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Abstract

We first consider m-trapezoid graphs and circular m-trapezoid graphs

and give new constructive proofs that both these classes are closed
under taking powers. We then consider general chordal graphs and
present short and constructive proofs of the known fact that any odd
power of a chordal graph is again chordal. We define a composition
(G, G′) 7→ G ∗ ∗G′ of graphs which will yield an O(n log k) algorithm
to obtain the representation of Gk if k is an odd positive integer and
G is a chordal graph on n vertices with a given representation.
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1 Introduction

In this article we will study powers of some intersection graphs. Important
classes of intersection graphs include interval graphs, circular arc graphs,
trapezoid graphs and chordal graphs. In the first part we will focus our
attention on m-trapezoid graphs, a class of intersection graphs, first defined
in [1], that are a natural generalization of interval graphs and trapezoid
graphs. We will show that any power of an m-trapezoid graph is again
an m-trapezoid graph by explicitly constructing a representation for the
power graph, from the representation of the original m-trapezoid graph.
Interestingly enough, although this result is purely combinatorial, this new
constructive proof makes use of some elementary real analysis. We conclude
this part by stating the same results for circular m-trapezoid graphs.

In the second part we consider general chordal graphs and their powers.
Chordal graphs and some subclasses of them have been studied extensively.
For a good overview of recent work and references we refer to the introduc-
tion of [2]. In this second part we give some new, short and constructive
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proofs of the known fact that any odd power of a chordal graph is again
chordal. Various proofs have been given, P. Duchet [3] showed that if Gk

is chordal then so is Gk+2 for any natural number k. A direct proof was
also given by R. Balakrishnan and P. Paulraja in [4], which uses exhaustive
case analysis. An elementary proof was also given in [2], which is based on
edge contraction of simple graphs and the Euler formula for simple planar
graphs. For our purposes here, we will rely on the result on F. Gavril [5],
that the chordal graphs are precisely the intersection graphs of subtrees of
a given tree. We define a two-fold composition (G, G′) 7→ G∗∗G′ of graphs,
which turns out to be neither associative nor commutative in general, but is
associative when we consider all odd powers of a fixed chordal graph. This
composition can then be used to yield an O(n log k) algorithm to compute
the representation of Gk, if k is an odd positive integer and G is a chordal
graph on n vertices with a given representation.

We will denote the positive integers {1, 2, 3, . . .} by N, and the nonneg-
ative integers {0, 1, 2, . . .} by N0. The set of real numbers (or the real line)
will be denoted by R. The closed interval {x : a ≤ x ≤ b} will be denoted
by [a; b]. The set of ordered tuples of real numbers, R × R, (or the real
Euclidean plane), will be denoted by R2. Similarly the real d-dimensional
Euclidean space will be denoted by Rd. All graphs we consider in this ar-
ticle are simple and undirected unless otherwise clearly stated. If G is a
graph then we denote the set of vertices of G by V (G), and the set of the
edges by E(G). For a given vertex u ∈ V (G) the open neighborhood or just
the neighborhood of u is the set of neighbors of u in G, not including u. It
will be denoted by NG(u) or simply by N(u) when there is no danger of
ambiguity. Similarly the closed neighborhood of u is the set of neighbors of
u in G, including the vertex u itself. This set will be denoted by NG[u] or
simply by N [u] when there is no ambiguity. Recall the following definition.

Definition 1.1 Let G be a simple graph.

1. For vertices u, v ∈ V (G) the distance between u and v in G, denoted
by dG(u, v), is the number of edges in the shortest path in G that
connects u and v.

2. For an integer k ≥ 1, the k-th power of G is the graph Gk, where
V (Gk) = V (G) and

E(Gk) = {{u, v} : u, v ∈ V (G), u 6= v and dG(u, v) ≤ k}.

Remark: We notice that G0 is the graph with the same set of vertices as
G and with no edges. G1 is just G itself.

Recall the following definition of an intersection graph.

2



Definition 1.2 A graph G has an intersection representation {Su : u ∈
V (G)}, if it consists of a collection of sets that are in 1-1 correspondence
with the vertices of G, in such a way that

{u, v} ∈ E(G) ⇔ Su ∩ Sv 6= ∅.

In this case we call G an intersection graph of {Su : u ∈ V (G)}.

Note that for an intersection graph G on n vertices, represented by sets
{S1, . . . , Sn}, the distance d(Si, Sj) is just the distance between the corre-
sponding vertices vi and vj in G.

As mentioned earlier in the introduction, both m-trapezoid graphs and
chordal graphs are special kinds of intersection graphs, which we will con-
sider in the next two sections, the rest of this article.

2 Trapezoid graphs

In this section we consider m-trapezoid graphs. Just like an interval graph
is an intersection graph of a set of closed intervals of the real line R, an
m-trapezoid graph is an intersection graph of a set of m-trapezoids in the
real plane R2. Assume that for each l ∈ {0, 1, . . . , m} we have two real
numbers, al and bl with al < bl. As defined in [1], an m-trapezoid T is
simply the closed interior of the polygon formed by the points

S = {(al, l), (bl, l) : l ∈ {0, 1, . . . , m}} ⊆ R2.

We denote that by T = inter(S). An m-trapezoid graph is a graph G
which is an intersection graph of a set of m-trapezoids, that is, the vertices
V (G) = {v1, . . . , vn} of G can be put in 1-1 correspondence with a set
{T1, . . . , Tn} of m-trapezoids in such a way that

{vi, vj} ∈ E(G) ⇔ Ti ∩ Tj 6= ∅.

Let G be an m-trapezoid graph, represented by {T1, . . . , Tn} where each

Ti = inter({(ali, l), (bli, l) : l ∈ {0, 1, . . . , m}}) (1)

is the interior of the polygon formed by the points indicated. Whether
the intersection Ti ∩ Tj is nonempty or not, only depends on conditions
on the numbers ali, bli, alj , blj where l ∈ {0, 1, . . . , m}. Hence, if f :
{0, 1, . . . , m} → R is any injective function, then {T ′

1, . . . , T
′
n} where

T ′
i = inter({(ali, f(l)), (bli, f(l)) : l ∈ {0, 1, . . . , m}}), (2)

is also a representation of G. In some sense, the m-trapezoid representation
of G depends only on the set of intervals [ali; bli]. In fact, as shown in [1],
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the class of m-trapezoid graphs can be categorized as precisely the class of
co-comparability graphs of an order P with interval dimension m+1 or less.
For simplicity we may as well assume f(l) = l for each l ∈ {0, 1, . . . , m} in
our representation, unless otherwise clearly stated. We also will write ãli

(resp. b̃li) for the point (ali, l) (resp. (bli, l)) in R2.
For an integer k > 1, Carsten Flotow showed in [1] that if Gk−1 is an

m-trapezoid graph, then so is Gk, thereby proving that any power of an m-
trapezoid graph is also an m-trapezoid graph. Our first goal is to construct
an explicit m-trapezoid representation for Gk, when a representation for G
as in (1) is given. Let each Ti be the closed region as in (1). For k ≥ 1 let

bli(k) = max
d(Tα,Ti)≤k−1

{blα}

for every i ∈ {1, . . . , n} and l ∈ {0, . . . , m}. Let likewise b̃li(k) be the
point (bli(k), l) according to our previous convention. Define a new set of
m-trapezoids as

Ti(k) = inter({ãli, b̃li(k) : l ∈ {0, . . . , m}}),

for each i ∈ {1, . . . , n}. With this setup we have the following:

Theorem 2.1 If G is an m-trapezoid graph represented by {T1, . . . , Tn}
then Gk is also an m-trapezoid graph, represented by {T1(k), . . . , Tn(k)}.

Before we prove this theorem, we make note of the following useful obser-
vation, which explains the connection mentioned here above between the
combinatorial object of a graph and some elementary real analysis.

Observation 2.2 For an intersection graph G of topologically closed and
bounded regions {C1, . . . , Cn} of R2, the following statements are equiva-
lent:

1. d(Ci, Cj) ≤ k.

2. For every pair of points, x̃i ∈ Ci and x̃j ∈ Cj , there is a continuous
path joining x̃i and x̃j , whose graph is entirely contained in the union
of at most k + 1 of the regions, two of them being Ci and Cj .

We will also say that the left sides of Ti and Tj cross or intersect if there are
two distinct numbers p, q ∈ {0, . . . , m} such that api < apj and aqi > aqj .

Proof. To prove Theorem 2.1 we need to show

d(Ti, Tj) ≤ k ⇔ Ti(k) ∩ Tj(k) 6= ∅. (3)

In the case where the left sides of Ti and Tj , Li and Lj respectively, cross
we have that both Ti ∩ Tj and Ti(k) ∩ Tj(k) are nonempty, and there is
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nothing to prove. Hence, we can assume the left sides of Ti and Tj do not
cross, say ali < alj for all l ∈ {0, . . . , m}.

To prove the first implication of (3) assume d(Ti, Tj) ≤ k. This means
that there is an m-trapezoid Tα with d(Ti, Tα) ≤ k − 1 and Tα ∩ Tj 6= ∅,
and hence there is an l ∈ {0, . . . , m} with alj < blα. For this l we now have

ali < alj < blα ≤ bli(k),

by the mere definition of bli(k), and hence Ti(k) ∩ Tj(k) 6= ∅.
To prove the second implication of (3) assume that Ti(k) ∩ Tj(k) 6= ∅.

Since by our assumption ali < alj for all l ∈ {0, . . . , m} there must be
an l ∈ {0, . . . , m} such that alj < bli(k). Let Tβ be an m-trapezoid with
d(Ti, Tβ) ≤ k − 1 and bli(k) = blβ .

Restricting our attention to the subset R× [0; m] of R2, which contains
all our m-trapezoids, we see that Lj , the left side of Tj , formed by the
line segments that connect ãl−1 j and ãlj for all l ∈ {1, . . . , m}, forms two
regions of R × [0; m], one to the left of Lj , and the other to the right of

Lj . By Observation 2.2 there is a continuous path γ connecting ãli and b̃lβ

whose graph lies entirely in the union of at most k m-trapezoids, two of
them being Ti and Tβ. Since in particular, the graph of γ lies in R× [0; m],

with one endpoint ãli to the left of Lj and the other endpoint b̃lβ to the
right of Lj , then by a classical intermediate principle of real analysis, γ and
Lj must intersect at some point p̃ on Lj .

Given two points x̃i ∈ Ti and x̃j ∈ Tj let λi be a continuous path from
x̃i to ãli within Ti, and λj be a continuous path from p̃ to x̃j within Tj .
We can now form a new continuous path γ ′ from x̃i to x̃j , by traversing
from x̃i to ãli along λi, from ãli to p̃ along γ, and from p̃ to x̃j along λj .
Now γ′ is a continuous path connecting x̃i ∈ Ti and x̃j ∈ Tj , whose graph
lies within the union of Tj and at most k other m-trapezoids, one of those
being Ti. Therefore the graph of γ ′ is contained in the union of at most
k + 1 m-trapezoids, two of them being Ti and Tj . By Observation 2.2 we
have d(Ti, Tj) ≤ k, which proves the second implication of (3), and hence
our theorem. ut

Consider an m-trapezoid graph G represented by {T1, . . . , Tn} where
each Ti is given by (1). As we saw earlier {T ′

1, . . . , T
′
n} is also a representa-

tion of G where T ′
i is given by (2) and f(l) = l + 1. We can also by simple

horizontal translation and scaling assume that 0 < ali < bli < 2π for each
i ∈ {1, . . . , n} and l ∈ {0, . . . , m}. If we now consider the map c : R2 → R2

defined by
c(x, y) = (y cos(x), y sin(x)),

then each m-trapezoid T , with upper and lower sides parallel to x-axis and
the other sides some straight lines, is mapped to a circular m-trapezoid
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c(T ), where the upper and lower sides are arcs of two co-centered circles,
and the two remaining sides are segments of linear spirals. In this way we
see that {c(T1), . . . , c(Tn)} is a circular m-trapezoid representation of G.

Definition 2.3 A graph G is called a circular m-trapezoid graph if it is
an intersection graph of a set {C1, . . . , Cn} of circular m-trapezoids in R2.

Since the circular arc graphs are simply circular 0-trapezoid graphs we see in
particular that the class of circular arc graphs and the class of m-trapezoid
graphs both are contained in the class of circular m-trapezoid graphs.

If now G is an intersection graph of a set of circular m-trapezoids
{C1, . . . , Cn} and k ≥ 1 is an integer, then by analogously extending each
Ci in the counterclockwise direction, as we extended each m-trapezoid Ti to
the right to get Ti(k), we likewise get a collection of circular m-trapezoids
{C1(k), . . . , Cn(k)}. We conclude this section with the following theorem,
whose proof is nearly identical to that of Theorem 2.1.

Theorem 2.4 If G is a circular m-trapezoid graph, represented by the set
{C1, . . . , Cn}, then Gk is also a circular m-trapezoid graph represented by
the circular m-trapezoids {C1(k), . . . , Cn(k)}.

3 Powers of chordal graphs

In this section we consider powers of chordal graphs. Recall that a graph
is chordal if and only if it is an intersection graph of a set of subtrees of
a given tree [5]. For a chordal graph G only the odd powers of G are in
general chordal. Let us start by using the characterization of F. Gavril to
prove the following result of P. Duchet [3].

Theorem 3.1 Let G be a graph and k a positive integer. If Gk is chordal
then so is Gk+2.

Proof. Assume that Gk is chordal on V (G) = {v1, . . . , vn} and hence an
intersection graph of a set of subtrees, {T1, . . . , Tn}, of a given tree T , where
each vertex vi is represented by the subtree Ti. For each i let

T ′
i =

⋃

vα∈NG[vi]

Tα. (4)

Each vα in the above intersection is a neighbor of vi in G and hence also
in Gk. Therefore each Tα ∩ Ti is nonempty. This means that each T ′

i is
a subtree of T rather than a disconnected sub-forest. We now show that
Gk+2 is an intersection graph of {T ′

1, . . . , T
′
n}.

Note that T ′
i∩T ′

j 6= ∅ if and only if there are vα ∈ NG[vi] and vβ ∈ NG[vj ]

such that Tα∩Tβ 6= ∅. Since now Gk is an intersection graph of {T1, . . . , Tn}
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this means precisely that dG(vi, vj) ≤ k + 2, and hence that vi and vj are
connected in Gk+2. Therefore Gk+2 is an intersection graph of subtrees of
T , and is therefore chordal. ut

From the the above proof we see that if we know the representation of
G as an intersection graph of subtrees of a given tree, then we know the
representation of G3 as an intersection graph. From this we can get the
representation of G5, and so on, eventually obtaining a representation of
Gk as an intersection graph, where k is odd.

This can be done more directly by using a slight variation of the con-
struction in (4). Note that in that formula, vα ∈ NG[vi] and dG(vα, vi) ≤ 1
is the same condition.

With this in mind, assume now that G is chordal on n vertices and
represented by the subtrees {T1, . . . , Tn} of a given tree T . If k is an odd
integer, k = 2m + 1, define Ti(k) by the following formula

Ti(k) =
⋃

d(Tα,Ti)≤m

Tα. (5)

We now have the following proposition.

Proposition 3.2 If k = 2m + 1 is an odd integer, G is chordal and repre-
sented by the subtrees {T1, . . . , Tn}, then Gk is chordal and represented by
the subtrees {T1(k), . . . , Tn(k)} from (5).

Proof. We need to show two facts. Firstly that each Ti(k) is actually
a subtree of T , and secondly that the Ti(k) actually represent Gk as an
intersection graph.

Clearly each Ti(k) is either a sub-forest or a subtree of T . The fact
that it is a connected subtree rather than a sub-forest is a special case of
Observation 2.2, if we view trees as compact and closed regions in R2. That
is, if d(Tα, Ti) ≤ m, then there is a sequence

Tα = T ′
0, T

′
1, . . . T

′
m = Ti

such that each intersection T ′
l ∩T ′

l+1 is nonempty. This means in particular
that there is a path from any vertex in Tα to any vertex in Ti within the
union defining Ti(k), and hence Ti(k) is connected.

Assume now that Ti(k) ∩ Tj(k) 6= ∅. This means that there are α, β ∈
{1, . . . , n} such that Tα ∩ Tβ 6= ∅ where d(Tα, Ti), d(Tβ , Tj) ≤ m. Hence we
have

d(Ti, Tj) ≤ d(Ti, Tα) + d(Tα, Tβ) + d(Tβ , Tj) ≤ m + 1 + m = k.

The other direction works the same way, and hence we have the proposition.
ut
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In Proposition 3.2 we get the representation of Gk directly as the math-
ematical formula (5) indicates, similar to the one in Theorem 2.1 for m-
trapezoid graphs, and in contrast to the inductive formula (4). In (5)
though, the difficulty is computational, of determining which subtrees Tα

are of distance m or less from Ti, for each given fixed i ∈ {1, . . . , n}.
So a natural question is: Is there a way to find a representation of Gk

as an intersection graph if we know the representation of G and k, that will
minimize these computational difficulties?

For the rest of this article we will extract some common themes of the
proofs of Theorem 3.1 and Proposition 3.2 to define a certain composition
of graphs. That can then be used to present an algorithm to compute the
representation of Gk as an intersection graph of subtrees of a given tree,
where G is chordal and k odd, with minimal computational complexities.
First we need some new definitions and easily stated facts.

Definition 3.3 Let G and G′ be graphs on the same set of vertices, V (G) =
V (G′) = V . Define the two-fold composition G ∗ ∗G′ as the graph with
V (G ∗ ∗G′) = V and edge set

E(G ∗ ∗G′) = {{u, v} : u 6= v and ∃w, w′ ∈ V 3

{u, w}, {w′, v} ∈ E(G′) ∪ V and

{w, w′} ∈ E(G) ∪ V }.

Remarks: (i) the condition x 6= y is only to eliminate possible loops and
to make the graph G ∗ ∗G′ simple. (ii) Note that {x, y} ∈ E(G) ∪ V (resp.
{x, y} ∈ E(G′)∪V ) means that either x = y, or {x, y} is an edge in G (resp.
x = y, or {x, y} is an edge in G′). (iii) Note also that {u, v} ∈ E(G∗∗G′) if
and only if there are w ∈ NG′ [u] and w′ ∈ NG′ [v] with {w, w′} ∈ E(G)∪V .
(iv) When restricting to the class of interval graphs or m-trapezoid graphs,
a similar composition

(G, G′) 7→ G ∗ G′,

but closer related to a usual group-like product, can be defined. For more
details see [6].

Directly from the above definition we get

Observation 3.4 If s and t are nonnegative integers and G is a graph,
then Gs ∗ ∗Gt = Gs+2t.

The proof of the following theorem is analogous to the proof of Theorem 3.1.
It is the mere statement of this more general fact that is of value for us, and
which captures the common concept of Theorem 3.1 and Proposition 3.2.

Theorem 3.5 Let G and G′ be graphs on the same set of n vertices. If
G is an intersection graph of a set {C1, . . . , Cn} of topologically closed and
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bounded regions in some Euclidean space Rd, then the two-fold composition
G ∗ ∗G′ is an intersection graph of {C∗∗

1 , . . . , C∗∗
n } ⊆ Rd where

C∗∗
i =

⋃

vα∈NG′ [vi]

Cα (6)

for each i ∈ {1, . . . , n}.

Proof. For distinct indices i and j we have that C∗∗
i ∩C∗∗

j 6= ∅ if and only
if there are vα ∈ NG′ [vi] and vβ ∈ NG′ [vj ] with Cα ∩ Cβ 6= ∅. This means
precisely that {vα, vβ} ∈ E(G) ∪ V (G) and the theorem follows. ut

Needless to say, what is of interest to us, are those cases where the regions
C∗∗

i belong to the same class as the Ci do. An example of that case is the
following corollary.

Corollary 3.6 Let G′ be a subgraph of the chordal graph G on the same
set of n vertices. If G is represented by the subtrees {T1, . . . , Tn} of a tree
T , then G∗∗G′ is chordal and is represented by the subtrees {T ∗∗

1 , . . . , T ∗∗
n }

of T , where each T ∗∗
i is given by (6).

Proof. Since G′ is a subgraph of G we have that every edge in G′ is also
in G, and hence we have that Tα ∩ Ti 6= ∅ whenever vα ∈ NG′ [vi]. Hence
T ∗∗

i is connected and therefore a subtree of T . ut

For a given graph G we have that Gt is always a subgraph of Gs if t ≤ s.
Hence, if G is a graph on n vertices such that both Gs and Gt are chordal
and represented by subtrees {T1(s), . . . , Tn(s)} and {T1(t), . . . , Tn(t)} re-
spectively, then Gs ∗ ∗Gt = Gs+2t is chordal and represented by subtrees
{T1(s + 2t), . . . , Tn(s + 2t)}, where for each i we have

Ti(s + 2t) =
⋃

Tα(t)∩Ti(t)6=∅

Tα(s). (7)

From this we see that if we have the representations of Gs and Gt then
we can directly get a representation of Gs+2t. Now the question really is:
Given an odd integer k, how can we use (7) to obtain an algorithm yielding
a representation of Gk which will be faster than an algorithm based on the
proof of either Theorem 3.1 or Proposition 3.2?

In order to address this in a more precise manner, we need the following
definition.

Definition 3.7 A sequence (Ti)i≥0 of sets of positive integers with

T0 = {1},

Ti+1 = Ti ∪ {si + 2ti},

9



for some si, ti ∈ Ti with ti ≤ si, is called a two-fold set sequence, or a
TFSS for short.

Remarks: (i) Every TFSS starts with the set that contains just the integer
1, T0 = {1}. Every TFSS has the second set T1 = {1, 3}, since s0 = t0 = 1
is the only possibility. For the third set T2, there are three possibilities,
T2 = {1, 3} when s1 = t1 = 1, T2 = {1, 3, 5} when s1 = 3 and t1 = 1,
and T2 = {1, 3, 9} when s1 = t1 = 3. (ii) We note that by definition,
every set in a TFSS contains only odd integers. Also note that for every
odd integer k = 2m + 1 there is a TFSS (Ti)i≥1 with k ∈ Tm, namely
Ti = {1, 3, . . . , 2i + 1} where si = 2i + 1 and ti = 1. The next lemma shows
that one can reach any odd integer k in O(log k) steps. Recall that bxc is
the largest integer n ≤ x, for any real x, and that the base-α logarithm is
denoted by logα.

Lemma 3.8 For every odd positive integer k there is a TFSS (Ti)i≥1 with

k ∈ T4blog
3
(k)c.

In order to prove the above lemma we need some tools.

Claim 3.9 If N ≥ 3l and {1, 3, 32, . . . , 3l, N} ⊆ Tγ then it is possible to
have

N + 3p + 3q ∈ Tγ+p−q+1

for any p, q ∈ {0, 1, . . . , l} with p ≥ q.

Proof. If p = q we let sγ = N , tγ = 3q and get N+3p+3q = N+2·3q ∈ Tl+1

proving our claim in this case. If p > q we note that

N + 3p + 3q = N + 2(3p−1 + 3p−2 + · · · + 3q) + 2 · 3q. (8)

Define sγ and tγ as in the case p = q. For each i ∈ {1, . . . , p − q − 1}, if
nonempty, we let

sγ+i = N + 2(3q+i−1 + · · · + 3q),

tγ+i = 3q+i.

By letting sγ+p−q = N + 2(3p−1 + 3p−2 + · · · + 3q) and tγ+p−q = 3q, we
get by (8) that N + 3p + 3q ∈ Tγ+p−q+1 which concludes the proof of our
claim. ut

From the above claim we get two following corollaries.

Corollary 3.10 If N ≥ 3l and {1, 3, 32, . . . , 3l, N} ⊆ Tγ then for any sub-
set Y ⊆ {0, . . . , l} it is possible to have

N + 2
∑

y∈Y

3y ∈ Tγ+|Y |.
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Proof. For each element y ∈ Y , let p = q = y, and apply Claim 3.9
repeatedly. Hence we get the corollary. ut

Corollary 3.11 If N ≥ 3l and {1, 3, 32, . . . , 3l, N} ⊆ Tγ then for any sub-
set X ⊆ {0, . . . , l} with |X | even, it is possible to have

N +
∑

x∈X

3x ∈ Tγ+l+1.

Proof. Let |X |/2 = t. Listing the elements of X = {x1, x
′
1, . . . , xt, x

′
t} in a

strictly decreasing order, we can apply Claim 3.9 t times and get

N +
∑

x∈X

3x = N + (3x1 + 3x′

1) + · · · + (3xt + 3x′

t)

∈ Tγ+(x1−x′

1
+1)+···+(xt−x′

t
+1).

Since X = {x1, x
′
1, . . . , xt, x

′
t} ⊆ {0, . . . , l}, and the listing is strictly de-

creasing, we have that (x1 −x′
1 + 1) + · · ·+ (xt −x′

t + 1) ≤ l + 1. Therefore
we have N +

∑
x∈X 3x ∈ Tγ+l+1, proving the corollary. ut

At this point we can prove Lemma 3.8:

Proof. Consider the odd integer k > 1 written in base 3,

k =
∑

a∈A

3a = 2
∑

b∈B

3b,

where A, B ⊆ N0, A ∩ B = ∅ and |A| is odd. If l = blog3(k)c then
l = max(A ∪ B). Note that l + 1 ≥ |A ∪ B| = |A| + |B|.

We form the first l+1 terms of our TFSS by letting si = ti = 3i for each
i = 0, 1, . . . , l and thereby getting T0, . . . , Tl where Ti = {1, 3, 32, . . . , 3i} for
each i. At this point we proceed as indicated in the following two cases.

First case: The leading coefficient (i.e. the coefficient of 3l) is 1, and
hence l ∈ A. We have that Tl = {1, 3, 32, . . . , 3l}, and letting N = 3l in
Corollary 3.10 we get that we can have

k −
∑

a∈A\{l}

3a = 3l + 2
∑

b∈B

3b

∈ Tl+|B|.

Since |A \ {l}| is even, we get from Corollary 3.11 that we can have

k ∈ T(l+|B|)+l+1.

Since A ∪ B ⊆ {0, . . . , l} are disjoint, and A 6= ∅, we have that |B| ≤ l and
hence k ∈ T3l+1 ⊆ T4l, proving the lemma in this first case.
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Second case: The leading coefficient of the base-3 expansion of k is a
2, and hence l ∈ B. We have Tl = {1, 3, 32, . . . , 3l}. If a′ = maxA, then by
letting N = 3l, Corollary 3.10 implies that we can have

2 · 3l − 3a′

= 3l + 2(3l−1 + . . . + 3a′

) ∈ T2l−a′ .

Again, by Corollary 3.10, we can have

2
∑

b∈B

3b + 3a′

= (2 · 3l − 3a′

) + 2
∑

b∈(B\{l})∪{a′}

3b

∈ T(2l−a′)+|B|.

Since |A \ {a′}| is even we get by Corollary 3.11 that we can have

k = (2
∑

b∈B

3b + 3a′

) +
∑

a∈A\{a′}

3a ∈ T(2l−a′+|B|)+l+1.

Since A 6= ∅ and |B| ≤ l, we have k ∈ T4l+1−a′ ⊆ T4l, proving the lemma
in this case, and thereby completing the proof of the lemma. ut

Remark: It is clear that if k is an odd integer then there is no TFSS
(Ti)i≥1 with k ∈ Ti, where i < blog3(k)c, since the largest number that can
possible be in each Ti is 3i, which we can have only if we set si = ti = 3i for
all i. Hence, for any k, the smallest i such that k ∈ Ti satisfies blog3(k)c ≤
i ≤ 4 blog3(k)c, and therefore i = Θ(log k).

Consider now our original question on representing a chordal graph as
an intersection graph of subtrees of a tree. If we have a given chordal graph
G on n vertices, and k is an odd integer, then by Lemma 3.8 we need to
perform at most 4 blog3(k)c two-fold compositions

(Gs, Gt) 7→ Gs ∗ ∗Gt = Gs+2t,

to obtain Gk, when we start with G = G1. Hence, we need to form at most
4n blog3(k)c unions, as in (7), to acquire the representation of Gk as an
intersection of subtrees of a tree. Hence we have the following corollary.

Corollary 3.12 Given a chordal graph G on n vertices represented by sub-
trees {T1, . . . , Tn} of a tree T as an intersection graph. If k is an odd integer
then the representation {T1(k), . . . , Tn(k)} of Gk as an intersection graph
of subtrees of T , can be reached in O(n log k) steps.
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