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The Problem

» We consider optimal control problems governed by advection diffusion
equations

0
7Y@ ) = V(k(@)Vy(z,1)) + V(2) - Vy(2, 1) = f(2,1)
in  x (0,T). The optimization variables are related to the right hand
side f or to boundary data.

> After (finite element) discretization in space the optimal control problems
are of the form

min J(u) = %/0 ICy (1) + Du(t) — (1) %dt,

where y(t) = y(u;t) is the solution of

My'(t) = Ay(t) + Bu(t), te(0,7),
y(0) = yo.
Here y(t) € RN, M, A € RN*N B € RV*™ with N large. b’ﬁi‘s"“
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The Reduced Order Problem

> Projection matrices W,V € RNX" with n < N small.
> Replace states y(t) by V¥(¢) and project state equation by W.
This gives reduced order state equation
WMV (t) = WIAV S (t) + W B u(t)
—— —— ——
=M =A =B

and reduced order objective function

/0 | SV.9(1) + Dut) — ().

» The reduced optimal control problem is

T
min 7w = § [ [85() + Du(t) - d(o)|ds
0
where y(t) = y(u;t) solves
My'(t) = AF(t) + Bu(t), t € (0,7),
¥(0) = ¥o.

/GEORGE
Here $(t) € R", M, A € R™" B € R™™ with n < N small. MASGR
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Error Analysis (Standard)

>
>

U Hilbert space.
Let u. = argmin,cyJ(u) be the minimizer of the original problem and let
i, = argmin,;J(u) a minimizer of the reduced problem.
Assume that J is a strictly convex quadratic function, i.e., that there
exists k > 0 such that

(u—w,VJ(u) - VJ(w))u > &|lu—w|H for all u,w € U.

Set u = u. and w = U, and use

~

VJ(u.) = VJ(d.) =0

to get

Ju. = Glu||VI(8.) - VJ@)[lu

= lu. — G JullVJI(u) - V(@) |u

> (U, — a, VJ (1) — VJ(W))u > &f|u. — G.]|5.
Hence

Ju. = Gufu < &7 HVI(G.) = VJI(@G)||u.

Need to estimate error in the gradients to get estimate for error in the
solution. UNIVERSITY
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Gradient Computation

» For the original problem

My'(t) = Ay(t) + Bu(t),
z(t) = Cy(t) + Du(t) — d(t),
—M N (1) = ATA(t) + CTz(1),
VJ(u) = q(t) = BYA(t) + D (),

My’ (t) = Ay(t) + Bu(t),
7(t) = Cy(t) + Du(t) — d(1),
—MTN(t) = ATA(t) + CTZ(t),
VJ(u) =q(t) = BTA(t) + DTZ(t),
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Requirement on Reduced Order Model

» Need to approximte state system

My’ (t) = Ay(t) + Bu(t), t € (0,7)
z(t) = Cy(t) + Du(t), t€ (0,T

and corresponding adjoint system
~MX'(t) = ATA(t) + Cw(t), te(0,T)
q(t) =B A(t) + D w(t), te (0,T)
» Need to approximate input-to-output maps

u—z and w—q.

> We assume yo = 0 to simplify presentation. Inhomogeneous initial data
can be handled with modification (Heinkenschloss, Reis, Antoulas 2011).
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» Want reduced order state and adjoint systems
My’ (t) = Ay(t) + Bu(t), te (0,T)
Z(t) = Cy(t) + Du(t), te (0,T),
M7X'(t) = ATA(t) + CTw(t), t€(0,T)
q(t) = BTA(t) + D w(t), te(0,7)
with M = WMV, A = WAV, B=W7”B, and C = CV,
» such that we have error bounds
|z —2Z|lr2 < tol [lullzz and [l =4z < tol [[wz.  (¥)

for any given inputs u and w, where tol is a user specified tolerance.
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» Want reduced order state and adjoint systems
My’ (t) = Ay(t) + Bu(t), te (0,T)
Z(t) = Cy(t) + Du(t), te (0,T),
M7X'(t) = ATA(t) + CTw(t), t€(0,T)
q(t) = BTA(t) + D w(t), te(0,7)
with M = WMV, A = WAV, B=W7”B, and C = CV,
» such that we have error bounds
|z —2Z|lr2 < tol [lullzz and [l =4z < tol [[wz.  (¥)

for any given inputs u and w, where tol is a user specified tolerance.

> If the system is stable (Re(A\(.A)) < 0), controllable and observable, we
can use Balanced Truncation Model Reduction (BTMR).
BTMR error bound: For any given inputs u and w

Iz —2llr2 < 2(ont1 + ...+ on) [ullze,
la—dllzz <2(ont1 +... +on) W2,

where 01 > ... > 0n > 0p41 > ...0n > 0 are the Hankel singular values.
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> Want reduced order state and adjoint systems
My’ (t) = Ay(t) + Bu(t), t€ (0,T)
z(t) = Cy(t) + Du(t), te€ (0,7),
N(t)=ATA(t) +CTw(t), te(0,T)
d(t) =B "X(t) + DTw(t), te(0,T)
with M = WMV, A = WTAV, B=W'B, and C = CV,
» such that we have error bounds
|z =212 < tol flullzz  and  [lq—@llz2 < tol [[wl[gz. (%)

for any given inputs u and w, where tol is a user specified tolerance.

> If the system is stable (Re(A\(.A)) < 0), controllable and observable, we
can use Balanced Truncation Model Reduction (BTMR).
BTMR error bound: For any given inputs u and w

2 =2l < 2(ont1+ ... +on) [ullzz,
la—dllzz <2(ont1 +... +on) W2,

where o1 > ... > op > 0pg1 > ...on > 0 are the Hankel singular values.

» We use BTMR in our numerics, but theoretical results only rely on error once
bound (*). Other model reduction approaches that have an error boundms

(*) can be used as well. We state results with tol = 2(op4+1 + . _|_JN5'“””"
9/52
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Back to Gradient Error Estimates

» For the original problem

My'(t) = Ay(t) + Bu(t), te(0,7), y(0)=yo,

z(t) = Cy(t) + Du(t) —d(t), te(0,T)
—MNX(t) = ATA(t) + CTz(t), te(0,T), XT)=0,

V.J(u) = q(t) = BTA(t) + D" z(t), te (0,7)

» For the reduced problem

¥'(t) = Ay(t) + Bu(), €(0,7)  §(0) = o,

2(t) = Cy(t) + Du(t) —d(t), te(0,T)
“N(t)=ATX(t) + CTz(1), te(0,7) X(T)=0,

VJ(u) =d(t) = B'A(t) + D E(), € (0,7)

» We can almost apply BTMR error bounds, but need same inputs w in full
and reduced order adjoint system.

> Easy to fix: Introduce auxiliary adjoint X as solution of the original //GEOME
adjoint, but with input z instead of z. eu AN

10 /52
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Error Estimate

» Assume that there exists o > 0 such that
vIiAv < —avTMv, vv e RY.

For any u € L? let $(u) be the corresponding reduced state and
zZ(u) = Cy(u) + Du—d.

» There exists ¢ > 0 such that the error in the gradients obeys
VI (u) = VI(W)| 22 < 2 (cllullz2 + [[Z(w)]22) (Gnt1 + ..+ on)

for all u € L?!

» Consequently, the error between the solutions satisfies

~ 2 ~
[ =Bl < = (e8a]|z2 + [12:]]22) (@nts + ...+ ow).
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Example Problem (modeled after Dede/Quarteroni 2005)

N B 2 10-* (7 2
Minimize — (y(z,t) — d(z,t)) dzdt + u”(z, t)dzx dt,
2 0 D 2 0 Ui UU2

subject to
0
ay(ma t) - V(kVy(xa t)) + V(:C) ! Vy(xa t)
= u(z, t)xv, () + u(z, t)xv, () in 2 x (0,4),

with boundary conditions y(z,t) = 0 on I'p x (0,4), 6%y(ac,t) =0on

'y x (0,4) and initial conditions y(z,0) =0 in Q.

Velocity

0.4

03
02},

0.

0.
-0.2f"

-0.3

-0. 40 "o 0.2 0.4 06 0.8 1 1.2

Q with boundary conditions for the the velocity field v
advection diffusion equation
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Hankel Singular Values

grid m k N n o | e
1 168 9 1545 9 T,
2 283 16 2673 9 -
3 618 29 6036 9
The number m of observations, the °
number k of controls, the size N of
the full order system, and the size n 1075 0 20 %0 40 80 60
of the reduced order system for three
discretizations. The largest Hankel singular values
and the threshold 10~ %oy
(fine grid)
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0 0.5 1 15 2 25 3 35 4
Time

Integrals [, u(x,t)dx (solid blue
line) and fU 42 (z,t)dx (dashed red
line) of the optimal controls com-

puted using the full and and the re-
duced order model.

0 0.5 1 1.5 2 25 3 3.5 4
Time

Integrals [, uZ(z,t)dx (solid blue
line) and fU 42 (z,t)dx (dashed red
line) of the optimal controls com-

puted using the full and and the re-
duced order model.

The full and reduced order model solutions are in excellent agreement:

|l — Us|22 = 6.2-1075.
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The convergence histories of the Conjugate Gradient algorithm applied to the
full (+) and the reduced (o) order optimal control problems.

Recall error bound for the gradients: Z
IVJ(u) — Vf(u)||L2 <2(cllullzz + [1Z()|[12) (Ong1 + ...+ oN)  waversiny
for all u € L?!



Outline

Model Reduction and Optimization of Problems with Localized
Nonlinearities



Shape Optimization Problem

» Consider the minimization problem

T
min J(6) ::/ / L(y(z,t;0),t,0)dx dt
o Ja

0€0,4

where y(z,t;6) solves

0

v t) = V(k(x)Vy(z, 1)

» Semidiscretization in space leads to

T
pnin J(0) ::/O Ly (t; 0),t,0) dt
where y(t; 0) solves

M(G)%y(t)JrA(ﬂ)y(t) B(O)u(t), te 0,7, b’ﬁs

M(0)y(0) = M(0)yo.



Problems with Localized Nonlinearities

> We would like to replace the large scale problem

min J(0) := /OT L(y(t;0),t,0) dt

0€0,q
where y(t; 0) solves

M) $y(t) + A@)y(t) = B@u(t), t€[0,T],

M(0)y(0) = M(0)yo

» by a reduced order problem

T
in J(0):= [ (F(t0),t,0) dt
omin J(0) /0 (¥(5:6),1,0)

where y(t; 0) solves

M©)L5(t) + A@)y(t) = B@u(r), te0.7],

dt

M(6)3(0) = M(®)3.

» Problem is that we need a reduced order model that approximates the fi I/GE.-,“GE
order model for all € ©,4!

UNIVERSITY
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Problems with Localized Nonlinearities

Consider Problems with Local Nonlinearity

» Consider classes of problems where the shape parameter 6 only influences
a (small) subdomain:

Q(G) = 01 U QQ(@), Q1N Qz(@) = (Z), = Ql n QQ(G)
I

> 4
o Q2(0) ol

» The FE stiffness matrix times vector can be decomposed into

Al AN 0 vl
Ay=| AT A"(9) AL(9) vy
0 A(0) A(0) ¥z

where A™V(9) = ATT + ALY(9).
The matrices M, B admit similar representations.
» Consider objective functions of the type

1

T T _
[ 0.0 =5 [ lciy] - al@l+ 06" 0.v50. . 00de MESER
0 0



Problems with Localized Nonlinearities

Our Optimization problem

min J(0) := /OT Ly (t;0),t,0) dt

060,44

where y(t; 0) solves

A
=
=
+
¥
e
=
<
=
=
=
[

B(0)u(t), te0,T],
M(Q)YO

;\
<
=
<
=
S
=
I

can now be written as

min J(0) = / ICTy! — AL ()13 + Ty (), yA(0). £, 0)dt.

0€O 4 2

where y(t; 0) solves

M Syl + MIT S0 + ATV + ATV () = Blul)
MY (6) y3(0) + MIT(6) 3" (1) + Y (0)yh (1) + AF(0)y" (1) = BAO)ud(t)
M Lyl + M7 (0) 53" (0 + M5 (0) S5 ()
FATIYL() + ATT(0) Dy ) + AT (0)yh(r) = B0

Dependence on 0 € ©,4 is now localized. The fixed subsystem 1 is large. Theviversity
variable subsystem 2 is small. Idea: Reduce subsystem 1 only. 20/52



First Order Optimality Conditions

» The first order necessary optimality conditions are

M(0) Sy (H) + A@)y () = B@Ou() te 0,7,
M()y(0) = yo.
—M() A(t) + AT (OA() = —Vyl(y,t,0) te[0,T],
M(OA(T) = 0,

VoL(y(t),A(t),0)(6 — 6) >0, 0¢€ Ouq

> Gradient of J is given by VJ(0) = Vgl(y(t), A(t),0).



Problems with Localized Nonlinearities

Using the DD structure, the state and adjoint equations can be written

as
MU L3I0+ MIT ST () + AllyI@) + AV () = Blul(s)
MY (0) Lyho) + ME0) Dyt (1) + AV O30 + AE Oy (1) = B0
M Sy L)+ M (0) Sy (1) + MET(0) b1
FATTYL(0) + AT (0) () + AT (O)h() = B0 ()
/



Problems with Localized Nonlinearities

Using the DD structure, the state and adjoint equations can be written

as
MIT Lyl + MIT Sy (1) + ALY + AITYT (1) = Blul()
MY (6) S y3(0) + MIT(0) 3" (1) + AY (0)yh(0) + AST @)™ (1) = BIO)ul(t)
MLyl (0) + M7 (0) 53" () + M5 (0) Sy ()
FATTYL(0) + AT (0) () + AT (O)h() = B0 ()
MY X0 - MITEAT ) + AN + AN (1) = —(C)T(Clyl) - d])
M (6) S AL(6) - MIT(6) AT (6) + AY @M + AT ON (1) = V()
M SN (1)~ MIT(0) ST (1) — ME (0) X0
FATAL() + AT(0) A1) + AV ON() = V000,

To apply model reduction to the system corresponding to fixed subdomain Qy, £

we have to identify how y! and A! interact with other components.

GEORGE
UNIVERSITY
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We need to reduce

d
M’ —yi(t) =

dt

I
Z

r
Zy

II d I
1 thl(t)

I
q:

-M

r
a1

d
~Al'yl(t) - Mfrayr(t) +Biui(t) — Al'y" (1)
Clyi(t) —di

d
M’ 2yl - Ay,

dt
A @)+ MITEAT() - ()7l - AITAT()
(B1)"Af
I d

= MY AT - AN

dt

For simplicity we assume that

Mi" =0 Mj'=0,

Model Reduction of Fixed Subdomain Problem



Problems with Localized Nonlinearities

We get
MII d It o AII It BI AIF 11{
1@}’1()—— 11+ B —A) yF )
z! el I
() = (o (3 )
M d}\z £ = AT\ (4 chT AT Z{
-Mi 10) = — AT @) +(=(C)" | —A) N E

1) _  BD)" ),
(3) ()

This system is exactly of the form needed for balanced truncation model

reduction.



Problems with Localized Nonlinearities

Reduced Optimization Problem

» We apply BTMR to the fixed subdomain problem with inputs and output
determined by the original inputs to subdomain 1 as well as the interface
conditions.

» In the optimality conditions replace the fixed subdomain problem by its
reduced order model.

» We can interpret the resulting reduced optimality system as the optimality
system of the following reduced optimization problem

mmt/ L1GIgE — Al + Ty" (1), yhw). 1.0yt
0

subject to
d . —~mrd N ~
My’ 2916 + M 2y (6) + AUFI) + ALY (1) = Blui(h)
d d
Mél(f))@yé(t) + Mér(f))%yr(t) +A (O)y2(t) + AT (O)y" (1) = Bi(O)uz(t)
d d d
MY Sy1 () + M (0) 2" () + ME(0) Ly (0)
d
+ATyi(t )+AFF(9)&yF(t) +A (O)ya(t) = BF(G)UF};)
oI ol I I r _ Lseonce
¥1(0) = ¥1.0 ¥2(0) = y2,0, ¥ (0) =vo, M:AS

0 € Ouq
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Error Estimate

If
» there exists a > 0 such that

vIiAv < —avTMv, Vv € RN,
> the gradients Vy<2)l7(y§2)7yr,t,0), VyFZ(y?),yp,t,G),
I

Vez(y?),yr,t, ), are Lipschitz continuous in y§2),yp

> for all ||f]| < 1 and all § € © the following bound holds

max {||DsM @ (0)7], | Ds A (0)8], | DB (0)0] } <,

then there exists ¢ > 0 dependent on u, y, and X such that
IVJ(6) = VIOl < < (0nsr + o+ o).
If we assume the convexity condition
(VJ(0,) = VI0.) T (0. — 6.) > k|0, — 0.7,
then we obtain the error bound

16, — 6. < CTCH(""*‘ + . 4on). Misas



Example 1. Shape Optim. Governed by Parabolic Eqn.
> Reference domain et
1

T T T T T T T T
Q T, T Q
I of A | @Q 1 B 1Ts

= . . . . of . . .

-10 -8 -6 -4 -2 FB 2 4 6 8 10
» Optimization problem
T T
min/ / |yfyd|2dsdt+/ / ly — y?|*dzdt
0 I Uy 0 Q(0)
subject to the differential equation

ye(x,t) — Ay(z, t) + y(x,t) =100 in Q(0) x (0,7,
n-Vy(z,t) =0 on 0Q(0) x (0,T),
y(z,0) =0 in Q(0)

and design parameter constraints 6™ < § < g™a*,

» We use kr = 3, kp = 3 Bézier control points to specify the top and the £
bottom boundary of the variable subdomain Q2(0). SEORGE
The desired temperature y? is computed by specifying the optimal unrvERSITY
parameter 6, and solving the state equation on 9(6..). 27/52



Problems with Localized Nonlinearities

» We use automatic differentiation to compute the derivatives with respect
to the design variables 6.

» The semi-discretized optimization problems are solved using a projected
BFGS method with Armijo line search. The optimization algorithm is
terminated when the norm of projected gradient is less than e = 1074,

» The optimal domain




N éi} Naog

Reduced 147 581
Full 4280 4714

Sizes of the full and the
reduced order problems

Problems with Localized Nonlinearities

0 50 100 150 200 250 300
The largest Hankel singular values
and the threshold 10~

Error in solutions: [|0* — 5*“2 =23-107*

Optimal shape parameters 6, and 0. (rounded to 5 digits)
computed by minimizing the full and the reduced order model.

0.  (1.00, 2.0000, 2.0000, -2.0000, -2.0000, -1.00)
6. (1.00, 1.9999, 2.0001, -2.0001, -1.9998, -1.00) £




Problems with Localized Nonlinearities

The convergence histories of the projected BFGS algorithm applied to the full

and the reduced order problems.

2
10° (@
%
®
®q
0 D,
10 I
®g
—~ D
= ®
Es ®
= 107 e
S0,
4] +
10 tag,
OOOoo
Co000
-6
10
0 5 10 15 20 25 30

convergence history of the objective
functionals for the full (+) and re-
duced (o) order model.

10°
OEVOOOECOOICODIE,
o ®
10
= Cod+
> Fadt
5 O0C00n+
Z 109 o
o
107 Slele!
N
107
) 5 10 15 20 25 30

k
convergence history of the projected
gradients for the full (4) and re-
duced (o) order model.



Example 2: Shape Optim. Governed by Stokes Eqns.

I'p
T'p(6)
Tl h Qs
Ql —1> Pout
min J(0 / / ),p(0),t,0)dx dt
0€O,q a(6)
where v(0), p(8) solve the Stokes equations
%v(ﬂc,t) — vAv(z,t) + Vp(z,t) = f(z,t) in () x (0,77,
divv(z,t) = 0 in Q(0) x (0,77,
wVv(z,t)+ p(z,t)) = 0 on Loyt (0) x (0,7T]
v(z,t) = u(z,t) on (I'p(d)UTy,) x (0,7],
v(z,0) = vo(z) in (0).
//GEORGE
MASGR



Problems with Localized Nonlinearities

» We apply the same approach

> Assume that only a small part of the domain depends on the shape
parameter 6.

» Use DD to isolate the quantities that depend on 6.

» Use BMTR to reduced the subdomain problem that corresponds to
the fixed domain.



Problems with Localized Nonlinearities

» We apply the same approach

> Assume that only a small part of the domain depends on the shape
parameter 6.

» Use DD to isolate the quantities that depend on 6.

» Use BMTR to reduced the subdomain problem that corresponds to
the fixed domain.

> But (discretized) Stokes eqns. lead to a DAE (Hessenberg index 2), which
makes approach and analysis more complicated.

» Standard BTMR cannot be used. Extension for Stokes type systems
exist (Stykel 2006, Heinkenschloss/Sorensen/Sun 2008).

> Spatial domain decomposition for the Stokes system requires care to
ensure well-posedness of the coupled problem as well as of the
subdomain problems. See, e.g., Toselli/Widlund book for approaches.

> We use discretization with discontinuous pressures along the
subdomain interface. Subdomain pressures are represented as a
constant plus a pressure with zero spatial average.

> Error analysis for the shape optimization exists for the case when the
objective function corresponding to the fixed subdomain does not
explicitly depend on pressure (A.,Heinkenschloss,Hoppe 2011). Z



Domain Decomposition: Discontinuous Pressure

Problems with Localized Nonlinearities

r

921

K
02(0)

931

» On each subdomain, the pressure is written as the sum of a constant
pressure plus a pressure with zero spatial average. pJI- is the pressure in §2;
with average 0; po the vector constant pressures. There is no pressure
associated with the interface.

> The Stokes matrix times vector multiplication can be decomposed into

Al BIHT | o 0 Al 0 vi
B! 0 0 0 B! 0 p!
Sy = 0 0 AT (BINT [ ATF 0 vl
0 0 B! 0 B 0 p}
AT BT [AY BT [AT Bo)T ||V
0 0 O 0 B() O Po

» Zeros 0 in last row and column block are important to derive error bou

for the coupled reduced problem (A.,Heinkenschloss,Hoppe 2011).

£

GEORGE

UNIVERSITY
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Problems with Localized Nonlinearities

Example

Geometry motivated by biochip




Problems with Localized Nonlinearities

T
i J(0) = 3V t;0)°d /1 4:0) = v (2, t)Pdadt
PG //I xv(2,t:0)*da+ | glv(w,;0) v (x, 1) dz

0 Qb Q2(0)

where v(0) and p(6) solve the Stokes equations

vi(@,t) — pAv(z,t) + Vp(z,t) = f(z,1), in () < (0,7),
V-v(z,t) =0, in (6) x (0,7),

v(z,t) = vin(z, t) on I'in x (0,7),

v(z,t) =0 on Tt x (0,7,

—(uVv(z,t) —p(z,t)[)n =0 on Touy x (0,7,
v(z,0) =0 in ().

Here Q(0) = Q1 U Q2(0) and Q2(0) is the top left yellow, square domain. The
observation region Qo1 is part of the two reservoirs.
We have 12 shape parameters, § € R'2



Problems with Localized Nonlinearities

12f

10

Reference domain €,.¢

12f

10

Optimal domain



Problems with Localized Nonlinearities

grid  m N\(/Tc)lof Nélc)lof Nyv,aof  Ng,dof
1 149 4752 23 4862 133
2 313 7410 25 7568 183
3 361 11474 26 11700 252
4 537 16472 29 16806 363
The number m of observations in Qgs, the 1
number of velocities N‘(,f;of, \A(:c)lof in the ot
fixed subdomain €1 for the full and re- 10’2:'\
duced order model, the number of velocities )
Nv.dof, No.daof in the entire domain Q for "
the full and reduced order model for five 1°
discretizations. 10°
1 07“’0 50 100 150 200 250 300
The largest Hankel singu-
lar values and the thresho //GEOME

10730
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Problems with Localized Nonlinearities

» Error in optimal parameter computed sing the full and the reduced order
model (rounded to 5 digits)

6" (9.8987, 9.7510, 9.7496, 9.8994, 9.0991, 9.2499, 9.2504, 9.0989)
6" (9.9026, 9.7498, 9.7484, 9.9021, 9.0940, 9.2514, 9.2511, 9.0956)

> The convergence histories of the projected BFGS algorithm applied to the
full and the reduced order problems.

~ @
Jee 10 ®
10 ®
€]
@ ®
® Qg 2|
@ = 10 ®
S 00 = 00 ® @
> 10 o =
= 0000 > [SHCIY
+ o
= . 3 ®
. . 10
10 vy oo
+ 107 °
8
1
° 0 5 10 15 0 5 10 15
k k

convergence history of the objective convergence history of the projected
functionals for the full (+) and re- gradients for the full (4+) and eZcorce
duced (o) order model. duced (o) order model. VAASON
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Outline

Regularity of Stokes Equation with Slip Boundary Conditions on Sobolev
Domains



Stokes Slip Boundary

Extrude-Swell Problem

(Loading movie ...)



movie1.mov
Media File (video/quicktime)


Stokes FBP

Tinle @ 2 Tont

—div(e) = f, div (u) =0 in
u=g on Lintet U I'wan
ov=0 on Loyt
u-v =0, ov =aoHv on Dfree,

where o0 =1 (Vu + V’U,T) — pI is the stress tensor, 7 is viscosity, « is surface

tension.



Stokes Slip Boundary

Formulation challenge
» Try to use the necessary regularity.
> Stokes equations.

» Oversubscribed boundary conditions.
» Moving domain.

» The curvature equation.

How to address them?
> Analyze regularity of the free surface.
> Prove well-posedness of the Stokes with mixed B.C.
> Domain with same regularity of free surface.
» Use non-linear solver techniques.

> Fixed point, implicit function theorem, etc ...
» Solve in a reference domain.



Stokes Problem Slip (with friction) Boundary Conditions

> Q CR"is of class W27'/* with s > n.
» Start with the Stokes equations

—div (o (u,p)) = f, div(u)=g inQ,
» and add the Navier B.C. i.e. slip with friction
w-v=¢, BTu+T o(upv=1 ondQ,

where T'= I — v ® v is the projection operator into the tangent plane of
o9.
_ Vu+ \il

o =2ne(u) — Ip, e(u) 5



Variational Equation (pure slip)

Given F, find (u,p) € E¢v @ X,(2) such that
SQ (’u’vp) ('U, q) = .F('U, q) v ('U, q) € XT’ (Q)
and the continuity bounds
H(U”p)HX,,(Q) S Cﬂmynw (”]:”XT/(Q) +||¢||wﬁ*1/r(an))

where the Stokes operator in () reads

Sa (u,p) (v,q) == / e(u) : e(v) — pdiv (v) + gdiv (u).

Q



Stokes Slip Boundary

Variational Formulation (Spaces)

> X, = V() x Ly(Q), s <r <s, s >n.
> V(Q) = {v EWH(Q)/Z2(Q) v v = o}.
It is necessary to identify the kernel of So
> Lp(Q) :=L"(Q)/R.
> Z(Q) =
{z(x):Am—l—b:mEQ,A:—AT ER“X",bERn,z-V‘aQ:O}.

Earlier result: Amrouche '11 C** domain.



Stokes Slip Boundary

Domain Decomposition

pl
—_—
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» We cover the domain with finite number of balls
Q C UL, B(x4,8:/2).

v

Associate to it a smooth partition of unity {@;}F ;.

v

And smooth cut-off functions, {g;}*_;, supp 0; C B(zi,8:), p; = 1 on
B(wi, (51/2)
Using Piola transform

v



Stokes Slip Boundary

Space Decomposition
Restriction map ) o
Ro; : Xr(Q) = X,.(0;)
(uw,p) = P; ! (0iu, 0ip)
Projection map

R

L X, (6)) = X (Q)
(9,0) = @iPi (9,4)
continuous only when Piola matrix is in W2 ().

> Given (u,p) € X,(2), we have

k k k
(w,p) =D @i (w,p) =Y _ @i (0w, 0ip) = Y _ 0PiP; " (i, 0ip)
i=1 1=1 =1
k A~
= Z RW RQi (u,p) .
=1 T
€Xr(0;)

which implies X,.(Q) = SF R, X, (0).
» Similarly for the dual space



Stokes Slip Boundary

Operator Decomposition

Sa (u,p) Ry, (9,4) = (Sa, (piu, vip) + Ki (u,p)) Pi (9, )

<E (piu), E( ) >
= \3/ ¢: (u,p) (9,9)
Invertible
+Co Rep, () + Ki (u,p) Pi (9, 9)

Compact




Stokes Slip Boundary

Pesudo-inverse

Consider the operator

=1
Then .
SaSa =Ix,. (o) + Z,}?’Qi S ! (CiRw + 751*’@) .
1=1
compact
Similarly

808}, = identity + compact.

Therefore S has a pseudo-inverse, which implies

dim Ns, < 0o, codim Rs, < o0.



Stokes Slip Boundary

Sq and S are Injective

» Problem satisfies the Brezzi's theorem for Hilbert space case. This ensures
the uniqueness of solution for

2<r<s.

> Let rg = s’ < 2. Consider the homogeneous problem, we need to show
that (u,p) = 0.
Use the method by Galdi-Simader-Sohr '99 to improve the integrability of
the function to some 7, > 2, to conclude.



Index Theory of Fredholm Operators

Let A: X — Y has a pseudo-inverse. A is bijective if and only if A and A*
are injective.
Summary:

» Using index theory we have shown the well-posedness of the Stokes
problem with slip boundary condition.

» under mild domain regularity i.e. C*, earlier result Amrouche '11
ct' domain.

» We have provided a constructive approach based on domain
decomposition.

> Extension to slip-with-friction is a direct corollary.

“dimension independent”



Stokes Slip Boundary

Conclusions

» Applied reduced order models in optimization context.
> Important to approximate state and adjoint equations.

» We have integrated domain decomposition and model reduction for
systems with small localized nonlinearities. In our case, nonlinearities arise
from dependence on shape parameters.

> We have proven global, a-priori estimates for the error between the
solution of the original and the reduced order problem.

> Error estimates depend on balanced truncation error estimates.
(Could use other model reduction techniques).

» Efficiency of reduced order model depends size of subdomain with
nonlinearity, and interface.

> Presented existence theory for Stokes equations with Slip boundary for
CY¢ domain, which is much better than earlier known results by
Amrouche '11 (C*') domain.
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