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The Problem

I We consider optimal control problems governed by advection diffusion
equations

∂

∂t
y(x, t)−∇(k(x)∇y(x, t)) + V (x) · ∇y(x, t)) = f(x, t)

in Ω× (0, T ). The optimization variables are related to the right hand
side f or to boundary data.

I After (finite element) discretization in space the optimal control problems
are of the form

min J(u) ≡ 1

2

∫ T

0

‖Cy(t) + Du(t)− d(t)‖2dt,

where y(t) = y(u; t) is the solution of

My′(t) = Ay(t) + Bu(t), t ∈ (0, T ),

y(0) = y0.

Here y(t) ∈ RN , M,A ∈ RN×N , B ∈ RN×m, with N large.
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The Reduced Order Problem
I Projection matrices W,V ∈ RN×n with n� N small.

I Replace states y(t) by Vŷ(t) and project state equation by W.
This gives reduced order state equation

WTMV︸ ︷︷ ︸
=M̂

ŷ′(t) = WTAV︸ ︷︷ ︸
=Â

ŷ(t) + WTB︸ ︷︷ ︸
=B̂

u(t)

and reduced order objective function∫ T

0

‖CV︸︷︷︸
=Ĉ

ŷ(t) + Du(t)− d(t)‖2dt.

I The reduced optimal control problem is

min Ĵ(u) ≡ 1

2

∫ T

0

‖Ĉŷ(t) + Du(t)− d(t)‖2dt

where ŷ(t) = ŷ(u; t) solves

M̂ŷ′(t) = Âŷ(t) + B̂u(t), t ∈ (0, T ),

ŷ(0) = ŷ0.

Here ŷ(t) ∈ Rn, M̂, Â ∈ Rn×n, B̂ ∈ Rn×m, with n� N small.
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Error Analysis (Standard)
I U Hilbert space.

I Let u∗ = argminu∈UJ(u) be the minimizer of the original problem and let

û∗ = argminu∈UĴ(u) a minimizer of the reduced problem.

I Assume that J is a strictly convex quadratic function, i.e., that there
exists κ > 0 such that

〈u−w,∇J(u)−∇J(w)〉U ≥ κ‖u−w‖2U for all u,w ∈ U.

I Set u = u∗ and w = û∗ and use

∇J(u∗) = ∇Ĵ(û∗) = 0

to get

‖u∗ − û∗‖U‖∇Ĵ(û∗)−∇J(û∗)‖U
= ‖u∗ − û∗‖U‖∇J(u∗)−∇J(û∗)‖U
≥ 〈u∗ − û∗,∇J(u∗)−∇J(û∗)〉U ≥ κ‖u∗ − û∗‖2U.

I Hence
‖u∗ − û∗‖U ≤ κ−1‖∇Ĵ(û∗)−∇J(û∗)‖U.

I Need to estimate error in the gradients to get estimate for error in the
solution.
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Gradient Computation

I For the original problem

My′(t) = Ay(t) + Bu(t), t ∈ (0, T ), y(0) = y0,

z(t) = Cy(t) + Du(t)− d(t), t ∈ (0, T )

−MTλ′(t) = ATλ(t) + CT z(t), t ∈ (0, T ), λ(T ) = 0,

∇J(u) = q(t) = BTλ(t) + DT z(t), t ∈ (0, T )

I For the reduced problem

M̂ŷ′(t) = Âŷ(t) + B̂u(t), t ∈ (0, T ) ŷ(0) = ŷ0,

ẑ(t) = Ĉŷ(t) + Du(t)− d(t), t ∈ (0, T )

−M̂T λ̂′(t) = ÂT λ̂(t) + ĈT ẑ(t), t ∈ (0, T ) λ̂(T ) = 0,

∇Ĵ(u) = q̂(t) = B̂T λ̂(t) + DT ẑ(t), t ∈ (0, T )
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Requirement on Reduced Order Model

I Need to approximte state system

My′(t) = Ay(t) + Bu(t), t ∈ (0, T )

z(t) = Cy(t) + Du(t), t ∈ (0, T )

and corresponding adjoint system

−Mλ′(t) = ATλ(t) + Cw(t), t ∈ (0, T )

q(t) = BTλ(t) + DTw(t), t ∈ (0, T )

I Need to approximate input-to-output maps

u 7→ z and w 7→ q.

I We assume y0 = 0 to simplify presentation. Inhomogeneous initial data
can be handled with modification (Heinkenschloss, Reis, Antoulas 2011).
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I Want reduced order state and adjoint systems

M̂ŷ′(t) = Âŷ(t) + B̂u(t), t ∈ (0, T )

ẑ(t) = Ĉŷ(t) + Du(t), t ∈ (0, T ),

M̂T λ̂′(t) = ÂT λ̂(t) + ĈTw(t), t ∈ (0, T )

q̂(t) = B̂T λ̂(t) + DTw(t), t ∈ (0, T )

with M̂ = WTMV, Â = WTAV, B̂ = WTB, and Ĉ = CV,

I such that we have error bounds

‖z− ẑ‖L2 ≤ tol ‖u‖L2 and ‖q− q̂‖L2 ≤ tol ‖w‖L2 . (∗)

for any given inputs u and w, where tol is a user specified tolerance.

I If the system is stable (Re(λ(A)) < 0), controllable and observable, we
can use Balanced Truncation Model Reduction (BTMR).
BTMR error bound: For any given inputs u and w

‖z− ẑ‖L2 ≤ 2(σn+1 + . . .+ σN ) ‖u‖L2 ,

‖q− q̂‖L2 ≤ 2(σn+1 + . . .+ σN ) ‖w‖L2 ,

where σ1 ≥ . . . ≥ σn ≥ σn+1 ≥ . . . σN ≥ 0 are the Hankel singular values.

I We use BTMR in our numerics, but theoretical results only rely on error
bound (*). Other model reduction approaches that have an error bound
(*) can be used as well. We state results with tol = 2(σn+1 + . . .+ σN ).
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M̂ŷ′(t) = Âŷ(t) + B̂u(t), t ∈ (0, T )

ẑ(t) = Ĉŷ(t) + Du(t), t ∈ (0, T ),
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Back to Gradient Error Estimates
I For the original problem

My′(t) = Ay(t) + Bu(t), t ∈ (0, T ), y(0) = y0,

z(t) = Cy(t) + Du(t)− d(t), t ∈ (0, T )

−Mλ′(t) = ATλ(t) + CT z(t), t ∈ (0, T ), λ(T ) = 0,

∇J(u) = q(t) = BTλ(t) + DT z(t), t ∈ (0, T )

I For the reduced problem

ŷ′(t) = Âŷ(t) + B̂u(t), t ∈ (0, T ) ŷ(0) = ŷ0,

ẑ(t) = Ĉŷ(t) + Du(t)− d(t), t ∈ (0, T )

−λ̂′(t) = ÂT λ̂(t) + ĈT ẑ(t), t ∈ (0, T ) λ̂(T ) = 0,

∇Ĵ(u) = q̂(t) = B̂T λ̂(t) + DT ẑ(t), t ∈ (0, T )

I We can almost apply BTMR error bounds, but need same inputs w in full
and reduced order adjoint system.

I Easy to fix: Introduce auxiliary adjoint λ̃ as solution of the original
adjoint, but with input ẑ instead of z.
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Error Estimate

I Assume that there exists α > 0 such that

vTAv ≤ −αvTMv, ∀v ∈ RN .

For any u ∈ L2 let ŷ(u) be the corresponding reduced state and

ẑ(u) = Ĉŷ(u) + Du− d.

I There exists c > 0 such that the error in the gradients obeys

‖∇J(u)−∇Ĵ(u)‖L2 ≤ 2
(
c‖u‖L2 + ‖ẑ(u)‖L2

)
(σn+1 + . . .+ σN )

for all u ∈ L2!

I Consequently, the error between the solutions satisfies

‖u∗ − û∗‖L2 ≤ 2

κ

(
c‖û∗‖L2 + ‖ẑ∗‖L2

)
(σn+1 + . . .+ σN ).
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Example Problem (modeled after Dede/Quarteroni 2005)

Minimize
1

2

∫ T

0

∫
D

(y(x, t)− d(x, t))2dx dt+
10−4

2

∫ T

0

∫
U1∪U2

u2(x, t)dx dt,

subject to

∂

∂t
y(x, t)−∇(k∇y(x, t)) + V(x) · ∇y(x, t)

= u(x, t)χU1(x) + u(x, t)χU2(x) in Ω× (0, 4),

with boundary conditions y(x, t) = 0 on ΓD × (0, 4), ∂
∂n
y(x, t) = 0 on

ΓN × (0, 4) and initial conditions y(x, 0) = 0 in Ω.1032 L. DEDE’ AND A. QUARTERONI
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Figure 4. Test 1. Reference domain for the control problem. We report the boundary condi-
tions for the advection–diffusion Equation (10) (a) and for the Stokes problem (64) (b).

where ρw
K , ρp

K and ρu
K are defined in Equations (55) and (61) (for the sake of simplicity, we have dropped the

apex (j) on the error indicators). Results are compared with those obtained on fine grids, that we consider an
accurate guess of the exact solution.

4.1. Test 1: water pollution

Let us consider a first test case that is inspired to a problem of a water pollution. The optimal control problem
consists in regulating the emission rates of pollutants (rising e.g. from refusals of industrial or agricultural plants)
to keep the concentration of such substances below a desired threshold in a branch of a river.

We refer to the domain reported in Figure 4a, that could represent a river that bifurcates into two branches
past a hole, which stands for, e.g., an island. Referring to Equation (10), we obtain the velocity field V as the
solution of the following Stokes problem:






−µ∆V + ∇p = 0, in Ω,
V = (1 − ( y

0.2 )2, 0)T , on Γin
D ,

V = 0, on ΓD,
µ∇V · n− pn = 0, on ΓN ,

(64)

where p stands for the pressure, while Γin
D , ΓD and ΓN are indicated in Figure 4b. Adimensional quantities

are used. Here the Stokes problem serves the only purpose to provide an appropriate velocity field for the
advection–diffusion problem; since the latter governs our control problem, the analysis provided in Section 1
and Section 2 applies. Moreover, for the sake of simplicity, we adopt the method and the a posteriori error
estimate (54) proposed in Section 3. In fact, this approach is not fully coherent, being the velocity field V
computed numerically by means of the same grid adopted to solve the control problem, i.e. we consider Vh

instead of V.
For the Stokes problem we assume µ = 0.1 , for which the Reynolds number reads Re ≈ 10; we solve the

problem by means of linear finite elements with stabilization (see [16]), computed with respect to the same grid
of the control problem. In Figure 5 we report the velocity field and its intensity as obtained by solving the
Stokes problem.

For our control problem we assume ν = 0.015, u = 50 in both the emission areas U1 and U2 and zd = 0.1 in
the observation area D. The initial value of the control function, u = 50, can be interpreted as the maximum
rate of emission of pollutants (divided by the emission area), while the state variable w stands for the pollutant

Ω with boundary conditions for the
advection diffusion equation
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grid m k N n

1 168 9 1545 9
2 283 16 2673 9
3 618 29 6036 9

The number m of observations, the
number k of controls, the size N of
the full order system, and the size n
of the reduced order system for three
discretizations.
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The largest Hankel singular values
and the threshold 10−4σ1

(fine grid)
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duced order model.

The full and reduced order model solutions are in excellent agreement:

‖u∗ − û∗‖2L2 = 6.2 · 10−3.
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The convergence histories of the Conjugate Gradient algorithm applied to the
full (+) and the reduced (o) order optimal control problems.

Recall error bound for the gradients:

‖∇J(u)−∇Ĵ(u)‖L2 ≤ 2
(
c‖u‖L2 + ‖ẑ(u)‖L2

)
(σn+1 + . . .+ σN )

for all u ∈ L2! 15 / 52



Model Reduction & Optimal Control Linear-Quadratic Problems Problems with Localized Nonlinearities Stokes Slip Boundary

Outline

Model Reduction and Optimal Control of Linear-Quadratic Problems

Model Reduction and Optimization of Problems with Localized
Nonlinearities

Regularity of Stokes Equation with Slip Boundary Conditions on Sobolev
Domains

16 / 52



Model Reduction & Optimal Control Linear-Quadratic Problems Problems with Localized Nonlinearities Stokes Slip Boundary

Shape Optimization Problem
I Consider the minimization problem

min
θ∈Θad

J(θ) :=

∫ T

0

∫
Ω(θ)

`(y(x, t; θ), t, θ)dx dt

where y(x, t; θ) solves

∂

∂t
y(x, t)−∇(k(x)∇y(x, t))

+V (x) · ∇y(x, t)) = f(x, t) (x, t) ∈ Ω(θ)× (0, T ),

k(x)∇y(x, t) · n = g(x, t) (x, t) ∈ ΓN (θ)× (0, T ),

y(x, t) = u(x, t) (x, t) ∈ ΓD(θ)× (0, T ),

y(x, 0) = y0(x) x ∈ ΩD(θ)

I Semidiscretization in space leads to

min
θ∈Θad

J(θ) :=

∫ T

0

`(y(t; θ), t, θ) dt

where y(t; θ) solves

M(θ)
d

dt
y(t) + A(θ)y(t) = B(θ)u(t), t ∈ [0, T ],

M(θ)y(0) = M(θ)y0.
17 / 52



Model Reduction & Optimal Control Linear-Quadratic Problems Problems with Localized Nonlinearities Stokes Slip Boundary

I We would like to replace the large scale problem

min
θ∈Θad

J(θ) :=

∫ T

0

`(y(t; θ), t, θ) dt

where y(t; θ) solves

M(θ)
d

dt
y(t) + A(θ)y(t) = B(θ)u(t), t ∈ [0, T ],

M(θ)y(0) = M(θ)y0

I by a reduced order problem

min
θ∈Θad

Ĵ(θ) :=

∫ T

0

`(ŷ(t; θ), t, θ) dt

where ŷ(t; θ) solves

M̂(θ)
d

dt
ŷ(t) + Â(θ)y(t) = B̂(θ)u(t), t ∈ [0, T ],

M̂(θ)ŷ(0) = M̂(θ)ŷ0.

I Problem is that we need a reduced order model that approximates the full
order model for all θ ∈ Θad!
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Consider Problems with Local Nonlinearity
I Consider classes of problems where the shape parameter θ only influences

a (small) subdomain:

Ω̄(θ) := Ω̄1 ∪ Ω̄2(θ), Ω1 ∩ Ω2(θ) = ∅, Γ = Ω̄1 ∩ Ω̄2(θ).

Γ

� ^
Ω1 Ω1Ω2(θ)

I The FE stiffness matrix times vector can be decomposed into

Ay =

 AII
1 AIΓ

1 0
AΓI

1 AΓΓ(θ) AΓI
2 (θ)

0 AIΓ
2 (θ) AII

2 (θ)


 yI1

yΓ

yI2


where AΓΓ(θ) = AΓΓ

1 + AΓΓ
2 (θ).

The matrices M, B admit similar representations.

I Consider objective functions of the type∫ T

0

`(y(t), t, θ)dt =
1

2

∫ T

0

‖CI
1y

I
1 − dI1(t)‖22 + ˜̀(yΓ(t),yI2(t), t, θ)dt.
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Our Optimization problem

min
θ∈Θad

J(θ) :=

∫ T

0

`(y(t; θ), t, θ) dt

where y(t; θ) solves

M(θ)
d

dt
y(t) + A(θ)y(t) = B(θ)u(t), t ∈ [0, T ],

M(θ)y(0) = M(θ)y0

can now be written as

min
θ∈Θad

J(θ) :=
1

2

∫ T

0

‖CI
1y

I
1 − dI1(t)‖22 + ˜̀(yΓ(t),yI2(t), t, θ)dt.

where y(t; θ) solves

MII
1
d

dt
yI1(t) + MIΓ

1
d

dt
yΓ(t) + AII

1 yI1(t) + AIΓ
1 yΓ(t) = BI

1u
I
1(t)

MII
2 (θ)

d

dt
yI2(t) + MIΓ

2 (θ)
d

dt
yΓ(t) + AII

2 (θ)yI2(t) + AIΓ
2 (θ)yΓ(t) = BI

2(θ)uI2(t)

MΓI
1
d

dt
yI1(t) + MΓΓ(θ)

d

dt
yΓ(t) + MΓI

2 (θ)
d

dt
yI2(t)

+AΓI
1 yI1(t) + AΓΓ(θ)

d

dt
yΓ(t) + AΓI

2 (θ)yI2(t) = BΓ(θ)uΓ(t)

Dependence on θ ∈ Θad is now localized. The fixed subsystem 1 is large. The
variable subsystem 2 is small. Idea: Reduce subsystem 1 only. 20 / 52



Model Reduction & Optimal Control Linear-Quadratic Problems Problems with Localized Nonlinearities Stokes Slip Boundary

First Order Optimality Conditions

I The first order necessary optimality conditions are

M(θ)
d

dt
y(t) + A(θ)y(t) = B(θ)u(t) t ∈ [0, T ],

M(θ)y(0) = y0,

−M(θ)
d

dt
λ(t) + AT (θ)λ(t) = −∇y`(y, t, θ) t ∈ [0, T ],

M(θ)λ(T ) = 0.

∇θL(y(t),λ(t), θ)(θ̃ − θ) ≥ 0, θ̃ ∈ Θad

I Gradient of J is given by ∇J(θ) = ∇θ`(y(t),λ(t), θ).
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Using the DD structure, the state and adjoint equations can be written
as

MII
1
d

dt
yI1(t) + MIΓ

1
d

dt
yΓ(t) + AII

1 yI1(t) + AIΓ
1 yΓ(t) = BI

1u
I
1(t)

MII
2 (θ)

d

dt
yI2(t) + MIΓ

2 (θ)
d

dt
yΓ(t) + AII

2 (θ)yI2(t) + AIΓ
2 (θ)yΓ(t) = BI

2(θ)uI2(t)

MΓI
1
d

dt
yI1(t) + MΓΓ(θ)

d

dt
yΓ(t) + MΓI

2 (θ)
d

dt
yI2(t)

+AΓI
1 yI1(t) + AΓΓ(θ)

d

dt
yΓ(t) + AΓI

2 (θ)yI2(t) = BΓ(θ)uΓ(t),

−MII
1
d

dt
λI1(t)−MIΓ

1
d

dt
λΓ(t) + AII

1 λ
I
1(t) + AIΓ

1 λ
Γ(t) = −(CI

1)T (CI
1y

I
1(t)− dI1)

−MII
2 (θ)

d

dt
λI2(t)−MIΓ

2 (θ)
d

dt
λΓ(t) + AII

2 (θ)λI2(t) + AIΓ
2 (θ)λΓ(t) = −∇yI2

˜̀(.)
−MΓI

1
d

dt
λI1(t)−MΓΓ(θ)

d

dt
λΓ(t)−MΓI

2 (θ)
d

dt
λI2(t)

+AΓI
1 λ

I
1(t) + AΓΓ(θ)

d

dt
λΓ(t) + AΓI

2 (θ)λI2(t) = −∇yΓ
˜̀(.),

To apply model reduction to the system corresponding to fixed subdomain Ω1,
we have to identify how yI1 and λI1 interact with other components.
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dt
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1 λ

I
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˜̀(.),
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we have to identify how yI1 and λI1 interact with other components.
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Model Reduction of Fixed Subdomain Problem

We need to reduce

MII
1
d

dt
yI1(t) = −AII

1 yI1(t)−MIΓ
1
d

dt
yΓ(t) + BI

1u
I
1(t)−AIΓ

1 yΓ(t)

zI1 = CI
1y

I
1(t)− dI1

zΓ
1 = −MΓI

1
d

dt
yI1 −AΓI

1 yI1,

−MII
1
d

dt
λI1(t) = −AII

1 λ
I
1(t) + MIΓ

1
d

dt
λΓ(t)− (CI

1)T zI1 −AIΓ
1 λ

Γ(t)

qI1 = (BI
1)TλI1

qΓ
1 = MΓI

1
d

dt
λI1 −AΓI

1 λ
I
1

For simplicity we assume that

MIΓ
1 = 0 MΓI

1 = 0,
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We get

MII
1
d

dt
yI1(t) = −AII

1 yI1(t) + (BI
1 | −AIΓ

1 )

(
uI1
yΓ

)
,(

zI1
zΓ

1

)
=

(
−CI

1

−AΓI
1

)
yI1 +

(
I
0

)
dI1,

−MII
1
d

dt
λI1(t) = −AII

1 λ
I
1(t) + (−(CI

1)T | −AIΓ
1 )

(
zI1
λΓ

)
,(

qI1
qΓ

1

)
=

(
(BI

1)T

−AΓI
1

)
λI1.

This system is exactly of the form needed for balanced truncation model

reduction.
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Reduced Optimization Problem
I We apply BTMR to the fixed subdomain problem with inputs and output

determined by the original inputs to subdomain 1 as well as the interface
conditions.

I In the optimality conditions replace the fixed subdomain problem by its
reduced order model.

I We can interpret the resulting reduced optimality system as the optimality
system of the following reduced optimization problem

min

∫ T

0

1

2
‖ĈI

1ŷ
I
1 − dI1(t)‖22 + ˜̀(yΓ(t),yI2(t), t, θ)dt

subject to

M̂II
1
d

dt
ŷI1(t) + M̂IΓ

1
d

dt
yΓ(t) + ÂII

1 ŷI1(t) + ÂIΓ
1 yΓ(t) = B̂I

1u
I
1(t)

MII
2 (θ)

d

dt
yI2(t) + MIΓ

2 (θ)
d

dt
yΓ(t) + AII

2 (θ)yI2(t) + AIΓ
2 (θ)yΓ(t) = BI

2(θ)uI2(t)

M̂ΓI
1
d

dt
yI1(t) + MΓΓ(θ)

d

dt
yΓ(t) + MΓI

2 (θ)
d

dt
yI2(t)

+ÂΓI
1 yI1(t) + AΓΓ(θ)

d

dt
yΓ(t) + AΓI

2 (θ)yI2(t) = BΓ(θ)uΓ(t)

ŷI1(0) = ŷI1,0 yI2(0) = yI2,0, yΓ(0) = yΓ
0 ,

θ ∈ Θad 25 / 52
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Error Estimate
If

I there exists α > 0 such that

vTAv ≤ −αvTMv, ∀v ∈ RN ,

I the gradients ∇
y

(2)
I

˜̀(y(2)
I ,yΓ, t, θ), ∇yΓ

˜̀(y(2)
I ,yΓ, t, θ),

∇θ ˜̀(y(2)
I ,yΓ, t, θ), are Lipschitz continuous in y

(2)
I ,yΓ

I for all ‖θ̃‖ ≤ 1 and all θ ∈ Θ the following bound holds

max
{
‖DθM(2)(θ)θ̃‖, ‖DθA(2)(θ)θ̃‖, ‖DθB(2)(θ)θ̃‖

}
≤ γ,

then there exists c > 0 dependent on u, ŷ, and λ̂ such that

‖∇J(θ)−∇Ĵ(θ)‖L2 ≤ c

α
(σn+1 + ...+ σN ).

If we assume the convexity condition

(∇J(θ̂∗)−∇J(θ∗))
T (θ̂∗ − θ∗) ≥ κ‖θ̂∗ − θ∗‖2,

then we obtain the error bound

‖θ∗ − θ̂∗‖ ≤
c

ακ
(σn+1 + ...+ σN ).
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Example 1: Shape Optim. Governed by Parabolic Eqn.
I Reference domain Ωref

−10 −8 −6 −4 −2 0 2 4 6 8 10
−1

0

1

Ω
A

Ω
B

Ω
H

Γ
I

Γ
I

 Ω
C

Γ
R

Γ
L

Γ
T

Γ
B

I Optimization problem

min

T∫
0

∫
ΓL∪ΓR

|y − yd|2dsdt+

T∫
0

∫
Ω2(θ)

|y − yd|2dxdt

subject to the differential equation

yt(x, t)−∆y(x, t) + y(x, t) =100 in Ω(θ)× (0, T ),

n · ∇y(x, t) = 0 on ∂Ω(θ)× (0, T ),

y(x, 0) = 0 in Ω(θ)

and design parameter constraints θmin ≤ θ ≤ θmax.

I We use kT = 3, kB = 3 Bézier control points to specify the top and the
bottom boundary of the variable subdomain Ω2(θ).
The desired temperature yd is computed by specifying the optimal
parameter θ∗ and solving the state equation on Ω(θ∗). 27 / 52
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I We use automatic differentiation to compute the derivatives with respect
to the design variables θ.

I The semi-discretized optimization problems are solved using a projected
BFGS method with Armijo line search. The optimization algorithm is
terminated when the norm of projected gradient is less than ε = 10−4.

I The optimal domain

−10 −8 −6 −4 −2 0 2 4 6 8 10

−1

0

1
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N
(1)
dof Ndof

Reduced 147 581
Full 4280 4714

Sizes of the full and the
reduced order problems

0 50 100 150 200 250 300
10

−10

10
−8

10
−6

10
−4

10
−2

10
0

The largest Hankel singular values
and the threshold 10−4σ1

Error in solutions: ‖θ∗ − θ̂∗‖2 = 2.3 · 10−4

Optimal shape parameters θ∗ and θ̂∗ (rounded to 5 digits)
computed by minimizing the full and the reduced order model.

θ∗ (1.00, 2.0000, 2.0000, -2.0000, -2.0000, -1.00)

θ̂∗ (1.00, 1.9999, 2.0001, -2.0001, -1.9998, -1.00)
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The convergence histories of the projected BFGS algorithm applied to the full
and the reduced order problems.
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convergence history of the objective
functionals for the full (+) and re-
duced (o) order model.
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convergence history of the projected
gradients for the full (+) and re-
duced (o) order model.
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Example 2: Shape Optim. Governed by Stokes Eqns.

-

-

Γin

ΓD
ΓD(θ)

Γout

Ω1

Ω1

Ω2

min
θ∈Θad

J(θ) :=

∫ T

0

∫
Ω(θ)

`(v(θ), p(θ), t, θ)dx dt

where v(θ), p(θ) solve the Stokes equations

∂

∂t
v(x, t)− ν∆v(x, t) +∇p(x, t) = f(x, t) in Ω(θ)× (0, T ] ,

div v(x, t) = 0 in Ω(θ)× (0, T ] ,

(ν∇v(x, t) + p(x, t)) = 0 on Γout(θ)× (0, T ] ,

v(x, t) = u(x, t) on (ΓD(θ) ∪ Γin)× (0, T ] ,

v(x, 0) = v0(x) in Ω(θ).
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I We apply the same approach

I Assume that only a small part of the domain depends on the shape
parameter θ.

I Use DD to isolate the quantities that depend on θ.
I Use BMTR to reduced the subdomain problem that corresponds to

the fixed domain.

I But (discretized) Stokes eqns. lead to a DAE (Hessenberg index 2), which
makes approach and analysis more complicated.

I Standard BTMR cannot be used. Extension for Stokes type systems
exist (Stykel 2006, Heinkenschloss/Sorensen/Sun 2008).

I Spatial domain decomposition for the Stokes system requires care to
ensure well-posedness of the coupled problem as well as of the
subdomain problems. See, e.g., Toselli/Widlund book for approaches.

I We use discretization with discontinuous pressures along the
subdomain interface. Subdomain pressures are represented as a
constant plus a pressure with zero spatial average.

I Error analysis for the shape optimization exists for the case when the
objective function corresponding to the fixed subdomain does not
explicitly depend on pressure (A.,Heinkenschloss,Hoppe 2011).
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Domain Decomposition: Discontinuous Pressure
Γ

� ^
Ω1 Ω1Ω2(θ)

I On each subdomain, the pressure is written as the sum of a constant
pressure plus a pressure with zero spatial average. pIj is the pressure in Ωj
with average 0; p0 the vector constant pressures. There is no pressure
associated with the interface.

I The Stokes matrix times vector multiplication can be decomposed into

Sy =



AII
1 (BII

1 )T 0 0 AIΓ
1 0

BII
1 0 0 0 BΓI

1 0

0 0 AII
2 (BII

2 )T AIΓ
2 0

0 0 BII
2 0 BΓI

2 0

AΓI
1 (BΓI

1 )T AΓI
2 (BΓI

2 )T AΓΓ (B0)T

0 0 0 0 B0 0





vI1
pI1
vI2
pI2
vΓ

p0


I Zeros 0 in last row and column block are important to derive error bound

for the coupled reduced problem (A.,Heinkenschloss,Hoppe 2011).
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Example

Geometry motivated by biochip
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min
θmin≤θ≤θmax

J(θ) =

T∫
0

∫
Ωobs

1
2
|∇×v(x, t; θ)|2dx+

∫
Ω2(θ)

1
2
|v(x, t; θ)−vd(x, t)|2dxdt

where v(θ) and p(θ) solve the Stokes equations

vt(x, t)− µ∆v(x, t) +∇p(x, t) = f(x, t), in Ω(θ)× (0, T ),

∇ · v(x, t) = 0, in Ω(θ)× (0, T ),

v(x, t) = vin(x, t) on Γin × (0, T ),

v(x, t) = 0 on Γlat × (0, T ),

−(µ∇v(x, t)− p(x, t)I)n = 0 on Γout × (0, T ),

v(x, 0) = 0 in Ω(θ).

Here Ω(θ) = Ω1 ∪ Ω2(θ) and Ω2(θ) is the top left yellow, square domain. The
observation region Ωobs is part of the two reservoirs.

We have 12 shape parameters, θ ∈ R12.
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grid m N
(1)
v,dof N

(1)
v̂,dof Nv,dof Nv̂,dof

1 149 4752 23 4862 133
2 313 7410 25 7568 183
3 361 11474 26 11700 252
4 537 16472 29 16806 363

The number m of observations in Ωobs, the
number of velocities N

(1)
v,dof , N

(1)
v̂,dof in the

fixed subdomain Ω1 for the full and re-
duced order model, the number of velocities
Nv,dof , Nv̂,dof in the entire domain Ω for
the full and reduced order model for five
discretizations.

0 50 100 150 200 250 300
10

−10

10
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10
−6

10
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10
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10
0

10
2

The largest Hankel singu-
lar values and the threshold
10−3σ1

37 / 52



Model Reduction & Optimal Control Linear-Quadratic Problems Problems with Localized Nonlinearities Stokes Slip Boundary

I Error in optimal parameter computed sing the full and the reduced order
model (rounded to 5 digits)

θ∗ (9.8987, 9.7510, 9.7496, 9.8994, 9.0991, 9.2499, 9.2504, 9.0989)

θ̂∗ (9.9026, 9.7498, 9.7484, 9.9021, 9.0940, 9.2514, 9.2511, 9.0956)

I The convergence histories of the projected BFGS algorithm applied to the
full and the reduced order problems.
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convergence history of the objective
functionals for the full (+) and re-
duced (o) order model.
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convergence history of the projected
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duced (o) order model.
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Outline

Model Reduction and Optimal Control of Linear-Quadratic Problems

Model Reduction and Optimization of Problems with Localized
Nonlinearities

Regularity of Stokes Equation with Slip Boundary Conditions on Sobolev
Domains
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Extrude-Swell Problem

(Loading movie ...)
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Stokes FBP

Ω1 Ω2Γinlet

Γwall

Γwall

Γout

Γfree

Γfree

−div (σ) = f , div (u) = 0 in Ω

u = g on Γinlet ∪ Γwall

σν = 0 on Γout

u · ν = 0, σν = αHν on Γfree,

where σ = η
(
∇u+∇u>

)
− pI is the stress tensor, η is viscosity, α is surface

tension.
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Formulation challenge

I Try to use the necessary regularity.

I Stokes equations.

I Oversubscribed boundary conditions.
I Moving domain.

I The curvature equation.

How to address them?

I Analyze regularity of the free surface.

I Prove well-posedness of the Stokes with mixed B.C.

I Domain with same regularity of free surface.

I Use non-linear solver techniques.

I Fixed point, implicit function theorem, etc ...
I Solve in a reference domain.
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Stokes Problem Slip (with friction) Boundary Conditions

I Ω ⊂ Rn is of class W
2−1/s
s , with s > n.

I Start with the Stokes equations

− div
(
σ (u, p)

)
= f , div (u) = g in Ω,

I and add the Navier B.C. i.e. slip with friction

u · ν = φ, βTu+ T>σ (u, p)ν = ψ on ∂Ω,

where T = I − ν ⊗ ν is the projection operator into the tangent plane of
∂Ω.

σ = 2ηε(u)− Ip, ε(u) =
∇u+∇u>

2
.
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Variational Equation (pure slip)

Given F , find (u, p) ∈ Eφν ⊕ X̊r(Ω) such that

SΩ (u, p) (v, q) = F (v, q) ∀ (v, q) ∈ X̊r′(Ω)

and the continuity bounds∥∥(u, p)
∥∥
Xr(Ω)

≤ CΩ,η,n,r

(
‖F‖Xr′ (Ω) +‖φ‖

W
1−1/r
r (∂Ω)

)
where the Stokes operator in Ω reads

SΩ (u, p) (v, q) :=

∫
Ω

ε(u) : ε(v)− p div (v) + q div (u) .
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Variational Formulation (Spaces)

I X̊r := Vr(Ω)× Lr0(Ω), s′ ≤ r ≤ s, s > n.

I Vr(Ω) :=
{
v ∈W 1

r (Ω)/Z(Ω) : v · ν = 0
}

.

It is necessary to identify the kernel of SΩ

I Lr0(Ω) := Lr(Ω)/R.

I Z(Ω) :={
z(x) = Ax+ b : x ∈ Ω,A = −A> ∈ Rn×n, b ∈ Rn,z · ν

∣∣
∂Ω

= 0
}

.

Earlier result: Amrouche ’11 C1,1 domain.
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Domain Decomposition

Ω

Ψ−1

Ψ̂

Rn
−

I We cover the domain with finite number of balls

Ω ⊂ ∪ki=1B(xi, δi/2).

I Associate to it a smooth partition of unity {ϕi}ki=1.

I And smooth cut-off functions, {%i}ki=1, supp %i ⊂ B(xi, δi), ρi = 1 on
B(xi, δi/2).

I Using Piola transform

(v̂, q̂) 7→
(
P̂ v̂, q̂

)
◦Ψ−1 = (v, q)

(v, q) 7→
(
P−1v, q

)
◦ Ψ̂ = (v̂, q̂)

v̂ · ν̂ dŝ = v · ν ds.
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Space Decomposition
Restriction map

R%i : X̊r(Ω)→ X̊r(Θ̂i)

(u, p) 7→ P̂−1
i (%iu, %ip)

Projection map
R̂ϕi : X̊r(Θ̂i)→ X̊r(Ω)

(v̂, q̂) 7→ ϕiP̂i (v̂, q̂)

continuous only when Piola matrix is in W 2
s (Ω).

I Given (u, p) ∈ X̊r(Ω), we have

(u, p) =
k∑
i=1

ϕi (u, p) =
k∑
i=1

ϕi (%iu, %ip) =
k∑
i=1

ϕiP̂iP̂−1
i (%iu, %ip)

=

k∑
i=1

R̂ϕi R%i (u, p)︸ ︷︷ ︸
∈X̊r(Θ̂i)

.

which implies X̊r(Ω) =
∑k
i=1 R̂ϕiX̊r(Θ̂i).

I Similarly for the dual space

X̊r(Ω)∗ =
k∑
i=1

R̂∗ϕiX̊r(Θ̂i)
∗
.
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Operator Decomposition

SΩ (u, p) R̂ϕi (v̂, q̂) =
(
SΩi (ϕiu, ϕip) +Ki (u, p)

)
P̂i (v̂, q̂)

+

〈
ε (ϕiu) , ε

(
P̂ iv̂

)
◦Ψ−1

〉
Ωλ

= S̃i︸︷︷︸
Invertible

Rϕi (u, p) (v̂, q̂)

+ CϕiRϕi (u) +Ki (u, p) P̂i (v̂, q̂)︸ ︷︷ ︸
Compact
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Pesudo-inverse

Consider the operator

S†Ω :=

k∑
i=1

R̂%i S̃
−1
i R̂

∗
ϕi .

Then

S†ΩSΩ = IXr(Ω) +

k∑
i=1

R̂%i S̃
−1
i

(
CiRϕi + P̂∗i Ki

)
︸ ︷︷ ︸

compact

.

Similarly
SΩS†Ω = identity + compact.

Therefore SΩ has a pseudo-inverse, which implies

dim NSΩ <∞, codim RSΩ <∞.
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SΩ and S∗Ω are Injective

I Problem satisfies the Brezzi’s theorem for Hilbert space case. This ensures
the uniqueness of solution for

2 ≤ r ≤ s.

I Let r0 = s′ < 2. Consider the homogeneous problem, we need to show
that (u, p) = 0.

Use the method by Galdi-Simader-Sohr ’99 to improve the integrability of
the function to some rk > 2, to conclude.
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Index Theory of Fredholm Operators

Let A : X → Y has a pseudo-inverse. A is bijective if and only if A and A∗
are injective.

Summary:

I Using index theory we have shown the well-posedness of the Stokes
problem with slip boundary condition.

I under mild domain regularity i.e. C1,ε, earlier result Amrouche ’11
C1,1 domain.

I We have provided a constructive approach based on domain
decomposition.

I Extension to slip-with-friction is a direct corollary.

“dimension independent”
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Conclusions

I Applied reduced order models in optimization context.

I Important to approximate state and adjoint equations.

I We have integrated domain decomposition and model reduction for
systems with small localized nonlinearities. In our case, nonlinearities arise
from dependence on shape parameters.

I We have proven global, a-priori estimates for the error between the
solution of the original and the reduced order problem.

I Error estimates depend on balanced truncation error estimates.
(Could use other model reduction techniques).

I Efficiency of reduced order model depends size of subdomain with
nonlinearity, and interface.

I Presented existence theory for Stokes equations with Slip boundary for
C1,ε domain, which is much better than earlier known results by
Amrouche ’11 (C1,1) domain.
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