
D

S(z)2 dx

]
+ κc‖z‖1

}
where κs = 105, κc = 1 and S(z) = u : Ω→ H1(D) solves the weak form of

−∇ · (ε(ω)∇u) + V(ω) · ∇u = f (ω)− Bz in D, a.s.

u = 0 on Γd = {0} × (0, 1), a.s.

ε(ω)∇u · n = 0 on ∂D \ Γd , a.s.

D = (0, 1)2 is the physical domain, (Ω,F ,P) complete probability space

Z is the control space, e.g., L2(D) or Rn; Zad = {z ∈ Z | 0 ≤ z ≤ 1}.
u is the advected pollutant.

R : X → R is a numerical surrogate for “risk”, i.e., a risk measure.

Random inputs: ε,V, f permeability, wind, sources of contaminent.
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Examples Examples

Example: Topology Optimization

Find an optimal material distribution z? that minimizes compliance by solving

min
z∈Zad

R
[∫

D

F (·) · S(z) dx

]
+ ℘(z)

where S(z) = u solves

−∇ · (E(ω)(z) : εu) = F (ω) in D.

εu = 1
2
(∇u +∇u>) in D.

u = g(ω) on ∂D

and the material density z ∈ Zad fulfills

z : D → R.

z(x) ∈ [0, 1] a.e. on D (z = 0 “no material”, z = 1 “material”).∫
D
z dx ≤ V0|D| (volume fraction).

Random inputs: Linear elastic isotropic material with uncertain Lamé coefficients E traction forces g
bulk forces F .
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Examples Examples

Example: Optimization of Chemical Vapor Deposition

D

In/Outflow

Substrate

C
o

n
tr

o
l C

o
n

tro
l

min
z∈Zad

1

2
R
[∫

D

(∇× V (z)) dx

]
+
γ

2

∫
Γc

|z |2 dx

where (V (z),P(z),T (z)) = (v , p, τ) solves

−ν(ω)∇2v + (v · ∇)v +∇p + η(ω)τg = 0 in D

−κ(ω)∆τ + v · ∇τ = 0 in D

κ(ω)∇τ · n + h(ω)(z − τ) = 0 on Γc

Find an equilibrium boundary temperature z : Γc → R that minimizes the vorticity in CVD
reactor.

V velocity, P pressure, T temperature.

Possible random inputs: kinematic viscosity ν, thermal expansion coefficient η, thermal
conductivity κ, heat transfer coefficient due to rugosity h.

39 / 63



Examples Examples

Section 2:
Risk-Averse Decision Making
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Risk-Averse Decision Making Risk Models

Robust Optimization

Motivation

An uncertainty region Ω is known, but no data for statistical estimation is available.

An uncertainty region Ω is known and data is available, but there is no room for error.

An uncertainty region Ω is known and data is available, but the dimΩ is intractable.

The functional R should then take the form

R[X ] := sup
ω∈Ω

X (ω).

The robust PDE-constrained optimization problem takes the general form:

min
z∈Zad

{
℘(z) + sup

ω∈Ω
J (S(z))(ω)

}
(5)

A nonsmooth, possibly nonconvex, ∞-dimensional problem.

Existing approaches transform (5) into a mathematical program with equilibrium constraints
(MPEC). MPECs with PDE operators are very hard to solve numerically.
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Risk-Averse Decision Making Risk Models

Probability and Stochastic Dominance Constraints

Motivation

A complete probability space (Ω,F ,P) is available.

A benchmark decision, design, stationary control zd ∈ Z or objective value c is given.

The risk-averse PDE-constrained optimization problem might take the general form:

min
z∈Zad

{℘(z) + E [J (S(z))] : P {J (S(z)) ≤ J (S(zd))} ≥ p} p ∈ (0, 1). (6)

“Find z? ∈ Zad that performs well on average such that the random variable
ω 7→ J (S(z?))(ω)− J (S(zd))(ω) is non-positive with probability p.”

Many variants available:

Replace J (S(zd)) with a constant c or choose more than one/all p ∈ (0, 1).

Compare tails of J (S(z)) to J (S(zd)) over a range of values.

The constraint function ϕ(z) := P {J (S(z)) ≤ c} is highly nontrivial.
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Risk-Averse Decision Making Risk Models

Minimizing the Expectation

Optimization with Risk Measures

The risk-averse PDE-constrained optimization problem takes the general form:

min
z∈Zad

{℘(z) +R [J (S(z))]} (7)

R should “shape” the distribution of the objective function at an optimal solution z?.

Traditional Approach: R = E (“risk neutral case”)

Optimize to achieve best performance on average.

Q: What could possibly go wrong?

A: Does not account for potentially catastrophic tail events.

A: Typically consider: νE + (1− ν)R with R being something other than E, ν ∈ (0, 1), instead.
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Risk-Averse Decision Making Risk Models

Mitigating Risk using Risk Measures

Traditional Mean-Var Approach: R = νE + (1− ν)V

Maximize average performance vs. minimize variance V
Q: What could possibly go wrong?

A: V may penalize favorable outlier situations: We are happy if J (S(z))(ω) << J (S(y))(ω).

V is not monotone w.r.t. the partial order on L1(Ω,F ,P). Thus, it could happen that

J (S(z))(ω) ≤ J (S(y))(ω), P-a.e.ω ∈ Ω

but V(J (S(z))) > V(J (S(y))).

This is not favorable for optimization.
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Risk-Averse Decision Making Risk Models

Mitigating Risk using Risk Measures

Minimize the β-Quantile: R[X ] = inf{τ : P(X ≤ τ) ≥ β}

Also know as Value-at-Risk (confidence/risk level β ∈ (0, 1)).

Minimize the lowest value τ such that with probability β, J (S(z)) does not exceed the value τ .

Measures risky (catastrophic) events.

Q: What could possibly go wrong?

A: VaR does not account for the size of the tail.

A: VaR is not subadditive.

Obviously difficult to minimize in general.
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Risk-Averse Decision Making Risk Models

Mitigating Risk using Risk Measures

Minimize the β-Average VaR: R[X ] := 1
1−β

∫ 1

β
VaRα[X ]dα

Many names: Excess Loss, Mean Shortfall, Average VaR, Tail VaR.

We use Conditional Value-at-Risk (CVaR).

Minimize the expectation of the tail above the β-quantile.

VaR
β

CVaR
β

0

β

1

CVaR is positively homogeneous, subadditive, monotone w.r.t. the usual partial order, and
“translation equivariant”: CVaR[X + c] = CVaR[X ] + c for any constant c ∈ R.

CVaR has a convenient form for optimization:

CVaRβ [X ] = inf
t∈R

{
t +

1

1− βE[(X − t)+]

}
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Risk-Averse Decision Making The Conditional Value-at-Risk

Basic Properties and Reformulations

A risk measure R : L1(Ω,F ,P)→ R that is
-convex,
-positively homogeneous,
-monotonic
-translation equivariant (p. 46)
is said to be coherent.

CVaRβ is coherent.

Coherent risk measures are distributionally robust wrt the nominal measure P.

What does that mean and why should I care?
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Risk-Averse Decision Making The Conditional Value-at-Risk

Distributional Robustness and CVaR

Return to risk neutral case R = E.

P is unknown, but an iid sample is available.

We could use the empirical probability measure PN and consider

min
z∈Zad

℘(z) +
1

N

N∑
i=1

J (S(z))(ωi ).

This is a risk-neutral formulation.

We could incorporate risk aversion by defining a set of measures

A ⊂ P(Ω),

where P(Ω) is the set of all Borel probability measures over (Ω,F), that contains PN .

A robust data-driven formulation would then be

min
z∈Zad

℘(z) + sup
Q∈A

EQ [J (S(z))] .
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Risk-Averse Decision Making The Conditional Value-at-Risk

Distributional Robustness and CVaR

What is the “correct” set A?

Examples

Let F be a subset of integrands f : Ω→ R.

For ε > 0

A :=

{
Q ∈ P(Ω) : sup

f∈F
|EPN [f ]− EQ[f ]| ≤ ε

}
Depending on the set F this is, e.g., a Wasserstein-1, Fortet-Mourier, bounded Lipschitz, or
minimal information metric ball.

Without further insight, it is hard to see how this connects back to the theory of risk measures.

The metrics do have the advantage that the support (atoms) can be moved.

But the more tractable metrics, e.g., Wasserstein, are defined with integrands that have very
little to do with the original integrand J (S(z)).
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Risk-Averse Decision Making The Conditional Value-at-Risk

Distributional Robustness and CVaR

Using convex analysis, it can be shown in general that

CVaRβ [X ] = sup
ϑ∈A

EP[ϑX ],

where A =
{
ϑ ∈ L∞(Ω,F ,P)

∣∣∣ EP[ϑ] = 1, 0 ≤ ϑ ≤ 1
1−β P-a.s.

}
For P = PN we have A =

{
ϑ ∈ RN

∣∣∣ ∑N
i=1

ϑi
N

= 1, 0 ≤ ϑi ≤ 1
1−β i = 1, . . . ,N

}
.

This implies

CVaRβ [X ] = sup
ϑ

{
1

N

N∑
i=1

ϑiX (ωi ) :
N∑
i=1

ϑi

N
= 1, 0 ≤ ϑi ≤

1

1− β i = 1, . . . ,N

}

CVaR can therefore be used in a data-driven distributionally robust setting.

The original weights on PN are readjusted to ϑi/N.

Our risk preference, expressed by CVaRβ , determines a meaningful set of probability measures.
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Risk-Averse Decision Making The Conditional Value-at-Risk

Section 3:
Existence of Solutions and Optimality Conditions
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Existence of Solutions and Optimality Conditions A Canonical Example

Outline

We formulate a canonical example based on Sections 1 and 2.

There are several necessary structural assumptions on the nature of the uncertainty.

We prove the existence of an optimal solution and derive optimality conditions.

The emphasis is on understanding the structure of the proofs for extension to larger classes.
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Existence of Solutions and Optimality Conditions A Canonical Example

A Canonical Example

Risk-Averse PDE-Constrained Optimization

Under the standing assumptions, we formulate our model problem:

min

{
f (z) := CVaRβ

[
1

2

∫
D

|S(z)− ud |2dx
]

+
α

2
‖z‖2

Z over z ∈ Zad

}
, (8)

where Zad ⊂ Z is a nonempty, closed, and convex set and S(z) = u is the unique solution to

Find u ∈ U : E
[∫

D

A∇u · ∇vdx
]

= E[〈Bz + f , v〉U∗,U ], ∀v ∈ U .

How do we prove existence of an optimal solution?

CVaR is clearly non-smooth. How do we derive optimality conditions?
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Existence of Solutions and Optimality Conditions A Canonical Example

Technical Assumptions

We need to make a number of technical assumptions. Come back later when you have time...

(Ω,F ,P) complete probability space, D ⊂ Rn open, bounded with Lipschitz boundary Γ.

A : Ω→ L∞(D), ξ, ζ ∈ Rn:
Aij(ω)ξiξj ≥ c(ω)‖ξ‖2

Rn

|Aij(ω)ξiζj | ≤ C(ω)‖ξ‖Rn‖ζ‖Rn

for some C , c ∈ L∞(Ω,F ,P) : C ≥ c > 0, c−1 ∈ L∞(Ω,F ,P).

f ∈ U∗ = L2(Ω,F ,P;U∗), but could be more regular, e.g., f ∈ Lr (Ω,F ,P;U∗) with r ≥ 2.

For P-a.e. ω ∈ Ω, B(ω) ∈ L(Z ,U∗).

For any z ∈ Z , there exists a random variable κB ∈ Lq(Ω,F ,P), κB > 0:

‖B(·)z‖U∗ ≤ κB(·)‖z‖Z , P-a.e.

B(ω) is completely continuous for P-a.e. ω ∈ Ω
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Existence of Solutions and Optimality Conditions Existence of a Solution

Existence of an Optimal Solution

Proposition

The optimization problem (8) admits a (unique) solution z?.

Proof

Since Zad 6= ∅ and f is defined everywhere on Z , there exists an infimizing sequence {zk} ⊂ Zad.
The infimum is finite since f ≥ 0.

For some z0 ∈ Zad and k0 ∈ N sufficiently large, we have {zk}k≥k0
⊂ {z ∈ Z | f (z) ≤ f (z0)} .

Since, for all k, CVaRβ [ 1
2
‖S(zk)− ud‖2] ≥ 0, we have ‖zk‖Z ≤

√
2
α
f (z0)

Hence, {zk} is bounded. Furthermore, as Z is reflexive, there exists {zkl } ⊂ {zk} and z? ∈ Z
such that zkl ⇀ z? (weakly).

Due to the equivalence of weak and strong closure for convex sets, z? ∈ Zad. In remains to argue
that z? is in fact a minimizer.
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Existence of Solutions and Optimality Conditions Existence of a Solution

Existence of an Optimal Solution

Proof (continued)

Next, consider that ‖B(ω)(zkl − z?)‖U∗ → 0 for P-a.e. ω.

Let w ∈ U be arbitrary. Since {zk} is bounded, there exists some M > 0, independent of ω, k,
and w such that

|〈B(ω)(zkl − z?),w〉U∗,U | ≤ ‖B(ω)(zkl − z?)‖U∗‖w‖U
≤ κB(ω)‖zkl − z?‖Z‖w‖U ≤ κB(ω)M‖w‖U .

Taking the supremum over all w ∈ U with ‖w‖U = 1 yields ‖B(ω)(zkl − z?)‖U∗ ≤ κB(ω)M.

It follows from Lebesgue’s theorem that B(·)(zkl − z)→ 0 strongly in U∗.
In light of this, we deduce:

c‖ukl − u?‖2
U ≤ a(ukl − u?, ukl − u?)

= E[〈B(zkl − z?, ukl − u?〉U∗,U ]

≤ ‖B(·)(zkl − z?)‖U∗‖ukl − u?‖U .

Hence, ukl = S(zkl )→ S(z?) = u? strongly in U
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Existence of Solutions and Optimality Conditions Existence of a Solution

Existence of an Optimal Solution

Proof (continued)

(J ◦ S) : Z → L1(Ω,F ,P) is convex, continuously Fréchet differentiable, completely continuous.

Since CVaRβ is positively homogeneous and subadditive, it is convex.

CVaRβ is finite on L1(Ω,F ,P). It follows that CVaRβ is continuous on L1(Ω,F ,P).

Combining
- The complete continuity of the composite function (CVaRβ ◦ J ◦ S)
- The weak lower semicontinuity of α

2
‖ · ‖2

Z ,
we how shown that f + iZad is
- weakly inf-compact : The sublevel set with upper bound f (z0) is weakly sequentially compact.
- weakly lower-semicontinuous on Z .

Hence, z? is an optimal solution.

f (z?) ≥ inf
z∈Zad

f (z) = lim
k→+∞

f (zkl ) = lim inf
l→+∞

f (zkl ) ≥ f (z?).

f strongly convex implies uniqueness of solution.
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Existence of Solutions and Optimality Conditions Existence of a Solution

Existence of an Optimal Solution

Important Points

This is a standard argument from the calculus of variations with a slight twist due to the
composite functional R ◦ J ◦ S .

Convexity of Zad or at least weak closedness.

Form of f (e.g., CVaR is monotone) leads to weak inf-compactness.

Z must be at least reflexive. For function-space-based algorithms Z should be a Hilbert space.

We need some form of compactness beyond what the Sobolev embedding theorems might give us
for the deterministic solutions.

This was done by assuming pointwise complete continuity of B. Together with the standing
assumptions, this actually amounts to a stronger property for B.

We work with the case q = 2 even though more regularity is possible depending on B and f .

Continuity of the risk measure follows from convex analysis.
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Existence of Solutions and Optimality Conditions Optimality Conditions

Main Components

Derivation in the Abstract Setting

Let z? be the optimal solution, z ∈ Zad, τ ∈ (0, 1).

Then by optimality of z? and convexity, we have

f (z?) ≤ f (z? + τ(z − z?))⇒ 0 ≤ f (z? + τ(z − z?))− f (z?)

τ

Passing to the limit as τ ↓ 0 yields

0 ≤ f ′(z?; z − z?) z ∈ Zad

provided f is directionally differentiable.
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Main Components

Derivation in the Concrete Setting

We need only investigate the difference quotients

1

2τ

[
CVaRβ [‖S(z? + τ(z − z?))− ud‖2]− CVaRβ [‖S(z)− ud‖2]

]
,

α

2τ

[
‖z? + τ(z − z?)‖2

Z − ‖z?‖2
Z

]

The latter term is unproblematic and yields (as expected):

α(z?, z − z?)Z + τ
α

2
‖z − z?‖2

Z .

Since (J ◦ S) is continuously Fréchet differentiable from Z into L1(Ω,F ,P), we only need a
differentiability concept for CVaRβ that is strong enough to allow from a chain rule.

It can be shown in that
R′[X ;H] = sup

ϑ∈∂R[X ]

E[ϑX ],

where R′[X ;H] is the Hadamard directional derivative and ∂R[X ] is the subdifferential.
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Primal First-Order Optimality Conditions

Combining these observations, we can readily prove the following result.

Proposition

Under the standing assumptions, the following first-order necessary (and sufficient) optimality
condition holds for a solution z?:

sup
ϑ∈∂R(J(S(z?)))

E[(S(z?)− ud , S
′(z?)(z − z?))L2 ϑ] + α(z?, z − z?)Z ≥ 0, ∀z ∈ Zad.
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Dual First-Order Optimality Conditions

It’s hard to make use of the primal optimality condition.

Introducing the bounded linear operators A, B and functional f, where

〈Aw , v〉 = a(w , v), 〈Bz , v〉 = EP[〈B(·)z , v(·)〉], 〈f, v〉 = EP[〈f (·), v(·)〉],

for w , v ∈ U , z ∈ Z , we can “unfold” the primal system into a dual optimality system.

If z? is an optimal solution, then there exist u?, λ?, ϑ? such that

(αz? + E[B∗λ?ϑ?], z − z?)Z ≥ 0, ∀z ∈ Zad

R[Y ]−R[J (u?)]− E[ϑ?(Y − J (u?))] ≥ 0, ∀Y ∈ L1(Ω,F ,P)

Au? = Bz? + f

A∗λ? = u? − ud .

The optimal control is the projection of − 1
α
E[ϑ?B∗λ?] onto Zad.

Without stochasticity, this is what we would normally expect.

With stochasticity and risk-aversion, we have the risk-adjusted average of the adjoint states.
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Summary Part I

PDE-constrained optimization under uncertainty presents a number of exciting challenges from
theory to computation.

In addition to the usual workflow, several additional considerations appear including:
measurability issues, modeling risk preferences, and stochastic optimization algorithms for
infinite-dimensional problems.

Faced with uncertainty, we need a way to obtain solution that are resilient to outlier events. We
choose to do this with risk measures from management theory.

The problems should be numerically tractable, the optimization model intuitive, and the solutions
plausible.

We sketched the main ideas for proving existence of solutions and deriving optimality conditions.
This is somewhat more difficult than the standard setting due to the nonsmoothness of CVaRβ .

Part II will be dedicated to algorithms and the numerical solution of the canonical problem.
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